
Day 2 – Lab2:

Implement Topics and Partitions

1. Patient monitoring

Introduction

In the design exercise we asked you to define topics and partitions for a remote patient

monitoring system. Every one of you may have created different topics and partitions

for this exercise.

We'll just suggest one solution, and have you implement a small portion of the problem.

The Concerns

This system has been built by developers for a big US hospital some years back.

Although we will not have access to the code, but below are highlights of some of the

concerns that needed to be designed for.

Here are some of these concerns:

• The site was multi-tenant (several hospitals using the same system). Ensure that

the data from one patient is sent to the correct hospital/doctor.

• The data had very different shape and frequency based on the kind of device

(e.g., a weight scale is quite different from an EKG)

• Nurses want to see data from a subset of patients

Making it simple

Time is limited for this exercise, but this lab will provide you an opportunity and a

feeling for how you would take advantage of a tool like Kafka to implement a solution

for this.

Let's make it simple and assume that we work on behalf of a single hospital. Let's also

further simplify by assuming that we only keep track of a couple of types of devices.

Let's say we track:

• Weight scales

• Blood pressure monitor

What is interesting here is perhaps that while we may step on the weight scale once per

day, we may have a blood pressure monitor that produce events once every 10 seconds.

Let's also give you some other metrics:

• We expect to monitor up to 100,000 patients

• We intent to build a UI for nurses where each nurse monitors about 1,000

patients each

o From this follows that at any time we would have about 100 nurses

monitoring the patents

Let's also assume some very simple rules that decide upon actions:

• When the blood pressure moves from normal to high, we want the nurse

assigned to be alerted. We assume that a move to values above 150/100 should

trigger the event for the nurse.

Let's also assume that each of the devices sends out a ping once per hour to say that

they are healthy. We would also want to ensure that we monitor the devices and alert

the service technicians if one of the devices does not call home.

Suggested topics

Here are some suggested topics:

• Device installation

o We will create one topic to manage device installations

o Messages sent on this topic:

▪ Device installed

▪ Device uninstalled

• Patient observation

o We will use this topic to send message from the scale and the blood

pressure monitor. We can expect that we will see many more kinds of

messages, but we want to use a single topic with polymorphic messages.

The main reason for this is to ensure that we get the messages in order for

a single patient no matter which device sent the message.

o Message sent on this topic

▪ Device event

▪ Multiple shapes, but a common header

▪ Header

▪ Device id

▪ Observation time

▪ Message type

▪ Body

▪ Weight measurement

▪ Weight in kilograms

▪ Blood pressure

▪ Pulse

▪ Systolic pressure

▪ Diastolic pressure

• Device heartbeat

o This message would be a simple message that simply say "I'm on-line and

working".

What about partitions?

Since we're running a single node cluster in this exercise, we will not bother to

implement the partitions. BTW, if you do want to play with a larger cluster, the docker

image for Kafka supports that. You can simply tell docker-compose to scale out the Kafka

cluster to more nodes (for this, run docker-compose scale kafka=X, where X is the number

of nodes you want to run). Partitions would be used primarily for controlling

throughput.

We can imagine that the patient observations may require significant throughput. Let's

say we start introducing devices that produce 100's of messages per second.

Ideally, we should try to process all events from a patient in order, however, that can

turn out to be tricky in this case as each device may be streaming out events

independently. Perhaps the best we can do is to ensure that the events from a single

device are processed in order.

A typical design then would be:

• Measure the number of message that each Kafka node can process per second

(e.g., say we use 10,000)

• Measure the number of messages we expect on the topic per second (e.g., say

100,000)

• Devide the numbers for expected messages and processing ability and we get at

least 10 partitions. We probably want to have more than that, so perhaps we

settle on 50 partitions.

• Since we want to make sure we process a single device stream in order, let's use

the device id as the source for the partition key.

Serialization / De-serialization

The serialization and de-serialization would depend somewhat of what we can control

(the devices may have their own protocol and in the world of IoT, we often have to

support many protocols. Common protocols are ASN.1, MQTT, JSON, XML, etc.).

Let's assume for our simple example that you can use JSON.

Processor

We probably want at least two processors for this scenario

Device monitor

This process is simple. It will simply read the heartbeats for each device.

The behavior would be something like this:

• If it has not heard from the device in 2 hours, it would produce a device-warning

message.

• If it has not heard from the device in 3 hours, it would produce a device-failure

message.

• If it hears from a device that is in a warning/error state, it produces a device-

back-online message.

Patient monitor

This processor listens to the device events and builds up a current picture of the patient

vitals.

The processor would have to be supported by a database where we map the devices to

individual patients.

Whenever the patient vitals change, it pushes an event to a new patient topic.

Create the topics

Create the following topics:

• device-heartbeat

• device-events

• patient-vitals

• patient-alarm

• device-status

Create the processors

Heartbeat monitor

Create a processor that listens to the heartbeats and if you don't hear from a device

within a specified period, then push an event to the device-status topic.

Patient monitor

Create a processor that listens to the device events and if you see a message where the

blood pressure is above a given limit, you push an event to the patient-alarm topic.

2. Topics and partitions

Introduction

To support the online format, we have dramatically simplified this exercise.

We have left an exercise description for a more ambitious exercise in this directory if you

want a harder challenge after this course is finished.

We'll simply implement a heartbeat example.

Imagine that the devices used by the remote patients sends a heartbeat at least every

minute to say they are alive and well.

We want to implement a processor that listens to these heartbeats and when we have

not heard from the device for one minute, we want to sound an alarm.

Start docker containers

Make sure to shut down the docker images from the last exercises. Enter

the docker directory of this lab. Edit the docker-compose file (or copy the one from the

last lab) to enter your host id. A reminder: we got the IP address by running:

Mac:

$ ifconfig | grep inet

Windows:

$ ipconfig

Find the address in the output and update the docker-compose.yml file. If you need more

explanations, we had more details in the Producer and Consumer labs we did earlier.

Next, start docker:

$ docker-compose up

Creating the topics

Next, we'll simply create the topics. Open a new terminal in the docker directory.

$ docker-compose exec kafka /opt/kafka/bin/kafka-topics.sh --create --zookeeper
zookeeper:2181 --replication-factor 1 --partitions 1 --topic device-heartbeat
$ docker-compose exec kafka /opt/kafka/bin/kafka-topics.sh --create --zookeeper
zookeeper:2181 --replication-factor 1 --partitions 1 --topic device-event

Build and run the device simulator

We've already created a heartbeat simulator.

It needs to be built with maven as we saw in the previous exercise. With maven installed

locally, run:

$ cd ../heartbeat-simulator
$ mvn package

If you don't have a locally installed maven, run the docker command in this directory:

$ cd heartbeat-simulator/
$ docker run -it --rm --name lesson -v "$PWD":/usr/src/lesson -w /usr/src/lesson
maven:3-jdk-8 bash

root@0c00b230aa19:/usr/src/lesson30# mvn package

Start the device-simulator

Next, let's start the simulator of heartbeats.

$ target/simulator
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
Press enter to quit

We are now producing simulated heartbeats.

Create a simple console consumer

To see the messages, let's run our usual console consumer. In a new terminal cd into

the docker directory and then run the Kafka consumer.

$ cd docker
$ docker-compose exec kafka /opt/kafka/bin/kafka-console-consumer.sh --bootstrap-
server kafka:9092 --topic device-heartbeat

After a few seconds you should start to see heartbeat messages being produced. E.g.:

...
Scale 1 sent heartbeat at Sat Jun 17 15:43:06 CDT 2017
Scale 2 sent heartbeat at Sat Jun 17 15:43:10 CDT 2017
Heart monitor 2 sent heartbeat at Sat Jun 17 15:43:11 CDT 2017
Heart monitor 5 sent heartbeat at Sat Jun 17 15:43:13 CDT 2017
Scale 5 sent heartbeat at Sat Jun 17 15:43:13 CDT 2017
Scale 6 sent heartbeat at Sat Jun 17 15:43:19 CDT 2017
Scale 1 sent heartbeat at Sat Jun 17 15:43:21 CDT 2017
Heart monitor 6 sent heartbeat at Sat Jun 17 15:43:22 CDT 2017
Heart monitor 1 sent heartbeat at Sat Jun 17 15:43:24 CDT 2017
Scale 4 sent heartbeat at Sat Jun 17 15:43:24 CDT 2017
Heart monitor 2 sent heartbeat at Sat Jun 17 15:43:26 CDT 2017
Heart monitor 7 sent heartbeat at Sat Jun 17 15:43:27 CDT 2017
Heart monitor 5 sent heartbeat at Sat Jun 17 15:43:28 CDT 2017
Scale 5 sent heartbeat at Sat Jun 17 15:43:28 CDT 2017
Scale 6 sent heartbeat at Sat Jun 17 15:43:34 CDT 2017
...

Create the device monitor

We've also written a monitor for you. You can find this monitor in the directory device-

monitor/.

Take some time to study the code and see how it works.

To build and run this application, you must run maven as before (here shown with native

install):

$ cd device-monitor
$ mvn package
....
$ target/device-monitor

You should now see a set of output like this:

...
Received heartbeat from: Scale 5 value: Scale 5 sent heartbeat at Sat Jun 17 16:32:43 CDT 2017
Received heartbeat from: Scale 6 value: Scale 6 sent heartbeat at Sat Jun 17 16:32:49 CDT 2017
Received heartbeat from: Heart monitor 4 value: Heart monitor 4 sent heartbeat at Sat Jun 17
16:32:51 CDT 2017
Received heartbeat from: Scale 4 value: Scale 4 sent heartbeat at Sat Jun 17 16:32:54 CDT 2017
Received heartbeat from: Scale 2 value: Scale 2 sent heartbeat at Sat Jun 17 16:32:55 CDT 2017
Received heartbeat from: Scale 7 value: Scale 7 sent heartbeat at Sat Jun 17 16:32:55 CDT 2017
Received heartbeat from: Heart monitor 5 value: Heart monitor 5 sent heartbeat at Sat Jun 17
16:32:58 CDT 2017
Received heartbeat from: Scale 5 value: Scale 5 sent heartbeat at Sat Jun 17 16:32:58 CDT 2017
Checking devices...
Device has not been heard from for some time. Producing a new event: Scale 1
Device has not been heard from for some time. Producing a new event: Heart monitor 3
...

Create a console consumer online/offline messages

In a new shell, go to the docker directory.

$ cd docker
$ docker-compose exec kafka /opt/kafka/bin/kafka-console-consumer.sh --bootstrap-
server kafka:9092 --topic device-event

It may take some time before you see online or offline messages (see the device

simulator and you'll see the randomness of the heartbeat production).

You should eventually start to see devices go offline and online.

E.g.:

...
Scale 7 offline since Sat Jun 17 16:58:10 CDT 2017
Scale 7 is back online
Heart monitor 2 offline since Sat Jun 17 16:59:41 CDT 2017
Heart monitor 2 is back online
...

That's it.

Congratulations. You finished the lab!

