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Terms

1 Sentiment

= A thought, view, or attitude, especially
one based mainly on emotion instead

of reason

[ Sentiment Analysis -
= aka opinion mining - @ n
= use of natural language processing

(NLP) and computational techniques
to automate the extraction or

classification of sentiment from
typically unstructured text
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= Consumer attitudes
= Trends
4 Politics

= Politicians want to know voters’ views

= \oters want to know politicians’ stances and who else supports
them

A Social

» Find like-minded individuals or communities



Problem

[ Which features to use?
= Words (unigrams)
» Phrases/n-grams
= Sentences

d How to interpret features for sentiment
detection?
= Bag of words (IR)
= Annotated lexicons (WordNet, SentiWordNet)
= Syntactic patterns
= Paragraph structure



Challenges

[ Harder than topical classification, with which
bag of words features perform well

d Must consider other features due to...

= Subtlety of sentiment expression

* jrony

« expression of sentiment using neutral words
= Domain/context dependence

« words/phrases can mean different things in different
contexts and domains

» Effect of syntax on semantics



Approaches

d Machine learning
= Nalve Bayes
= Maximum Entropy Classifier
= SVM
= Markov Blanket Classifier

Assume pairwise
independent features

« Accounts for conditional feature dependencies

« Allowed reduction of discriminating features from
thousands of words to about 20 (movie review

domain)

A Lexicon-based
= Dictionary
= Corpus

A Hybrid



Machine Learning Approach

d Advantages:

= Tend to attain good predictive accuracy
. Assuming you avoid the typical ML mishaps (e.g., over/under-fitting)

A Disadvantages:

= Need for training corpus
. Solution: automated extraction (e.g., Amazon reviews, Rotten Tomatoes)
or crowdsourcing the annotation process (e.g., Mechanical Turk)
= Domain sensitivity

. Trained models are well-fitted to particular product category (e.g.,
electronics) but underperform if applied to other categories (e.g., movies)

. Solution: train a lot of domain-specific models or apply domain-adaptation
techniques

. Particularly for Opinion Retrieval, you’ll also need to identify the domain of
the query!

=  Often difficult/impossible to rationalize prediction output



Lexicon Based Approach

d

Advantages:

Can be fairly accurate independent of environment
No need for training corpus

Can be easily extended to new domains with additional affective
words

e.d., “amazeballs”
Can be easy to rationalise prediction output
More often used in Opinion Retrieval (in TREC, at least!)

Disadvantages:

Compared to a well-trained, in-domain ML model they typically
underperform

Sensitive to affective dictionary coverage



Hybrid Approach
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Introduction

A Social Media

= User-generated content

= Research Areas
Opinion Mining (OM) - subjectivity analysis
Sentiment Analysis (SA) - sentiment polarity detection

O Twitter

= Popular microblog
= (Opinions on various topics

A Twitter Sentiment Analysis (TSA)
» Analyze messages posted on Twitter

= Short length
= [nformal type



Introduction

[ The majority of TSA methods use a method
from the field of machine learning, known as
classifier.

H—)‘ Fegture exraction )| Machine
Labelad I ming

Sentiment m Evaluation
Un —)| Fesiure extraction Classifier




Implementation - Architecture

Kafka Streaming Producer

y Streaming tweets

twitter

Modules

Streaming consumer

EScala
play!’p

SUB sentiment
results

%8

kafka

A Kafka twitter streaming producer
d Sentiment analysis consumer
@ Scala play server consumer

Consume msg

<

]

PUB sentiment
results

Naive Bayes Classifier

.Spor‘lzZ
MLlib

@Load trained model

Streaming consumer

.Spcwr‘lgZ

Streaming
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Data F I ow o Streaming consumer Naive Bayes Classifier

$Scala Spofl’g

play! MLlib

SUB sentil @Load trained model
results
Kafka Streaming Producer Streaming A—

Spark
twitter

Streaming

1. Kafka twitter streaming producer publishes streaming tweets on the
‘tweets’ topic to the central Apache Kafka, and sentiment analysis
consumer has subscribed that ‘tweets’ topic.

2. The sentiment analysis consumer leverage Apache Spark Streaming to
perform batch processing on incoming tweets and load trained Naive
Bayes model to perform sentiment analysis.

3. And then accumulated count of each positive sentiment and negative
sentiment reduced by each location are published on topic ‘sentiment’ to
central Kafka, and this ‘sentiment’ topic subscribed by Scala Play Server.

4. The sentiment analysis results will be send to web clients through
webSocket connections.



Machine Learning - Classifier

Bayes' theorem describes the probability of an event, based on conditions
that might be related to the event:

P(B|A) P(A)

P(A|B) = —— 5

@ Naive Bayes - family of probabilistic classifiers of supervised

learning algorithms based on applying Bayes’ theorem with the
“naive” assumption of independence between every pair of

features solving classification problem.
d Apache Spark MLIib supports Multinomial Naive Bayes and
Bernoulli Naive Bayes.



Real Time Streaming - Spark Streaming

Spark Streaming

Spark streaming leverages spark core to perform streaming analysis.
Discretized Stream or DStream is the basic abstraction provided by Spark

Streaming.
RDD @ time 1 RDD @ time 2 RDD @ time 3 RDD @ time 4
DStream t?lata from c?lata from Flata from rfiata from
timeOtol time 1to 2 time2to3 time3to4

Each RDD in a DStream contains data from a certain interval

Any operation applied on a DStream translates to operations on the
underlying RDDs.

lines lines from

lines from lines from lines from
DStream timeOto 1 time 1to 2 time2to 3 time3to 4
flatMap
operation
words words from words from words from words from
DStream timeOto 1 time 1to 2

time2to3 time3to 4
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Use Cases - Public Health

Associations of Topics of Discussion on Twitter With
Survey Measures of Attitudes, Knowledge, and Behaviors
Related to Zika: Probabilistic Study in the United States
Mohsen Farhadloo2, PhD () ; Kenneth Winneg?, PhD (%) ; Man-Pui Sally Chan', PhD

Kathleen Hall Jamieson2, PhD (%) ; Dolores Albarracin, PhD

TUniversity of lllinois at Urbana-Champaign, Champaign, IL, United States

2Annenberg Public Policy Center, University of Pennsylvania, Philadelphia, PA, United States
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Use Cases - Smart Cities

d Governments across
the world are trying Setag : E
to move closer to T T T - e
their citizens for P T s
better smart city |
monitoring and ik,
governance. — ;

O Twitter Sentiment
Analysis is opening

new opportunities to BT, e

achieve it. | AN

Heat map of city to positive tweets



Use Cases - Real Time Political Analysis

= Data-driven media and journalism

» PR management for political figures and
parties

YWY T "':w
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Use Cases - Financial Analysis

ARTICLES

Netfix App Whor ko oo My onof [lesesd Pherey

Mcrosoft Corpor stion Pettiones ws ATAT Corp.

TIME PLOT

Intelligent tools for aiding decision-making for financial
traders and analysts
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Use Cases - Radicalization Detection

Figure 1. Sentiment Analysis Results: Males
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Figure 2. Sentiment Analysis Results: Fe-
males

Combining Social Network Analysis and Sentiment Analysis to Explore the
Potential for Online Radicalisation

Adam Bermingham', Maura Coaway’, Lisa Mclnemey’,
Neil O'Hare', Alan F. Smeaton’
CLARITY: Centre for Sensor Web Technologies
and *School of Law and Government,
Dublin City University, Glasnevin, Dublin 9, Ircland.

Abstract

e imcreased omline presence of phadists has raived
the posraniaty of sadividuals beseg roduafised vaa the In
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2. Related Work
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Sentiment analysis with social network analysis and
automatic demographic profiling






