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Thermoelectric power in gapped graphene



Thermoelectric power in gapped monolayer graphene

V = (SB − SA)(T2 − T1)

S = −∆V
∆T

= E
∇T

Nowdays we call this Seebeck effect. See a review C. Goupil, H. Ouerdane,

K. Zabrocki, W. Seifert, N.F. Hinsche, and E. Müller, “Thermodynamics and

Thermoelectricity”:

Aepinus (1762), Galvani, Volta (1786) ⇒ Ritter (1801), Schweigger (1810),

Seebeck (1821)⇒ Peltier (1834), Thomson (1851)
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Large thermoelectric effect in graphene

Wang, Shi, PRB 83, 113403 (11). Wei et al., PRL 102, 166808 (09).
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Heat and electric transport equations

Electric field E and temperature gradient ∇T result in electric and heat

currents.
{

j = σ̂E − β̂∇T ,

q = γ̂E + ζ̂∇T ,

It is easier to control j

rather than E, express

via j.






E = ρ̂j + Ŝ ∇T ,

q = Π̂ j − κ̂∇T ,

Onsager relation: γ̂ = β̂T

Only the diagonal transport is considered in the first part!

Seebeck coefficient:

S ≡ Sxx = −β
σ

≡ −βxx
σxx

Peltier coefficient:

Π =
γ

σ
= ST

Approximate Mott’s formula:

β =
π2

3

k2

BT

e

∂σ

∂µ
=⇒ S = −π

2

3

k2

BT

e

∂ lnσ

∂µ

Notice that kB/e ≈ 86µV /K close to observed in graphene which is much

larger than in metals.
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Odd- and evenness of transport coefficients

σ =
e2

3

∫ ∞

−∞

dǫ[−n
′
F (ǫ)]v

2

F ν(µ+ ǫ)τ (µ+ ǫ) ≈ e2

3
[v2

F ν(µ)τ (µ)]

β =
e

3T

∫ ∞

−∞

dǫ ǫ [−n
′
F (ǫ)]v

2

F ν(µ+ ǫ)τ (µ+ ǫ)
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If the product v2

F ν(µ+ ǫ)τ (µ+ ǫ) is a smooth

function of ǫ, one can expand it:

v2

F ν(µ+ ǫ)τ (µ+ ǫ) ≈ v2

F ν(µ)τ (µ) + ǫ d
dµ

[v2

F ν(µ)τ (µ)]

1st term = 0 due to oddness, and contributes 2nd.

Arrive at Mott’s formula and in normal metals S = −π2

3

kB
e

kBT

µ
∼ 10−2T [K]µV

K

much smaller than observed in graphene.
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Band structure of graphene

Low-energy excitations at two

inequivalent K+,K− points

have a linear dispersion

Ep = ±~vF |p| − µ with

vF ≈ 106 m/s and µ being the

chemical potential.

The excitations are described by a pair of two-component spinors

ψT
K ,σ =

(
ψKAσ, ψKBσ

)
, which are composed of the Bloch states residing

(A,B) sublattices with momenta near the two inequivalent points (K+,K−) of

the Brillouin zone.

The low-energy Hamiltonian

HK+ =
∑

σ=±1

∫
d2p

(2π)2
ψ†

K+σ

(
0 ~vF (px − ipy )

~vF (px + ipy ) 0

)

ψK+σ,

where the momentum p = (px , py ) is given in a local coordinate system.

Semenoff, PRL 53, 2449 (1984)
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Making sublattices inequivalent and graphene gapped

HK+ =
∑

σ=±1

∫
d2p

(2π)2
ψ†

K+σ

(
∆ ~vF (px − ipy )

~vF (px + ipy ) −∆

)
ψK+σ.

The presence of ∆ 6= 0 breaks parity P : [x → −x , y → −y ,A ⇆ B ] and

makes the spectrum E(p) = ±
√

~2v2

Fp2 +∆2 with the mass ∆.

Graphene on top of hexagonal boron nitride

(h-BN) – lattice is 1.7% percent larger.

Mass (sublattice asymmetry gap) can be

induced by interaction with substrate:

2∆ ∼ 350 K.
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Making sublattices inequivalent and graphene gapped

HK+ =
∑

σ=±1

∫
d2p

(2π)2
ψ†

K+σ

(
∆ ~vF (px − ipy )

~vF (px + ipy ) −∆

)
ψK+σ.

The presence of ∆ 6= 0 breaks parity P : [x → −x , y → −y ,A ⇆ B ] and

makes the spectrum E(p) = ±
√

~2v2

Fp2 +∆2 with the mass ∆.

Graphene on top of hexagonal boron nitride

(h-BN) – lattice is 1.7% percent larger.

Mass (sublattice asymmetry gap) can be

induced by interaction with substrate:

2∆ ∼ 350 K.

How the gap affects thermopower?
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Quasiparticle scattering near ETT

Possible types of electron scattering

for a double valley Fermi surface.

A.A. Varlamov, V.S. Egorov, and

A.V. Pantsulaya, Adv. in Phys. 38,

469 (1989).

(a) Scattering processes which do not

involve the small valley.

(b) Scattering processes where electron

gets to the small void, but then gets back

to the continuous part of the Fermi surface.

In vicinity of the critical point µ = µc , when

the Fermi surface connectivity changes, the

quasiparticle relaxation rate τ−1(ε) ≡ Γ(ε)

also acquires the contribution strongly

depending on energy, that generates kinks

in conductivity and peaks in thermopower.
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Scattering in gapped graphene

Zero mass, ∆ = 0

K+ K-

HaL

p

EHpL
B=0

ΜEHpL=±ÑvFp

(a) Linear dispersion,

µ = 0 as in compensated

graphene.

Gapped, ∆ 6= 0

K+ K-

HbL

p

EHpL

B=0
Μ

EHpL=±
"###############################

D2 + Ñ2 vF
2 p2

(b) A possible

modification of the

spectrum by the finite gap

∆. µ is shifted from zero

by the gate voltage.

Self-consistent equation

for self-energy:

Use relatively long-range

potential V̂ (q), i.e. ignore

scattering between K±,

but assume V̂ (q) to be

momentum independent

for the intra-valley

scattering.

Control parameter: |∆| < ?? > |µ|
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Quasiparticle scattering in graphene

The self-energy Σ̂(p, εn) =
∑

3

i=0
σi (p, εn)τ̂i Since σ1,2 = 0,

arrive at the system

{
σR

0 (ε)

σR
3 (ε)

}
=

4~

πτ0|µ|

∫ W

0

{
ε+ µ− σR

0 (ε)

∆ + σR
3 (ε)

}

ξdξ

[
ε+ µ− σR

0
(ε)
]2 − ξ2 − [∆ + σR

3
(ε)]2

,

A new feature, in addition to the usually considered Eq. for σ0 we also

consider Eq. for σ3 in the gap channel. Then approximately include both

channels together:

1

τ (ε)
≡ Γ(ε) = −ImσR

0 (ε)−
∆

ε+ µ
Im σR

3 (ε)

=Γ0

[
|ε+ µ|
|µ| +

∆2

|ε+ µ||µ|

]
θ
[
(ε+ µ)2 −∆2

]
.

The relaxation rate acquires the θ
[
(ε+ µ)2 −∆2

]
contribution.
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Transport coefficients in graphene

Using Kubo formula:

{
σ

β

}

=
e2

~

∫ ∞

−∞

dεA(ε,Γ(ε),∆)

2T cosh2 ε
2T

{
1

ε/(eT )

}

,

where the function

A(ε, Γ(ε),∆) =
1

2π2

[
1 +

(µ+ ε)2 −∆2 + Γ2(ε)

2|µ+ ε|Γ(ε)

×
(
π

2
− arctan

∆2 + Γ2(ε)− (µ+ ε)2

2|µ+ ε|Γ(ε)

)]
.

We use regularized scattering rate: Γfull(ε) = Γ(ε) + γ0.
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Results

Conductivity σ(µ)

HaL

T=1 K

G0=20 K
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S0 = kB/e, T = 5K

—– ∆ = 0, Γ(ε) = const - reference case: restore normal metal case,

S = −(π2/3e)T/µ in the limit |µ| ≫ T , Γ0.

—– ∆ = 50 K, Γ(ε) = const: E. Gorbar et al., PRB 66, 045108 (02).

—– ∆ = 50 K, Γ(ε) - S.G. Sh. and A.A. Varlamov, Phys. Rev. B 86, 035430

(2012).

Thin lines – from Mott formula.
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Conclusions:

• Opening a gap results in appearance of a fingerprint bump of the Seebeck

signal when the chemical potential approaches the gap edge.

• Magnitude of the bump can be up 10 times higher than already large

value of S ∼ 50µV /K at room temperatures observed in graphene.

• Effect is related to a new channel of quasi-particle scattering from

impurities with the relaxation time strongly dependent on the energy.

• One can exploit the predicted giant peak of the Seebeck signal as a

signature of the gap opening in monolayer graphene.

• Similar phenomenon already observed in bilayer graphene, C.-R. Wang, et

al., PRL 107, 186602 (11).
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Nernst - Ettingshausen effect in graphene



Nernst - Ettingshausen effect (1886)

Walther Nernst

1864 - 1941

Nobel Prize in chemistry

(1920) in recognition of

his work in

thermochemistry. Third

law of thermodynamics.

Albert von Ettingshausen

1850 - 1932

Nernst effect is the

transversal equivalent of the

Seebeck effect: ∇xT → Ey

ey = − Ey
∇xT

[
µV

K

]

Energy scale:

kB/e ∼ 86µV /K

Nernst signal measured in

the absence of electric

current, jx = 0, jy = 0:

jx = σxxEx + σxyEy − βxx∇xT ,

jy = σyyEy + σyxEx − βyx∇xT .

2nd NE or Ettingshausen

effect: jx → ∇yT

Nernst signal

ey (T ) = −σxxβyx−σyxβxx

σ2
xx+σ2

xy

ey (T ) ≈ βxy

σxx

for σxx ≫ |σxy |
βxy is the thermoelectric

coefficient

Also odd and thus

sensitive to the details of

the electronic structure.
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Nernst effect in graphene

We use Mott’s formula, but now for βij . Then

the Nernst signal is

ey (T ,B) ≡ − Ey

∇xT
= −π

2

3

T

e

∂ΘH

∂µ
,

where the Hall angle

ΘH = arctan
σxy

σxx

.

The large and positive Nernst signal is a

fingerprint of the Dirac quasiparticles.

The Nernst signal ey in µV /K as a function of

chemical potential.

V.P. Gusynin and S.G. Sh. PRB 73, 245411 (06); I.A. Luk‘yanchuk,

A.A. Varlamov, and A.V. Kavokin, PRL 107, 016601 (11).
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Spin Nernst (SN) effect in silicene



Spin Nernst (SN) effect

SH and SN effects
a) b)

For NE an external magnetic field

B ‖ ẑ 6= 0 is required!

Now B = 0, but there is the internal

magnetic field or spin-orbit interaction.

SN effect: js = −β̂s∇∇∇T

with the thermo-spin tensor, β̂s

Purpose is to study SN effect in

low-buckled Dirac materials.
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Spin Nernst (SN) effect

SH and SN effects
a) b)

For NE an external magnetic field

B ‖ ẑ 6= 0 is required!

Now B = 0, but there is the internal

magnetic field or spin-orbit interaction.

SN effect: js = −β̂s∇∇∇T

with the thermo-spin tensor, β̂s

Purpose is to study SN effect in

low-buckled Dirac materials.

Spin current subtlety

There is no conservation of spin!
∂Sz
∂t

+∇∇∇ · Js = Tz , where the spin

torgue density Tz (r) = ℜe Ψ†(r)τ̂Ψ(r)

with τ̂ ≡ dŜz
dt

= 1

i~
[Ŝz , Ĥ ].

When [Ŝz , Ĥ] = 0 the spin torque term

is zero and the spin current

Js(r) = ℜe Ψ†(r) 1

2

{
v̂, Ŝz

}
Ψ(r) with

the spinor ΨT = (ψ↑, ψ↓).

J. Shi, P. Zhang, Di Xiao, Q. Niu, PRL

96, 076604 (06); P. Zhang, Z. Wang,

J. Shi, Di Xiao, and Q. Niu, PRB 77,

075304 (08).
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Low-buckled Dirac materials

Silicene: vertical distance between

sublattices 2d ≈ 0.46Å.

Lattice constant a = 3.87Å.

So far grown on Ag and ZrB2

substrates which are both

conductive – no transport

measurements as yet.

2D sheets of Ge, Sn, P and Pb

atoms (the materials germanene,

stanene and phosphorene).

Strong intrinsic spin-orbit interaction in

contrast to graphene

HSO = i
∆SO

3
√

3

∑

〈〈i,j〉〉

σσ′

c
†
iσ(ννν ij · σσσ)σσ′cjσ′

with ∆SO ∼ 10meV, νzij = ±1.

Perpendicular to the plane electric field Ez

opens the tunable gap ∆z = Ezd .

Interplay of two gaps: ∆SO and ∆z .
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Low-energy Hamiltonians and main goals

1. Toy model: two-component Dirac fermions model

H = ~vF (kxτ1 + kyτ2) + ∆τ3 − µτ0.

The mass ∆ breaks TR symmetry. To study off-diagonal part of the TE tensor

β̂:

j = σ̂E − β̂∇T
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Low-energy Hamiltonians and main goals

1. Toy model: two-component Dirac fermions model

H = ~vF (kxτ1 + kyτ2) + ∆τ3 − µτ0.

The mass ∆ breaks TR symmetry. To study off-diagonal part of the TE tensor

β̂:

j = σ̂E − β̂∇T

2. Silicene

Hη = σ0 ⊗ [~vF (ηkxτ1 + kyτ2) + ∆zτ3 − µτ0]− η∆SOσ3 ⊗ τ3,

τττ and σσσ – sublattice and spin; k is measured from the Kη points.

There is a spin σ = ±, and valley η = ± dependent gap ∆ησ = ∆z − ησ∆SO

or mass ∆ησ/v
2

F , where vF is the Fermi velocity.

When ∆ησ = 0 come back to graphene.

TRS is unbroken for any ∆ησ.

To study off-diagonal part of the thermo-spin tensor β̂s :

j
s = σ̂sc

E − β̂s∇T
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Anomalous Hall effect

For B = 0 equation of motion for η = +

v̇ =
1

i~
[v,H] = 2v2

F k × τττ − 2∆

~
v × ez , v = vFτττ .

Here the first term corresponds to Zitterbewegung and the second term

corresponds to the Lorentz force due to magnetic field Beff ⊥ plane, where

Beff ∝ ∆. This is related to the Haldane model, Phys. Rev. Lett. 61, 2015

(1988), also T. Ando, J. Phys. Soc. Jpn. 84, 114705 (15).

For T = 0 the intrinsic (not induced by disorder) AHE

ση
xy = − e2

sgn (η∆)

4π~





1, |µ| ≤ |∆|,
|∆|/|µ|, |µ| > |∆|.

For |µ| > |∆| the vertex corrections modify the result N.A. Sinitsyn, J.E. Hill,

H. Min, J. Sinova, and A.H. MacDonald, PRL 97 106804 (06). Moreover, the

standard diagrammatic approach fails A. Ado, I.A. Dmitriev, P.M. Ostrovsky,

and M. Titov, Europhys. Lett. 111, 37004 (15).
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SHE scenario for silicene

Silicene for B = 0 TR unbroken σxy =
∑

ξ,σ=± ξσxy (∆ → ∆ξσ) = 0.
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SHE scenario for silicene

Silicene for B = 0 TR unbroken σxy =
∑

ξ,σ=± ξσxy (∆ → ∆ξσ) = 0.

Kane-Mele scenario of SHE. It occurs due to the presence of two subsystems

with σ = ± exhibiting the quantum Hall effect:

σSz
xy = − ~

2e

∑
ξ,σ=± ξσσxy (∆ → ∆ξσ).

Proposed for graphene in C.L. Kane and E.J. Mele, PRL 95, 226801 (05). For ∆z = 0

σSz
xy = − e

2π
sgn (∆SO)

[
θ(|∆SO| − |µ|) + |∆SO|

|µ|
θ(|µ| − |∆SO|)

]
For |µ| < |∆SO|

– quantum spin Hall insulator.

σSz
xy is measured in the units of e/(4π).
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Why interesting physics can be expected

Mott relation for thermoelectric coefficient is not reliable, but can be used for

an estimate:

βxy = −π
2k2

B

3e
T
∂σxy (µ,∆,T = 0)

∂µ

Then the Nernst signal for σxx ≫ |σxy | and |µ| > |∆|:

ey (T ) ≈ βxy
σxx

= −
(
kB

e

)
πe2

12~σxx

kBT∆sgn (µ)

µ2
.

The order of magnitude is ey (T ) ∼ kB/e ∼ 86µV /K .

Tuning the position of µ by changing the gate voltage one gains from 3 to 4

orders of magnitude in ey as compared to the normal nonmagnetic metals,

where ey ∼ 10 nV /K per Tesla.

No AHE in silicene, but should be SHE and large spin Nernst effect!
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Modified Kubo formula



Problem with the Kubo formula

Consider the usual definition of the thermolectric tensor

β̃xy = − ~

T
lim
ω→0

Q
eq(R)
xy (ω)

ω
,

where Q
eq(R)
xy is the retarded response function of the electric and heat currents.

ΥΥΥ
(e)
α Υ

(q)
β

ΥΥΥ
(e)
α – electric current vertex [bare Υ

(e)
α (ǫn + Ωm, ǫn) = −evF τα and for the full

vertex Υ
(e)
y the contribution ∼ τx is also present]; Υ

(q)
α – heat current vertex.

In the clean case (bare bubble) and in the limit T → 0

β̃xy = − e

4π~T
[∆sgn (µ)θ(|µ| − |∆|) + µsgn (∆)θ(|∆| − |µ|)]

diverges!

At T = 0 the thermoelectric tensor must become zero: it describes the

transport of entropy, which, in accordance with the third law of

thermodynamics, becomes zero when T → 0. 22



Modified Kubo formula

It was shown by Yu.N. Obraztsov, Fiz. Tverd. Tela 6, 414 (1964) [see also N.

R. Cooper, B. I. Halperin, and I. M. Ruzin, PRB 55, 2344 (1997); T. Qin, Q.

Niu, and J. Shi, PRL 107, 236601 (11)] that in the presence of an effective

magnetic field, the off-diagonal thermal transport coefficient β̃xy has to be

corrected by including of the magnetization Mz term: so that the correct

thermoelectric tensor

βxy = β̃xy +
cMz

T
,

where (V.P. Gusynin, S.G. Sh., and A.A.Varlamov, PRB 90, 155107 (14).) )

Mz (B = 0) =
e sgn (η∆)T

4π~c

[
ln cosh

µ+ |∆|
2kBT

− ln cosh
µ− |∆|
2kBT

]
.

In the limit T → 0 it cancels out the diverging part of β̃xy and the third law of

thermodynamics is restored.
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Modified Kubo formula

It was shown by Yu.N. Obraztsov, Fiz. Tverd. Tela 6, 414 (1964) [see also N.

R. Cooper, B. I. Halperin, and I. M. Ruzin, PRB 55, 2344 (1997); T. Qin, Q.

Niu, and J. Shi, PRL 107, 236601 (11)] that in the presence of an effective

magnetic field, the off-diagonal thermal transport coefficient β̃xy has to be

corrected by including of the magnetization Mz term: so that the correct

thermoelectric tensor

βxy = β̃xy +
cMz

T
,

where (V.P. Gusynin, S.G. Sh., and A.A.Varlamov, PRB 90, 155107 (14).) )

Mz (B = 0) =
e sgn (η∆)T

4π~c

[
ln cosh

µ+ |∆|
2kBT

− ln cosh
µ− |∆|
2kBT

]
.

In the limit T → 0 it cancels out the diverging part of β̃xy and the third law of

thermodynamics is restored.

For silicene the divergence is compensated by the “spin magnetization”

MSz
z = − ~

2e

∑
ξ,σ=± ξσMz(∆ → ∆ξσ), which is nonzero even when the TR

symmetry is unbroken. The orbital magnetization

Mz =
∑

ξ,σ=± ξMz(∆ → ∆ξσ) = 0.
23



Thermo-electric and -spin coefficients:

HbL
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Thermoelectric coefficient βxy (µ) in

units of β0 = kBe/~.

Red line — bubble approximation

Blue line — dressed vertex
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Thermospin coefficient βSz
xy (µ) in units

of βs
0 = kB/2.

Crossing βxy (µ 6= 0) = 0 is caused by

nonmonotonic dependence σxy (µ) = 0

related to the vertex. Other diagrams

modify this result.
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Results: bare bubble

Spin Hall conductivity σSz
xy (µ,∆z ) in

units of σs
0 = e/(2π)

Thermo-spin coefficient βSz
xy (µ,∆z ) in

units of βs
0 = kB/2

as functions of the chemical potential µ and the sublattice asymmetry gap ∆z

in the units of ∆SO > 0.
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Results: vertex

Spin Hall conductivity σSz
xy (µ,∆z ) in

units of σs
0 = e/(2π)

Thermo-spin coefficient βSz
xy (µ,∆z ) in

units of βs
0 = kB/2

as functions of the chemical potential µ and the sublattice asymmetry gap ∆z

in the units of ∆SO > 0.
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Conclusions to Part II

• Spin Nernst effect is strong, so potentially may be observable.

• Illustration how the standard Kubo formula has to be altered by including

the effective magnetization leading to the correct off-diagonal

thermoelectric coefficient.

• A possibility to distinguish different cases with monotonic and

nonmonotonic dependence σxy (µ) and σSz
xy (µ,∆z) due to the vertex and

other diagrams.

Thank you very much for listening!
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