

Thermophoresis of charged colloidal spheres and rods

12. März 2019 | Simone Wiegand,

Doreen Niether, Zilin Wang, Hui Ning, Johan Buitenhuis, Jan K.G. Dhont

Phenomenological equation

(..., thermodiffusion, Soret effect) –

Movement of particles driven by a temperature gradient

$$\vec{j} = -D\vec{\nabla}c - c(1-c)D_{T}\vec{\nabla}T$$

Steady state $\vec{j}=0$
 $S_{T} = \frac{D_{T}}{D} \propto \frac{\Delta c}{\Delta T}$

D - diffusion coefficient, c - concentration, D_T - thermodiffusion coefficient, \vec{j} - flux, T - temperature S_T - Soret coefficient

- 1. Fast process *T*-equilibration
- 2. Slow process *c*-equilibration

12.03.2019

Thermophoresis: What ? Where is it used?

Application areas

Application examples

- Characterization of crude oil fields
- Characterization of macromolecules and colloids, e.g. ThFFF (thermal field flow fractionation)
- Measuring equilibration constants of biochemical reactions
- 'origin of life' scenario combining convection & thermophoresis

Thermal field flow fractionation

Thermophoresis: What ? Where is it used?

Application areas

- Characterization of crude oil fields
- Characterization of macromolecules and colloids, e.g. TFFF (thermal field flow fractionation)
- **Measuring equilibration** constants of biochemical reactions
- 'origin of life' scenario combining convection & thermophoresis

12.03.2019

Application examples

Microscale thermophoresis

PROTEINS

Complexity

How do we measure?

IR-TDFRS – InfraRed -Thermal Diffusion Forced Rayleigh Scattering

Advantages:

- small ΔT (no convection)
- no fluorescent labeling required
- wide molecular range **Disadvantages:**
- buffer solutions: difficult
- colloids >100 nm: difficult.
 12.03.2019

Measured quantity: Intensity of the diffracted beam

[S. Wiegand *et al.*, J. Phys. Chem. B, **111**(2007) 14169] 6

IR-TDFRS: set-up

- label-free method
- small T-gradient (1-10 K/m)
- Temperature and concentration grating → grating in refractive index of sample
- Measured quantity: intensity of diffracted reading beam
- Mitglied der Helmholtz-Gemeinschaft

IR-TDFRS measurement signal

Molecules/colloides with higher refractive index moves to... ...cold sidewarm side

To the warm or to the cold?

SW., Introduction to thermal gradient related effects, in Functional Soft Matter, J.K.G. Dhont, et al., Editors. 2015, Forschungszentrum Jülich: Jülich. p. F4.1-F4.24. 9

12.03.2019

To the warm or to the cold?

T-dependence S_T

System: dextran/water + urea

less H-bonds with temperature

- S_T increases
- ΔS_T decreases

less H-bonds with dextran due to urea

- S_{T} increases
- ΔS_T decreases

[Sugaya, R., B.A. Wolf, and R. Kita. Biomacromolecules, **7** (2006) 435] [slide 11]

saccharides: P. Blanco et al., J. Phys. Chem. B 114, 2807 (2010) urea: D. Niether et al., PCCP., 20, 1012 (2018). formamide: D. Niether et al., PNAS, 113, 4272 (2016).

12.03.2019

Hydrogen bonds: temperature effect

Assuming local thermodynamic equilibrium

At low temperatures: minimization of the free energy F = U - TSby forming hydrogen bonds (ΔU <0).

water goes to the cold side

At high temperatures: minimization of the free energy F = U - TSby entropy production ($\Delta S > 0$).

water goes to the warm side

To the warm or to the cold?

าเด

*

Three forces acting on a charged particle ULICH

T... temperature *I*.. ionic strength ε ...dielectric constant

... of minor importance in water, but relevant in solvents with low dielectric constant

 $\delta W^{rev} = -dz \cdot F_{tot}$

+

 $F_{\rm el}$

+

 $F_{\rm sol}$

F tot

*

in water

- internal force F_{w} due to change of the double layer structure on displacement of the sphere
- electric force F_{el} due to nonspherical symmetry of the double layer structure.
- solvent-friction force F_{sol} due to solvent flow arising from the asymmetry of the double-layer structure.

[J. K. G. Dhont and W. J. Briels, Eur. Phys. J. E 25 (2008) 61-76]

arbitrary small T-gradients

$$F \cdot dz = -dW^{rev}$$

arbitrary small T-gradients

$$F \cdot dz = -dW^{rev}$$

$$= -(-dW^{(d)}(T) + \dots$$

$$F \cdot dz = -dW^{rev}$$

$$= -(-dW^{(d)}(T)+\dots$$

dW = 0

$$F \cdot dz = -(-dW^{(dl)}(T) + dW^{(dl)}(T + dT))$$
$$= -dT dW^{(dl)}(T) / dT$$

force-balance on the diffusive time scale

 $F + F_{friction} = F - 6\pi\eta_0 V_c = 0$ colloid velocity $V_c = -\frac{1}{6\pi\eta_0} (dT / dz) dW^{(dl)}(T) / dT$

(neglect small contribution due to electrolyte friction)

$$\frac{\partial \rho_c}{\partial t} = -\frac{\partial}{\partial z} (\rho_c \, V_c) = \begin{bmatrix} \frac{k_B T}{6\pi\eta_0} \beta \, \rho_c \, dW^{(d)}(T) \, / \, dT \\ \frac{\partial \rho_c}{\partial t} = D_T \end{bmatrix} (d^2 T \, / \, dz^2) + \cdots + (d^2 \rho_c \, / \, dz^2)$$
to leading order in gradients and deviations from mean values
$$I2.03.2019$$

$$D_{\mathrm{T}} = A \frac{\mathrm{dln}\,\varepsilon}{\mathrm{dln}\,T} + B \begin{cases} A^{(\mathrm{sphere})} = -\mathbb{F} \frac{\kappa a}{\left(1 + \kappa a\right)^2} \left\{1 + \frac{2}{\kappa a}\right\} \\ B^{(\mathrm{sphere})} = \mathbb{F} \frac{\kappa a}{\left(1 + \kappa a\right)^2} \end{cases} \text{ with } \mathbb{F} = \frac{1}{4} D_0 \frac{\rho}{T} \left(\frac{4\pi l_{\mathrm{B}}^2 \sigma}{e}\right)^2 \left(\frac{a}{l_{\mathrm{B}}}\right)^3 \end{cases}$$

e ... elementary charge $I_{\rm B}$... Bjerrum length σ ... surface charge density

 $\kappa^{1} = \lambda_{DH}$.. Debye length ε .. dielectric constant *a*.. radius of the colloid

^{12.03.2019} [J. K. G. Dhont and W. J. Briels, Eur. Phys. J. E **25** (2008) 61-76] [Dhont, J. K. G.; SW; Duhr, S.; Braun, D. Langmuir, 23 *(*2007), 1674]

 $\sigma = 7 \times 10^{-18}$ C/particle

= 44 e/particle

^{12.03.2019} [H.Ning, J.K.G. Dhont, SW, Langmuir, 24 (2008), 2426]

diameter_(TEM) = 24.6 ± 4.8 nm

Charged sphere: results

^{12.03.2019} [H.Ning, J.K.G. Dhont, SW, Langmuir, 24 (2008), 2426]

Extension of the model for colloidal rods

$$D_{\rm T} = A \frac{{\rm dln}\,\varepsilon}{{\rm dln}\,T} + B$$

$$A^{\rm (rod)} = -\mathbb{F} \frac{L}{\kappa a_{\rm c}^2} \frac{K_0(\kappa a_{\rm c})}{K_1(\kappa a_{\rm c})} \left\{ 1 + \frac{1}{2} \kappa a_{\rm c} \left(\frac{K_0(\kappa a_{\rm c})}{K_1(\kappa a_{\rm c})} - \frac{K_1(\kappa a_{\rm c})}{K_0(\kappa a_{\rm c})} \right) \right\}$$

$$B^{\rm (rod)} = \mathbb{F} \frac{L}{2a_{\rm c}^2} \left(1 - \frac{K_0^2(\kappa a_{\rm c})}{K_1^2(\kappa a_{\rm c})} \right)$$
with
$$\mathbb{F} = \frac{1}{4} D_0 \frac{\rho}{T} \left(\frac{4\pi l_{\rm B}^2 \sigma}{e} \right)^2 \left(\frac{a}{l_{\rm B}} \right)^3$$

12.03.2019

[Wang, Z., H. Kriegs, J. Buitenhuis, J.K.G. Dhont, and SW, Soft Matter, 9 (2013) p. 8697]

Extension of the model for colloidal rods

Solution for rods can be replaced by a chain of spheres

$$D_{T}^{DL} = \frac{D_{0}}{T} \left\{ \frac{1}{4} \mathcal{N} \left(\frac{4\pi \lambda_{Bj}^{2} \sigma}{e} \right)^{2} \left(\frac{a}{\lambda_{Bj}} \right)^{3} \frac{\kappa a}{\left(1 + \kappa a\right)^{2}} \times \left[1 - \frac{d \ln \varepsilon}{d \ln T} \left(1 + \frac{2}{\kappa a} \right) \right] \right\} + \mathcal{A}(T)$$
with $\mathcal{N} = \frac{L}{2a}$ a .. radius

 $\mathcal{N}..$ number of beads

Colloidal rods

Inorganic rod-like particles

*V*₂*O*₅, *Zocher* (1925)

Polydisperse! Need help from biology.

Biological rod-like particles

TMV, Bawdwn et al, (1935)

Colloidal rods: fd virus as model system

Genetic Modification

system	L [µm]	L _p [µm]
fd wild type	0.88	2.8
fd Y21M	0.91	9.9
Pf1	1.96	2.8
M13k07	1.2	2.8

produced by E.coli bacteria

D. A. Marvin and E. J. Wachtel, Nature 253, 19 (1975).

Diameter = 6.8 nmMolar mass = $1.64 \times 10^7 \text{ g/mol}$

Charged colloidal rod: results

Charged colloidal rod with ,hairs': system

Z. Wang et al. 35 (2019) 1000–1007.

Charged colloidal rod with hairs

Take home message

Charged colloidal model systems can be fully described by the double layer contribution

Microscopic understanding of the charge distribution of colloids with grafted polymers needs more work.

Some final remarks

Well defined monodisperse systems are required

to separate different contributions

Conceptually different solid wall / sinusoidal grating

"Janus" microrotor

[H.-R. Jiang, N. Yoshinaga and M. Sano, Phys. Rev. Lett., **105** (2010) 268302]

12.03.2019

Thermophoretic machines: micro gear Ujülich

[M. C. Yang and M. Ripoll, Soft Matter, 10 (2014) 1006-1011. D. Afanasenkau experiments in progress] 12.03.2019

Thermophoretic machines: turbine

If two ellipsoidal blades with opposite orientation angles connected by a rigid bond, which is perpendicular to an external thermal gradient they can rotate.

[M. Yang, R. Liu, M. Ripoll and K. Chen, Nanoscale, 6 (2014) 13550-13554.]

Rotating cholesteric liquid crystal droplet UJÜLICH

cholestric liquid crystal droplets under a temperature gradient (the Lehmann effect)

[Lehmann, O., Annalen Der Physik, 2(1900) 649-705.; T. Yamamoto, M. Kuroda and M. Sano, EPL (Europhysics Letters), 109 (2015) 12460019]

Thank you for your attention and thanks to...

Jan Dhont – support & theory

Hui Ning – Ludox particles

Zilin Wang – fd virus

Johan Buitenhuis – synthesis

Hartmut Kriegs - technical support

Doreen Niether – PEG-fd virus