
Introduction to NoSQL

Instructor: Ekpe Okorafor
1. Big Data Academy - Accenture

2. Computer Science - African University of Science &
Technology

Agenda

• Introduction

• Technical Overview

• Use Cases

• Under The Hood: Compare & Contrast

2

Agenda

• Introduction

• Technical Overview

• Use Cases

• Under The Hood: Compare & Contrast

3

What Is NoSQL?
NoSQL is a bit like Cloud Computing - An
umbrella term

NoSQL:

• Data stores that avoid

the RELATIONAL

model

• Use other data models

NoSQL == Not Relational

• No schema

• No joins

• Usually distributed

• Usually replicated

• Usually not ACID

• No SQL

Typical NoSQL characteristics …..

Relational databases have been
a successful technology for

twenty years, providing
persistence, concurrency

control, and an integration
mechanism

Why NoSQL?

• Need to scale horizontally without having to invest in
EXPENSIVE large servers and storage area networks
(SAN)

• Requirement to control 99 %ile latency

• Requirement for rapid development
• in a coder friendly environment

Definitely consider NoSQL if you have …..

NoSQL
NoSQL seems to be a better match for
some companies than to others. For
many industry needs, traditional
RDBMS will work adequately.

…Other Reasons

• Data access by primary key only

• Data join not needed

• Write-intensive and continuously

• Data model is a single set of items

Problems that don’t require RDBMS

NoSQL
These problems don’t necessarily
require a relational database and other
data models and solutions can be
considered.

Look At The Trends
The enterprise data landscape is changing

Traditional "relational" databases are not designed to

manage emerging data types

Fixed data location

Central data model

Authorship constrained

Few writers, many readers

Simple access patterns

1 write, many reads

Fixed data structure

Schema creation

Data creation/access is global

Distributed data set model

Authorship is universal

Anyone can read and write

Applications are more social

Many writers, many readers

Weak structured data

Schemaless approach

Trend

Traditional RDBMS Model Emerging Database Model

What It All Means

• Undertake data problems previously thought to be too difficult or
impossible to solve using traditional legacy relational databases

• Tap into huge unstructured data sources from emerging platforms
for data analysis and business intelligence

• Derive connected intelligence using graph database methods as
data becomes increasingly more complex and highly connected

Enterprises have a cost effective option to …….

Legacy!!! Emerging

What Should Be Done

• Key-Value pair databases are
frequently found in caching
and fast-lookup apps

• Column-oriented databases
power sensor networks, such
as with SETI and NASA

• Document-based databases
are often used in place of Key-
Value Pair databases when
richer querying is required

• Graph databases can match
social graphs, and simplify
relationship navigation

• NoSQL business enterprise data model analysis

NoSQL

Key Value pair

Web Analytics

Online
booking/itinerary
management and

search

Column-
oriented

Large Sensor Networks

Social Network Data
Analysis

Document-
based

Web App User Data
Analysis

Semantic Data
Analysis

Document Archive
Management

Graph
databases

Social Networks

Making The Right choice

• Just as transactional & analytical processing needs lead to
technologies optimized for OLTP and OLAP

• Align the critical motivation and business needs to desired NoSQL
solution

Consider the key MOTIVATION & business need

Convenience

• Simple to set up , ease of

use and schema-less data

• Knowledge about the

individual

• key-value and document

stores) help solve

problems related to atomic

intelligence

Connectedness

• Complex and connected

data.

• Knowledge about the

networks and relationships

• Graph databases can

markedly improve one’s

ability to leverage

connected intelligence

Big Data

• Large volume of data

• Storage and processing

requirements

• Column oriented and key-

value stores are well

suited to big data

environments providing big

data intelligence

Agenda

• Introduction

• Technical Overview

• Use Cases

• Under The Hood: Compare & Contrast

12

NoSQL Systems

• Flexible schema

• Quicker/cheaper to set up

• Massive scalability

• Relaxed consistency → higher performance &
availability

✓No declarative query language → more programming

✓Relaxed consistency → fewer guarantees

Are alternative to traditional RDBMS, providing …

NoSQL Systems

• “NoSQL” = “Not Only SQL’

Not every data management/analysis problem is
best solved exclusively using traditional RDBMS

• Current NoSQL based on data model types
include:

o Key-value pair

o Document-based

o Column oriented

o Graph database

Data Models

Complexity

Complexity

S
iz

e

Key-value

pair

Column

oriented

Document

based

Graph

Key-Value Pair

• Extremely simple interface
o Data model: (key, value) pairs

o Operations: Insert(key,value), Fetch(key), Update(key), Delete(key)

• Implementation: efficiency, scalability, fault-tolerance
o Records distributed to nodes based on keys

o Replication

o Single-record transactions, “eventual consistency”

• Example systems

o Redis, Riak

Frequently found in caching and fast-lookup apps

Document-Based

• Like key-value store except value is document
o Data model: (key, document) pairs

o Document: JSON, XML, other semi-structured formats

o Basic operations:

o Insert(key,document), Fetch(key), Update(key), Delete(key)

• Example systems

o CouchDB, MongoDB, Riak, …..

Used when richer key-value querying is required

Column Oriented

• Like key-value store except value is document

o Data model: columnar stores

o Document: structured data designed to scale to large
size

o Basic operations:

• Example systems

• Hbase, Cassandra

Used when richer key-value querying is required

Graph Database

• Graph database systems
o Data model: nodes and edges

o Nodes may have properties (including ID)

o Edges may have labels or roles

o Interfaces and query languages vary

• Example systems

o Neo4J, DSE Graph, GraphDB, …….

Used to simplify relationship navigation

Which One To Use?

Key-value

Processing a constant

stream of small reads

and writes

Document

Natural data modeling.

Programmer friendly.

Rapid development.

Web friendly

Column-Based

Handles size well.

Massive write loads.

HA. MapReduce

Graph

Complex and

connected data. Graph

algorithms and

relations

NoSQL
Data

Models

Beyond Data Models

Need a classification that would actually allow an
observer to determine whether or not the solution

category is appropriate for a given use case?

Choosing a solution by data model alone is not
enough

NoSQL Solutions
Use case categories

Intelligence Data Model
Application

Requirements

NoSQL
Use
Case

Products /
features

Business
Use Case

Application
Requirement

Data Model

Intelligence

Use Case Categories
Non-exhaustive list of use case categories

Atomic Big Data Connected

Document Column GraphKey-Value

Unstructured
Data

Web-scale Complex Data
High

Availability
Caching

• Recommendation
engines

• Business intelligence
• Social computing

Redis, Riak, CoucDB, MongoDB, Hbase, Cassandra, Neo4J, etc.

• Event logging
• Search optimization
• Customer analytics

• Storing Session
Information

• User Profiles
• Shopping Cart Data

• Content Mgt Systems
• Web Analytics
• Real-Time Analytics

Agenda

• Introduction

• Technical Overview

• Use Cases

• Under The Hood: Compare & Contrast

24

1. Social Media
Atomic + Key-Value + High Availability

• Employ a reliable, scalable NoSQL solution
• High availability is paramount
• Amazon – Dynamo model fits use case
• Dynamo-inspired projects – (Riak & Voldemort)
• Riak chosen because of stability and very low latency

• Yammer is an enterprise social network
• Huge data to manage from its rapidly growing user base
• Data is always updated
• Needed to build a new notifications feature
• Gives the user a sorted set of notifications
• Call to action based on the nature of the notification

• Data size = 2+ Terabytes
• Duplicate data and stability concerns due to

difficulty with replication and database crashes
• Data is stored in a Postgres data store
• Postgres provides consistency of data guarantees at

the expense of availability
• Need for high availability (HA)

• Yammer now has a robust Notifications module in its social collaboration tool
• No increase its data footprint on its single point of failure
• Very low latency
• Highly available data powering the notifications

NoSQL Approach

Results

Background

Challenge

2. Data Management
Atomic + Document-Based + Web Scale

• Employ a NoSQL solution designed for distributed
environments

• Capable of handling large number numbers of transactions
• No Need to Manage a Complex Replication Infrastructure
• MongoDB and CouchDB have these features
• CouchDB chosen – speed of development

• The Compact Muon Solenoid Experiment (CMS) at CERN
• Data Management and Workflow Management (DMWM)
• Provides all offline processing infrastructure to CMS

• Data cataloging
• Data transfer
• Creating simulated data

• CMS will collect roughly 10PB of data per year.
• Problems that don’t fit well with standard

relational databases or file systems
• Small number of users, but an amount of data

similar to Facebook's
• Needed a solution that could handle large

amounts of data, often without metadata, quickly
in a distributed environment in which incoming
database connections are frequently impossible

• DMWM team don’t have to write and maintain large pieces of code
• Rapid application development / deployment

NoSQL Approach

Results

Background

Challenge

3. Search Optimization
Atomic + Document-Based + Caching

• Employ a reliable, document based NoSQL solution
• Caching is important
• Data sets to fit in RAM
• Single replica set, no shards
• MongoDB chosen

• Multiple indexes allow flexible lookups
• In-memory data placement ensures lookup speed
• Large data set is durable and replicated

• ebay – large BASE environments based on Oracle DB
• Every database is shared and partitioned
• Logical hosts are mapped to physical based on static mapping

tables which are controlled by the DBAs
• Common ORM framework (DAL) provides powerful and

consistent patterns for data scalability

• ORM is not the fastest way to develop
• Search suggestion
• Need to use RAM more aggressively and

seamlessly to speed up queries
• Must have <60 – 70 msec round trip end to end

• Search suggest list is a MongoDB document indexed by work prefix as well as by some metadata; product category,
search domain, etc.

• MongoDB query < 1.4 msec

NoSQL Approach

Results

Background

Challenge

4. Online Streaming
Big Data + Column-Based + Web Scale + HA

• Employ a highly durable cloud data store with writes
automatically replicated across availability zones with a
region – Amazon SimpleDB

• High performance column oriented distributed database
solution, good for managing ever growing data volumes –
HBase

• Cassandra at Netflix is used to hold both the member data
set (aka Subscriber) and the A/B test data sets. It is also
used to hold the streaming viewing history.

• Netflix is a provider of on-demand Internet streaming
media

• In addition to streaming more titles to more devices in both the
US and Canada, Netflix has moved its infrastructure, data, and
applications to the AWS cloud.

• Goal is infinite scale

• Pick a data store suitable for the Cloud
• Translate RDBMS concepts to key-value store
• Work around issues specific to the chosen KV

store
• Create a bi-directional DC-Cloud data replication

pipeline

• Netflix is the leading global content streaming platform
• Re-distribute load across nodes at runtime
• A single global Cassandra cluster can simultaneously service applications and asynchronously replicate data across

multiple geographical locations

NoSQL Approach

Results

Background

Challenge

5. Content Management
Big Data + Column-Based + Web Scale

• Because of need to scale, MySQL reached its limits
• Employ a highly scalable data store that integrates well with

Hadoop
• Transactional platform for running high-scale, real-time

applications
• HBase & Cassandra are possibilities
• Hbase chosen because it provides consistency, while

Cassandra is known for availability.

• Nextbio is a life sciences research firm that helps
pharmaceutical companies conduct genomic research

• 100-node Hadoop cluster – 100s of terabytes of data
• 3.2 billion base pairs behind each of the 100s of genomes

studied

• Big data – over 30 billion rows of information
• How to scale effectively across distributed system

while spreading the storage and compute load
across more servers

• Deliver optimal write and read performance

• Nextbio is able to scale effectively to handle the write-heavy workloads
• Tabular access to data with big data scale

NoSQL Approach

Results

Background

Challenge

6. Logistics
Connected + Graph + Complex + HA

• Neo4j provides the ideal domain fit:
• a logistics network is a graph
• Extreme availability & performance with Neo4j clustering
• “Whiteboard friendly” model easy to understand

• One of the world’s largest logistics carriers
• Projected to outgrow capacity of old system
• New parcel routing system
• Single source of truth for entire network
• B2C & B2B parcel tracking
• Real-time routing: up to 5M parcels per day

• 24x7 availability, year round
• Peak loads of 2500+ parcels per second
• Complex and diverse software stack
• Need predictable performance & linear scalability
• Daily changes to logistics network: route from any

point, to any point

• Hugely simplified queries, vs. relational for complex routing
• Flexible data model can reflect real-world data variance much better than relational

NoSQL Approach

Results

Background

Challenge

7. Workforce Management
Connected + Graph + Complex

• Enable a new architecture which will address long-standing
issues in the core application

• Enable scaling required by the business
• Schema flexibility: overcome struggles with the inflexibility

of the relational DBMS
• New system of record, using Neo4j & PostgreSQL

• Largest provider of contingent workforce management
solutions in the health care industry

• Full set of SaaS solutions allowing hospitals and agencies
to manage internal & external staffing

• Connects 1700+ health care facilities to 1000+ staffing
vendors, w/130K+ health care professionals.

• Recommending the right person for the right shift
• Matching profiles to staffing orders based on

skills, location, schedule, and other qualifying
criteria

• Managing the flow of jobs between critical care
hospitals, staffing agencies, and staff

• Scaling beyond skilled nursing and allied care, to
physicians, ambulatory care, and IT workers

• Gradual retirement of legacy Microsoft SQL Server architecture, which is less flexible and less scalable
• Performance: timely execution of complex recommendations

NoSQL Approach

Results

Background

Challenge

8. Recommendation
Connected + Graph + Complex + HA

• Cases, solutions, articles, etc. continuously scraped for
cross-reference links, and represented in Neo4j

• Real-time reading recommendations via Neo4j
• Neo4j Enterprise with HA cluster

• Cisco.com serves customer and business customers with
Support Services

• Needed real-time recommendations, to encourage use of
online knowledge base

• Call center volumes needed to be lowered by
improving the efficacy of online self service

• Leverage large amounts of knowledge stored in
service cases, solutions, articles, forums, etc.

• Problem resolution times, as well as support
costs, needed to be lowered

• The result: customers obtain help faster, with decreased reliance on customer support

NoSQL Approach

Results

Background

Challenge

9. Social, Access Control
Connected + Graph + Complex + HA

• Selected Neo4j to meet very aggressive project deadlines.
The flexibility of the graph model, and performance, were
the two major selection factors.

• Easily evolve the system to meet tomorrow’s needs
• Extremely high availability and transactional performance

requirements. 24x7 with no downtime.

• One of the ten largest software companies globally
• $4B+ in revenue. Over 11,000 employees.
• Launched Creative Cloud in 2012, allowing its Creative

Suite users to collaborate via the Cloud

• Needed highly robust and available, 24x7
distributed global system - collaboration for users
of its highest revenue product line

• Storing creative artifacts in the cloud meant
managing access rights for (eventually) millions of
users, groups, collections, and pieces of content

• Complex access control rules controlling who was
connected to whom, and who could see or edit
what, proved a significant technical challenge

• Neo4j allows consistently fast response times with complex queries, even as the system grows
• First (and possibly still only) database cluster to run across three Amazon EC2 regions: U.S., Europe, Asia

NoSQL Approach

Results

Background

Challenge

10. Resource Management
Connected + Graph + Complex + HA

• Moved authorization functionality from Sybase to Neo4j
• Modeling the resource graph in Neo4j was straightforward,

as the domain is inherently a graph

• 10th largest Telco provider in the world, leading in the
Nordics

• Online self-serve system where large business admins
manage employee subscriptions and plans

• Mission-critical system whose availability and
responsiveness is critical to customer satisfaction

• Degrading relational performance. User login
taking minutes while system retrieved access
rights

• Millions of plans, customers, admins, groups.
Highly interconnected data set w/massive joins

• Nightly batch workaround solved the
performance problem, but meant data was no
longer current

• Able to retire the batch process, and move to real-time responses: measured in milliseconds
• Users able to see fresh data, not yesterday’s snapshot
• Customer retention risks fully mitigated

NoSQL Approach

Results

Background

Challenge

Agenda

• Introduction

• Technical Overview

• Use Cases

• Under The Hood: Compare & Contrast

35

RDBMS Vs Graph
Consider the following entities

Dave Charlie Pete

Users

id name

1 Dave

2 Charlie

3 Pete

User

RDBMS

name: Pete

name: Charlie

name: Dave

Graph

Compare & Contrast (1)
Finding Entities

SELECT name

FROM User

WHERE id = 2

START user = node:users(id = ’2’)

RETURN user.name

Cypher

SQL

RDBMS

id name

1 Dave

2 Charlie

3 Pete

src dst

1 2

1 3

2 3

User Knows

Graph

name: Pete

name: Charlie

name: Dave

Compare & Contrast (2)
Finding Friends

SELECT name

FROM User

WHERE id IN (SELECT dst FROM Knows

WHERE src = 2 UNION ALL SELECT src

FROM Knows WHERE dst = 2);

START user = node:users(id = ’2’)

MATCH user-[:KNOWS]-friend

RETURN friend.name

Entities

Dave Charlie Pete

Users

Socks Couch

Products

id name

1 Dave

2 Charlie

3 Pete

src dst

1 2

1 3

2 3

User Knows

id name price

10 Socks $60

30 Couch $800

Product

user prod

1 30

2 10

Bought

RDBMS

name: Pete

name: Charlie

name: Dave

name: Socks

price: $60

BOUGHT

name: Couch

price: $800

BOUGHT

Graph

SELECT User.name as Friend, Product.nameFROM

User

JOIN Bought ON User.id = Bought.user

JOIN Product ON Bought.prod = Product.id

WHERE id IN (SELECT dst FROM Knows WHERE src =

2 UNION ALL SELECT src FROM Knows WHERE dst =

2)

START user = node:users(id = ’2’)

MATCH user-[:KNOWS]-friend-[:BOUGHT]-product

RETURN friend.name, product.name

Compare & Contrast (3)
What did your friends buy?

Dave Charlie Pete

Users

Socks Couch

Products

Clothing Furniture

Categories

Entities

id name price ctgry

10 Socks $60 100

30 Couch $800 200

Product

user prod

1 30

2 10

Bought

Category

id name

1 Dave

2 Charlie

3 Pete

src dst

1 2

1 3

2 3

User Knows

id name

100 Clothing

200 Furniture

RDBMS

name: Pete

name: Charlie

name: Dave

name: Socks

price: $60

BOUGHT

name: Couch

price: $800

name: Clothing

name: Furniture
IN_CATEGORY

BOUGHT IN_CATEGORY

Graph

SELECT Category.name

FROM UserJOIN Bought ON User.id = Bought.user

JOIN Product ON Bought.prod = Product.id

JOIN Category ON Product.ctgry = Category.id

WHERE User.id = 2;

START user = node:users(id = ’2’)

MATCH user-[:BOUGHT]-product-[:IN_CATEGORY]-category

RETURN category, COUNT(category)

Compare & Contrast (4)
What categories do you shop in?

id name color price

10 Socks $60

20 Blouse red $80

30 Couch $800

Product

user prod

1 30

2 10

Bought

id name

100 Clothing

200 Furniture

300 Men’s

Category

id name

1 Dave

2 Charlie

3 Pete

src dst

1 2

1 3

2 3

User Knows

prod ctgry

10 100

10 300

20 100

30 200

Prod_Ctgry

RDBMS

name: Pete

name: Charlie

name: Dave

name: Socks

price: $60

BOUGHT

name: Couch

price: $800

name: Clothing

name: Men’s

name: Furniture
IN_CATEGORY

BOUGHT

name: Blouse

price: $80

color: red

Graph

ALTER TABLE Product

ADD color varchar(255);

SELECT Category.name

FROM UserJOIN Bought ON User.id = Bought.user

JOIN Product ON Bought.prod = Product.id

JOIN Prod_Ctgry ON Product.id = Prod_Ctgry.prod

JOIN Category ON Prod_Ctgry.ctgry =

Category.idWHERE User.id = 2;

START user = node:users(id = ’2’)

MATCH user-[:BOUGHT]-product-[:IN_CATEGORY]-category

RETURN category, COUNT(category)

Compare & Contrast (5)
What categories do you shop in?

name:

Pete

name:

Charlie

name:

Dave

name:

Pants

price: $60

BOUGH

T

name:

Couch

price: $800

name: Clothing

name: Men’s

name:

Furniture

IN_CATEGOR

Y

BOUGH

T

name:

Blouse

price: $80

color: red

id name color price

10 Pants $60

20 Blouse red $80

30 Couch $800

Product

user prod

1 30

2 10

Bought

id name

100 Clothing

200 Furniture

300 Men’s

Category

id name

1 Dave

2 Charlie

3 Pete

src dst

1 2

1 3

2 3

User Knows

prod ctgry

10 100

10 300

20 100

30 200

Prod_Ctgry

Result

Graph RDBMS

53

