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Thermoelectric power in gapped graphene



Thermoelectric power in gapped monolayer graphene

Nowdays we call this Seebeck effect. See a review C. Goupil, H. Ouerdane,
K. Zabrocki, W. Seifert, N.F. Hinsche, and E. Miiller, “Thermodynamics and

Thermoelectricity":
Aepinus (1762), Galvani, Volta (1786) = Ritter (1801), Schweigger (1810),

Seebeck (1821)=- Peltier (1834), Thomson (1851)



Large thermoelectric effect in graphene
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FIG. 1. (Color online) Comparison of experimentally measured
Seebeck coefficient Sy (open circles) and three Seebeck curves
SMe caleulated from measured electrical conductivity using the Mott
relation. The solid line is calculated with the 4P resistivity and a
linear dispersion relation; the dotted line is with the two-point (2P)
resistivity and a linear dispersion relation; and the dashed line is with
the 4P resistivity and a quadratic dispersion relation. ¢, of this device
is ~1500 cm?/Vs. The inset shows a false colored scanning electron
microscopy image.

Wang, Shi, PRB 83, 113403 (11).
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FIG. 1 (color). (a) SEM image and circuit schematic of a
graphene device for thermoelectric measurements. (b) AT vs
thermovoltage change AVy, for a series of heater power steps at
255 K and zer te voltage. The linear fit of this curve gives the
thermopower of 39 uV/K.

Wei et al., PRL 102, 166808 (09).



Heat and electric transport equations

Electric field E and temperature gradient VT result in electric and heat

currents.
i _5E_ B It is easier to control j
) =oE-pVT, her th E :f)j+@VT.
q =AE+(VT, rather than E, express
via j. q :@jf,QVT

Onsager relation: § = AT
Only the diagonal transport is considered in the first part!

Seebeck coefficient: Peltier coefficient:

B_ _Bx n=2X=sr1
g ag

O xx

Approximate Mott's formula:
:w_zkéTQ_n . 5:77r_2k§T(')‘|nrf
3 e Ou 3 e Ou

Notice that kg/e =~ 861,V /K close to observed in graphene which is much
larger than in metals.



Odd- and evenness of transport coefficients

o= / Z del—np(e)lvEv(p+ )r(n+€) ~ S[Ev(u)T(w)]

e [
B=-= d(@[ nr()VAv(p + ) m(p + €)
. Vi : If the product vZv(p + ¢)7(p + €) is a smooth
0.8 —_— N(€) B . .
.~ ’ : function of ¢, one can expand it:
o — B+ O+ ) ~ ()T () + e V()T ()]
. : 1st term = 0 due to oddness, and contributes 2nd.
-0.2]
-0.4
) 2 0 2 4
Arrive at Mott's formula and in normal metals S = 77—32%5 k’iT ~ 102 T[K] &£

much smaller than observed in graphene.



Band structure of graphene

Low-energy excitations at two

inequivalent K, K_ points

have a linear dispersion b Z
E, = thvr|p| — p with == = -~
ve ~ 10° m/s and 1 being the . T
chemical potential. —— ¢

‘Conduction band

The excitations are described by a pair of two-component spinors

@;,a = Ykao, VKkBo ) which are composed of the Bloch states residing

(A, B) sublattices with momenta near the two inequivalent points (K., K_) of
the Brillouin zone.

The low-energy Hamiltonian

d p o 0 hve(px —ipy) '\
Z K . IEJK‘ oy
hvr(px + ipy) 0

o==+1"
where the momentum p = (px, p,) is given in a local coordinate system.

Semenoff, PRL 53, 2449 (1984)



Making sublattices inequivalent and graphene gapped

d’p i A hve(px — ipy)
Hy, = ] UK, o-
K Z / (27r)2 Yk o < ﬁVF(Px + ipy) _A YK,

o==+1
The presence of A # 0 breaks parity P : [x — —x,y — —y, A< B] and
makes the spectrum E(p) = &+/h?v2p? + A? with the mass A.

Graphene on top of hexagonal boron nitride
(h-BN) — lattice is 1.7% percent larger.
Mass (sublattice asymmetry gap) can be
induced by interaction with substrate:

2A ~ 350 K.




Making sublattices inequivalent and graphene gapped

d’p i A hve(px — ipy)
Hg, = —1, VK. o-
K Z / (27r)2 Yk o < hVF(Px + ipy) _A VK,

o=%1
The presence of A # 0 breaks parity P : [x — —x,y — —y, A< B] and
makes the spectrum E(p) = &+/h?v2p? + A? with the mass A.

Graphene on top of hexagonal boron nitride
(h-BN) — lattice is 1.7% percent larger.
Mass (sublattice asymmetry gap) can be
induced by interaction with substrate:

2A ~ 350 K.

How the gap affects thermopower?



Quasiparticle scattering near ETT

(a) Scattering processes which do not
involve the small valley.

(b) Scattering processes where electron
gets to the small void, but then gets back
to the continuous part of the Fermi surface.

In vicinity of the critical point & = pic, when
the Fermi surface connectivity changes, the
quasiparticle relaxation rate 7~ *(g) = I'(¢)

also acquires the contribution strongly
Possible types of electron scattering depending on energy, that generates kinks

for a double valley Fermi surface. in conductivity and peaks in thermopower.
A.A. Varlamov, V.S. Egorov, and

A.V. Pantsulaya, Adv. in Phys. 38,
469 (1989).



Scattering in gapped graphene

Zero mass, A =0

@
B=0
Ep)

K, Epi=2ivep Ky

Gapped, A #0

[

\/ \/

(a) Linear dispersion,
1 =0 as in compensated
graphene.

modification of the

(b) A p055|b|e

spectrum by the finite gap
A. o is shifted from zero
by the gate voltage.

Control parameter: |A]| < 77 > |y

Self-consistent equation
for self-energy:

88

Zap = Uqgy ){———7>—a\< u
Gys

Use relatively long-range

potential V(q), i.e.

scattering between K,

but assume \7(q) to be

momentum independent

ignore

for the intra-valley
scattering.



Quasiparticle scattering in graphene

The self-energy f(p, €n) = Z?:o oi(p,en)7i Since 012 =0,

e+ 1 —og(e)
{‘70(5) } 4h /W { A+ o5(e) }fdf
af(e) mrolul Jo e+ p— of(e)]® — €2 — [A+ oB(e)]2

A new feature, in addition to the usually considered Eq. for oo we also

arrive at the system

consider Eq. for o3 in the gap channel. Then approximately include both
channels together:

1
T =T(e) = —Imog(e) — 6+,u|m o5 (e)
le + pl A? 2 2
=10 + 0l(e+up) —A%.
] MU

The relaxation rate acquires the 0 [( + u)* — A?] contribution.

10



Transport coefficients in graphene

Using Kubo formula:

o | e_2/°“ deA(e,T(g), A) 1
B |  hJ_.o 2Tcosh®Z e/(eT) [’

where the function

AeT8) = 1+ G R 24T

o2 2|u + el (¢)
AP+ () = (n+ s)zﬂ
2|u +ell(e) '

0
X | = — arctan
2

We use regularized scattering rate: T (g) = I'(¢) + 0.

11



Conductivity o (1) Tm.-el. coefficient 5(u) Thermopower S(u)
] m* —  T=con, A=0
== I'=con, A=50K 9 J
o) - S, o ’//. ‘\‘~\
S E =
s J Y
2 ) ) H(L) w ) b : H(i() ) "
In units g0 = 72r§ﬁ “B():/(BE/}I,, T=1K SO:kB/ey T =5K

— A =0, I'(e) = const - reference case: restore normal metal case,

S = —(7?/3e)T/p in the limit |p| > T,To.

— A =50K, I'(¢) = const: E. Gorbar et al, PRB 66, 045108 (02).

— A =50K, I'(e) - S.G. Sh. and A.A. Varlamov, Phys. Rev. B 86, 035430
(2012).

Thin lines — from Mott formula.

12



Conclusions:

e Opening a gap results in appearance of a fingerprint bump of the Seebeck
signal when the chemical potential approaches the gap edge.

e Magnitude of the bump can be up 10 times higher than already large
value of S ~ 501V /K at room temperatures observed in graphene.

e Effect is related to a new channel of quasi-particle scattering from
impurities with the relaxation time strongly dependent on the energy.

e One can exploit the predicted giant peak of the Seebeck signal as a
signature of the gap opening in monolayer graphene.

e Similar phenomenon already observed in bilayer graphene, C.-R. Wang, et
al., PRL 107, 186602 (11).

13



Nernst - Ettingshausen effect in graphene




Nernst - Ettingshausen effect (1886)

Nernst effect is the
transversal equivalent of the
Seebeck effect: V, T — E,

& = _VEXyT [%}

Energy scale:
kg/e ~ 86 uV /K

Nernst signal measured in

Walther Nernst

1864 - 1941 . Nernst signal
. . the absence of electric e By B
Nobel Prize in chemistry . . e(T) = —= 55>
. . current, j, =0, j, = 0: Ty
(1920) in recognition of e, (T) ~ 2
thermochemistry. Th.ird Jy = 0y E, + 0 Ex — BxVxT. Bxy is the thermoelectric
law of thermodynamics. TR

Albert von Ettingshausen
1850 - 1932

Also odd and thus
sensitive to the details of

2nd NE or Ettingshausen

effect: jx — V, T
the electronic structure.

14



Nernst effect in graphene

We use Mott's formula, but now for ;. Then

a . 125 To1K
the Nernst signal is 100 PR — 10T
75 A=0K
E, 7 T 0© g 0T
e(T,B)=—=L =—— 1 2w
VT 3 e Ou .
A NN
where the Hall angle - Iv V“v |‘I’VV\
Ox -40 -20 0 20 40
Oy = arctan =, #IKl
O—XX
40 e B5-10°T
T=1K
. , ) ©f sk —_—i0tT
The large and positive Nernst signal is a 20
fingerprint of the Dirac quasiparticles. £ A !\ n
T 0 v 4 A "
The Nernst signal e, in 1V /K as a function of ol |
chemical potential. 522
-30
V.P. Gusynin and S.G. Sh. PRB 73, 245411 (06); |.A. Luk'yanchuk, -4  -20 0 20 40

#IKI
A.A. Varlamov, and A.V. Kavokin, PRL 107, 016601 (11).

The Nernst signal e, in pV/K
as a function of chemical
potential
15



Spin Nernst (SN) effect in silicene




Spin Nernst (SN) effect

SH and SN effects
. ;

"ff“i‘ )". f,,\“\
E f?\ﬁ‘ t oy
For NE an external magnetic field
B || Z # 0 is required!
Now B = 0, but there is the internal
magnetic field or spin-orbit interaction.
SN effect: j° = fBSVT
with the thermo-spin tensor, §5

a)

Purpose is to study SN effect in
low-buckled Dirac materials.

16



Spin Nernst (SN) effect

SH and SN effects

R ° |
1 / / ¥

E f?\ﬂ b %

a)

T

For NE an external magnetic field
B || Z # 0 is required!
Now B = 0, but there is the internal

magnetic field or spin-orbit interaction.

SN effect: j° = —B\SVT

with the thermo-spin tensor, §5
Purpose is to study SN effect in
low-buckled Dirac materials.

Spin current subtlety
There is no conservation of spin!
% + V - Js = T, where the spin
torgue density 7;(r) = Re W (r)7W(r)
with £ = 9= — L[5 f].
When [S;, H] = 0 the spin torque term
is zero and the spin current
Jy(r) = Re wi(r)1 {v §z} W(r) with
the spinor W7 = (¢4, 1))).
J. Shi, P. Zhang, Di Xiao, Q. Niu, PRL
96, 076604 (06); P. Zhang, Z. Wang,
J. Shi, Di Xiao, and Q. Niu, PRB 77,
075304 (08).

16



Low-buckled Dirac materials

Strong intrinsic spin-orbit interaction in
contrast to graphene

=1 » HSO \/— Z VU (7(7/ Cjo’
P ) G7)

< < with Aso ~ 10meV, vz = £1.

)a 0020202000, P —

Silicene: vertical distance between E; L‘.(—’ g "

sublattices 2d ~ 0.46A. 4
Lattice constant a = 3.87A. C& ‘Cv
So far grown on Ag and ZrB> —

substrates which are both

Bottom Gate

. Perpendicular to the plane electric field E.
conductive — no transport
opens the tunable gap A, = E.d.
measurements as yet.

2D sheets of Ge, Sn, P and Pb
atoms (the materials germanene,

Interplay of two gaps: Aso and A..

stanene and phosphorene). 17



Low-energy Hamiltonians and main goals

1. Toy model: two-component Dirac fermions model

H = hve (ks + ky72) + AT3 — pto.

The mass A breaks TR symmetry. To study off-diagonal part of the TE tensor
;3:
j=GE—BVT

18



Low-energy Hamiltonians and main goals

1. Toy model: two-component Dirac fermions model

H = hve (ks + ky72) + AT3 — pto.
The mass A breaks TR symmetry. To study off-diagonal part of the TE tensor
B:
j=GE—BVT

2. Silicene
H,, = oo ® [hve(nkeTs + kyT2) + A3 — pro] — nAsoos & 13,

7 and o — sublattice and spin; k is measured from the K;, points.

There is a spin o = £, and valley 7 = + dependent gap A, = A, — nolAso
or mass A, /v?, where ve is the Fermi velocity.

When A, = 0 come back to graphene.

TRS is unbroken for any A,

To study off-diagonal part of the thermo-spin tensor B

=5 E— VT
18



Anomalous Hall effect

For B = 0 equation of motion for n = +
1 2A
v = 7[V7H] =2vFk x T — }—v><ez7 V = VFT.
ih U

Here the first term corresponds to Zitterbewegung and the second term
corresponds to the Lorentz force due to magnetic field B.# | plane, where
Ber ¢ A. This is related to the Haldane model, Phys. Rev. Lett. 61, 2015
(1988), also T. Ando, J. Phys. Soc. Jpn. 84, 114705 (15).

For T = 0 the intrinsic (not induced by disorder) AHE

o e’sgn (n4) | 1, lul <14,
Xy - i
Al 1A/ ul, [l > 1A

For || > |A| the vertex corrections modify the result N.A. Sinitsyn, J.E. Hill,
H. Min, J. Sinova, and A.H. MacDonald, PRL 97 106804 (06). Moreover, the
standard diagrammatic approach fails A. Ado, I.A. Dmitriev, P.M. Ostrovsky,

and M. Titov, Europhys. Lett. 111, 37004 (15).

19



SHE scenario for silicene

Silicene for B =0 TR unbroken oy =37, _, {0x/(A — Agr) = 0.

20



SHE scenario for silicene

Silicene for B =0 TR unbroken oy =37, _, {0x/(A — Agr) = 0.

Kane-Mele scenario of SHE. It occurs due to the presence of two subsystems
with 0 = & exhibiting the quantum Hall effect:

S, _ 1
Oy = —25 Dt omt §00 (A = Ago).

(@) (b) 4

C > >
w < % 1)
Integer Quantum Hall Effect Quantum Spin Hall State
5 S
< C == ¢

Proposed for graphene in C.L. Kane and E.J. Mele, PRL 95, 226801 (05). For A, = 0

0% = — % sen (Aso) [0(|Asol — |ul) + 420L0(|u| — |Aso])] For |u| < [Asol
— quantum spin Hall insulator.

o%; is measured in the units of e/(4r).

20



Why interesting physics can be expected

Mott relation for thermoelectric coefficient is not reliable, but can be used for

an estimate:
7wk Taoxy(;t, A, T =0)
3e ou

Then the Nernst signal for 0. > |0y and |p] > |A]:

2
NG By _ (ks _me® ks TAszgn (/1,).
Tras e ) 12ho. 7

By =

The order of magnitude is e,(T) ~ kg/e ~ 86 uV /K.

Tuning the position of 1 by changing the gate voltage one gains from 3 to 4
orders of magnitude in e, as compared to the normal nonmagnetic metals,
where e, ~ 10nV /K per Tesla.

No AHE in silicene, but should be SHE and large spin Nernst effect!

21



Modified Kubo formula




Problem with the Kubo formula

Consider the usual definition of the thermolectric tensor
(R)
B QE0w)
T w—o0 w ’

where fo(m is the retarded response function of the electric and heat currents.

T — electric current vertex [bare Tgf)(en + Qm, €n) = —eveTq and for the full
vertex T'%) the contribution ~ 7, is also present]; T'? — heat current vertex.

In the clean case (bare bubble) and in the limit 7 — 0

By = === [Bsgn (0|1l — |A]) + usgn (A)0(14] = |u)]

diverges!

At T = 0 the thermoelectric tensor must become zero: it describes the
transport of entropy, which, in accordance with the third law of
thermodynamics, becomes zero when T — 0. 22



Modified Kubo formula

It was shown by Yu.N. Obraztsov, Fiz. Tverd. Tela 6, 414 (1964) [see also N.
R. Cooper, B. I. Halperin, and I. M. Ruzin, PRB 55, 2344 (1997); T. Qin, Q.
Niu, and J. Shi, PRL 107, 236601 (11)] that in the presence of an effective
magnetic field, the off-diagonal thermal transport coefficient 3, has to be
corrected by including of the magnetization M. term: so that the correct
thermoelectric tensor

cM,

Bx:Bx =
By = B+ 7

where (V.P. Gusynin, S.G. Sh., and A.A.Varlamov, PRB 90, 155107 (14).) )

< AT A —|A
esgn(A)T [ p+IA[ e A

M(B =0) = — e 2ke T N keT |

In the limit T — 0 it cancels out the diverging part of ﬁxy and the third law of

thermodynamics is restored.

23



Modified Kubo formula

It was shown by Yu.N. Obraztsov, Fiz. Tverd. Tela 6, 414 (1964) [see also N.
R. Cooper, B. I. Halperin, and I. M. Ruzin, PRB 55, 2344 (1997); T. Qin, Q.
Niu, and J. Shi, PRL 107, 236601 (11)] that in the presence of an effective
magnetic field, the off-diagonal thermal transport coefficient 3, has to be
corrected by including of the magnetization M. term: so that the correct

thermoelectric tensor

= M,
“Bxy - “Bxy ot C?~
where (V.P. Gusynin, S.G. Sh., and A.A.Varlamov, PRB 90, 155107 (14).) )
. esgn(nA)T p+ AL uw— |4
M.(B=0)= — ahe In cosh T In cosh ST |-

In the limit T — 0 it cancels out the diverging part of ﬁxy and the third law of

thermodynamics is restored.

For silicene the divergence is compensated by the “spin magnetization”
Mz =L > eoms E0Mz(A — Ag¢s), which is nonzero even when the TR
symmetry is unbroken. The orbital magnetization

M. =Y, 4 EM(A — Agy) =0.
23



Thermo-electric and -spin coefficients:

0.02 ; 0.04 ;
() (b)
N il
001 /\ 002} \ -
o Q20 /
S 000"’ < 000\ ] ] /\ =
B U R —~ ] !
~ ! \
\ 7 N/
—0.01}F \ / -0.02 1
Vv Y
E— 2 0 2 Eam— =7 0 2 4
H/A H/Aso

Thermospin coefficient 337 (1) in units
of B§ = k3/2.

Crossing [y (1t # 0) = 0 is caused by
nonmonotonic dependence 0., (1) = 0

Thermoelectric coefficient (., (1) in
units of Bo = kge/h.
Red line — bubble approximation
Blue line — dressed vertex
related to the vertex. Other diagrams
modify this result.
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Results: bare bubble
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H/Aso
Spin Hall conductivity UXS;(/L,AZ) in
units of o5 = e/(27)

(r:y( e/2m)
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#/Aso
Thermo-spin coefficient ﬁf;(pg A;) in
units of 35 = kg/2

as functions of the chemical potential ;2 and the sublattice asymmetry gap A,

in the units of Aso > 0.
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Results: vertex

o

|
o
o

L
°

L
)

H/Aso

Spin Hall conductivity rrfyz(/z,,Az) in
units of og = e/(27)

o3,(e/2m)

[®)

(b)

#/Aso
Thermo-spin coefficient 55;(;17 A;) in
units of 35 = kg/2

as functions of the chemical potential ;2 and the sublattice asymmetry gap A,

in the units of Aso > 0.



Conclusions to Part Il

e Spin Nernst effect is strong, so potentially may be observable.

e lllustration how the standard Kubo formula has to be altered by including
the effective magnetization leading to the correct off-diagonal
thermoelectric coefficient.

e A possibility to distinguish different cases with monotonic and
nonmonotonic dependence o, (1) and 037 (11, Az) due to the vertex and
other diagrams.

Thank you very much for listening!
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