

Remote Sensing and Optical Imaging/Sensing -- Applications on Rice --

Sarun Sumriddetchkajorn

NSTDA Research Fellow

National Electronics and Computer Technology Center (NECTEC) National Science and Technology Development Agency (NSTDA) Ministry of Science and Technology, Thailand E-mail: sarun.sumriddetchkajorn@nectec.or.th

We would like to acknowledge all staff from Rice Department of Thailand

Reminder from the 1st Lecture

We should choose the *right spectra* with *appropriate sensing* & *systems* to answer the **Needs** in each agricultural application

Simplicity in Design and Implementation

- ✓ Ease of Use and Operation
- ✓ Affordability
- ✓ Scalability

Sarun Sumriddetchkajorn, Feb. 13, 2019: Winter College on Applications of Optics and Photonics in Food Science

Thai Hom Mali Rice

- Thai jasmine rice or Khao Dawk Mali (KDML105)
- Good cooking quality
- Impressive fragrance
- One of the most popular rice varieties
- USD 1.73 Billion export

Nitrogen (N) Deficiency Issue

N is one of the important elements for growth of rice crops

To achieve high yields *Farmers apply too much N fertilizer*

disadvantage

- Cost of rice crop is high

- Efficiency of N fertilizer is degraded
- The risk of NO₃ pollution is high

To help balance between the real N demand of rice and N available from soil and additional fertilizers

> Several groups try to use tools and management plans in monitoring the N status of the rice field

Sarun Sumriddetchkajorn, Feb. 13, 2019: Winter College on Applications of Optics and Photonics in Food Science

A Driving Force for National Science and Technology Capability 7

 λ : 650 nm + 940 nm

Low-cost approach:

Leaf Color Chart (LCC)

advantage

- Very cheap (USD1)No waste produced
- Easy to use

Incorrect visual reading of colors

leads to Improper application of N fertilizers

A more accurate but not expensive tool is needed

Our Solution

Analyzed Scattering Light from Leaf

Outside View of Our Low-Cost LED-based Leaf Color Meter Prototype

- A compact 40×120×25-mm³ plastic box
- 120 grams of weight
- ~USD39 of total cost

S. Sumriddetchkajorn and Y. Intaravanne, *Optics and Lasers in Engineering*, Vol. 53, pp. 179-184, February 2014. Sarun Sumriddetchkajorn, Feb. 13, 2019: *Winter College on Applications of Optics and Photonics in Food Science* A Driving Force for National Science and Technology Capability 11

Sarun Sumriddetchkajorn, Feb. 13, 2019: Winter College on Applications of Optics and Photonics in Food Science A Driving Force for National Science and Technology Capability 12

Calibration Curve

Stored in Our Prototype

Bai-Khao: Nitrogen Esitmator for Rice Field

Features

- High accuracy with 6 levels of color
- Low energy consumption:
 - 5VDC 20 mA (operating mode) 5VDC 10 mA (standby mode)
- Compact and lightweight:
 - (WxLxH) 40×120 ×25 mm³ 120 grams

Examples of fertilization rates:

• Tillering Stage

Color level < 3: Urea fertilizer 12</th>kg/raiColor level = 3: Urea fertilizer 8.5kg/raiColor level > 3: Urea fertilizer 5kg/rai

• Panicle Initiation Stage

Color level < 3:	Urea fertilizer	16	kg/rai
Color level = 3:	Urea fertilizer	12.5	kg/rai
Color level > 3:	Urea fertilizer	9	kg/rai

How to deliver to all farmers?

- Easy to scale it up
- Fast calibration
- Fast delivery

Mobile Device-based Nitrogen Estimator for Rice Field

Features

- High accuracy with 5 color levels of the rice leaf
- Estimation of potassium deficiency
- Operated on a mobile device equipped with at least Android 2.2 operating system

Examples of fertilization rates:

Tillering Stage

Color level < 3: Urea fertilizer 12</th>kg/raiColor level = 3: Urea fertilizer 8.5kg/raiColor level > 3: Urea fertilizer 5kg/rai

Panicle Initiation Stage

Color level < 3:	Urea fertilizer	16	kg/rai
Color level = 3:	Urea fertilizer	12.5	kg/rai
Color level > 3:	Urea fertilizer	9	kg/rai

Y. Intaravanne and S. Sumriddetchkajorn, *Proc. SPIE*, Vol. 8558, pp. 85580F, Beijing, China, November 2012.
Y. Intaravanne and S. Sumriddetchkajorn, *Comp. Elect. in Agriculture*, Vol. 116, pp. 228-233,2015.

Sarun Sumriddetchkajorn, Feb. 13, 2019: Winter College on Applications of Optics and Photonics in Food Science

Rice leaf app for smarter farming

A Thai research team has developed an app to help farmers estimate more accurately the amount of nitrogen-based fertilisers needed in rice fields.

The app could help to reduce the cost of rice crops by cutting excess fertiliser usage, improve the recovery of fertiliser and prevent nitrogen oxide pollution in water.

The simplest way of estimating the amount of fertiliser needed in rice fields is to visually inspect the rice leaves and compare their colours to a standard leaf colour chart. However, an incorrect reading of the chart often leads to an incorrect application of fertiliser. The new app, developed by researchers at the National Electronics and Computer Technology Center in Thailand, effectively turns a smartphone or tablet into a colorimeter that can measure the colour of leaves and recommend the amount of fertiliser to use.

The app uses the device's camera to capture an image of a rice leaf and analyse its colour. Accuracy is achieved by comparing the colour of the leaf to a white reference, such as a piece of paper, that the user holds directly behind the leaf during image capture. The colour is then equated to a standard level on the leaf colour chart and the app displays the amount of fertiliser needed. It can also estimate potassium deficiency. In field tests, the app achieved over 93% accuracy in estimating leaf colours.

Called BaiKhaoNK [after the Thai word BaiKhao, meaning rice leaf], the app is currently compatible with Android 2.2 smartphones and above. This year, the researchers are planning to work with the Department of Rice in Thailand's Ministry of Agriculture and Cooperatives and the National Center for Genetics Engineering and Biotechnology to promote the use of the app with farmers.

> For further information contact: Sarun Sumriddetchkajorn National Electronics and Computer Technology Center (NECTEC), Thailand Email: sarun.sumriddetchkajorn@nectec.or.th

Unwanted Mixture of Rice Varieties

Problem

 False mixture with other rice varieties having similar dimensions and weight/seed as well as amylose content

Average Weight \approx 0.0216 g/grain Average Length \approx 0.734 mm/grain Average Width \approx 0.216 mm/grain

CNT1

Average Weight \approx 0.0213 g/grain Average Length \approx 0.772 mm/grain Average Width \approx 0.206 mm/grain

PTT1

Average Weight \approx 0.0174 g/grain Average Length \approx 0.723 mm/grain Average Width \approx 0.209 mm/grain

Unqualified milled rice products for export
Unwanted rice seed for next plants

Widely Used Destructive Identification Methods

DNA Technology

Alkaline Spreading Value

Spreading 1

Spreading 5

For example

CNT1

100% accuracy Disadvantages

Expensive

Advantage

• Time consuming (3-5 days)

Advantages

~ 70% accuracy

Disadvantage

Time consuming (at least 23 hrs.)

Sarun Sumriddetchkajorn, Feb. 13, 2019: Winter College on Applications of Optics and Photonics in Food Science

Iodine Binding Technique

Advantage Easy Disadvantage

 Good for only rice varieties having large difference in amylose content

Boiling Technique

Advantage

- Easy
- ~ 90% accuracy
 Disadvantages
- Time consuming (at least 17 minutes)
- High energy consumption

Current Non-Destructive Identification Methods

- Reflectance Near Infrared Spectroscopy
 - Slow
 - Needs Complicated mathematical analysis

- Photoluminescent Technique
 - Slow
 - Suitable for milled rice grains with large difference in amount of amylose content or level of glutinousness

Our Need

- No Waste Produced (i.e., non destructive approach)
- Fast Enough
- Moderate Accuracy

How ?

High Energy **Excitation** (induced fluorescent radiation)

Multispectral Imaging Technology and Analytics (only two-wavelength is needed)

Our Proposed Rice Breed Identification System

CNT1: Chai Nat 1 HPSL: Hom Pitsanulok HSPR: Hom Supanburi KDML105: Khao Dawk Mali 105 PTT1: Pathumthani 1 RD6: Thai Sticky Rice RD15: Ko Kor 15 RD23: Ko Kor 23

CNT1	HPSL	HSPR	KDML105	PTT1
HPSL	HSPR	KDML105	PTT1	RD6
HSPR	KDML105	PTT1	RD6	RD 15
KDML105	PTT1	RD6	RD 15	RD23
PTT1	RD6	RD 15	RD23	CNT1
RD6	RD 15	RD23	CNT1	HPSL
RD 15	RD23	CNT1	HPSL	HSPR
RD23	CNT1	HPSL	HSPR	KDML105
KDML105	PTT1	RD6	RD15	RD23
KDML105 PTT1	PTT1 RD6	RD6 RD15	RD15 RD23	RD23 CNT1
KDML105 PTT1 RD6	PTT1 RD6 RD15	RD6 RD15 RD23	RD15 RD23 CNT1	RD23 CNT1 HPSL
KDML105 PTT1 RD6 RD15	PTT1 RD6 RD15 RD23	RD6 RD15 RD23 CNT1	RD15 RD23 CNT1 HPSL	RD23 CNT1 HPSL HSPR
KDML105 PTT1 RD6 RD15 RD23	PTT1 RD6 RD15 RD23 CNT1	RD6 RD15 RD23 CNT1 HPSL	RD15 RD23 CNT1 HPSL HSPR	RD23 CNT1 HPSL HSPR KDML105
KDML105 PTT1 RD6 RD15 RD23 CNT1	PTT1 RD6 RD15 RD23 CNT1 HPSL	RD6 RD15 RD23 CNT1 HPSL HSPR	RD15 RD23 CNT1 HPSL HSPR KDML105	RD23 CNT1 HPSL HSPR KDML105 PTT1
KDML105PTT1RD6RD15RD23CNT1HPSL	PTT1 RD6 RD15 RD23 CNT1 HPSL HSPR	RD6RD15RD23CNT1HPSLHSPRKDML105	RD15 RD23 CNT1 HPSL HSPR KDML105 PTT1	RD23CNT1HPSLHSPRKDML105PTT1RD6

Sarun Sumriddetchkajorn, Feb. 13, 2019: Winter College on Applications of Optics and Photonics in Food Science A Driving Force for National Science and Technology Capability 28

Image under Visible Light

Fluorescent Image

Sarun Sumriddetchkajorn, Feb. 13, 2019: Winter College on Applications of Optics and Photonics in Food Science A Driving Force for National Science and Technology Capability 30

PC1

Thai Jasmine Rice Identification System

K. Suwansukho, S. Sumriddetchkajorn and P. Buranasiri, Applied Optics, Vol. 50, No. 21, pp. 4024-4030, July 2011.

Quality Control of Rice Seeds/Grains

Physical Dimensions Parameter

Disadvantages

Requires a well-trained person
Takes a long time (20 seconds) to measure for one rice sample

Proposed Solution

S. Sumriddetchkajorn, Y. Intaravanne, and S. Chanhorm, *Proc. SPIE*, Vol. 8883, pp. 88830M, Chonburi, Thailand, May 2013. Sarun Sumriddetchkajorn, Feb. 13, 2019: *Winter College on Applications of Optics and Photonics in Food Science* A Driving Force for National Science and Technology Capability 34

S-Rice: Rice Quality Analyzer

Key features:

- Simultaneous analysis of width, length, thickness of rice grains
- Simultaneous analysis of width, length, and thickness of rice seeds
- Fast and high accuracy
- Future analysis relates to Yellowish and Chalkiness of Rice Grains

Unwanted sticky and red rice seeds in non-glutinous rice seeds

Analyzes Light Passing through Rice Seeds

Proposed Solution

C-Rice: *Rice Seed Quality Analyzer*

Key features:

- Identification of non-glutinous rice seeds from unwanted sticky and red rice seeds
- Fast and high accuracy

• Size of Embryo/Endosperm

Embryo:The shoot and the root parts of a seedlingEndosperm:Food needed for germination

Physical Dimensions are related to Healthiness of Seedling and Nutrition

Nutrition ->

Embryo: protein, fat, dietary fiber, vitamins, and minerals Endosperm: starch (almost 80%), sugar, protein, and fat

By hands then manually measuring

Destructive Approaches

By machines then manually measuring

J. Cereal Sci. 59, 211–218 (2014)

http://eujime.com.my (2014)

Proposed Arrangement of a Two-Dimensional Embryo Area Estimator

NECTE

Proposed Processing Steps

for separating and analyzing embryo and endosperm areas

The Result of Automatic Measurement

KDML 105

RD 41

RD 47

A-Rice: Rice Embryo Analyzer

Y. Intaravanne, S. Sumriddetchkajorn, K. Chaitavon, S. Chanhorm, P. Pongsoon, and A. Prasertsak, *Proc. SPIE*, Vol. 9273, pp. 92730T, Beijing, China, October. 2014.

Result Comparison between Manual Measurement and Our Prototype

Rice Variety –	Manual Measurement Our Approach							
	%Em	%En	STD	%Em	%En	STD	- %οΔEM %οΔ	%οΔΕΝ
KDML 105	6.6	93.4	1.09	7.1	92.9	1.90	7.9	0.6
PSL 2	6.4	93.6	1.28	6.4	93.6	1.33	0.0	0.0
PTT1	7.4	92.6	1.56	6.8	93.2	1.93	8.3	0.7
RD 47	6.9	93.1	1.48	7.4	92.6	1.55	6.9	0.5
RD 41	7.8	92.2	1.66	8.1	91.9	1.72	4.1	0.3
% = (Manual-Auto) %Em = The percentage %Em = The percentage	×100/Manua ge of embryo ge of endosp	ll area erm area					$\overline{\zeta}$	7

Causes of Error

- Fragment tissues left: they looks like the embryo area under our proposed approach
- Change of orientation of rice grain: image contrast is reduced

Conclusion

- Nitrogen (N) Deficiency Issue
- Unwanted Mixture of Rice Varieties
- Quality Control of Rice Seeds and Grains

Optical imaging/sensing can answer

To make the ideas/concepts practical

Photonics Prototype	Electronics Design UI/UX	Computer Science	
Biology	Mechanics	Chemistry	

