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Entropy per particle

Internal energy for a varying particle number:

dE(S ,V ,N) = TdS − PdV + µdN,

where the entropy, dS = δQ
T

with δQ being the heat.
Entropy is important not only for describing thermodynamical
experiments, but also in interpreting heat transport experiments, e.g.
Seebeck and Nernst - Ettingshausen effects are characterized by the
entropy per particle:

s =

(

∂S

∂N

)

T

=
1

V

(

∂S

∂n

)

T

,

set V = 1 and use instead of carrier number N the carrier density n.



Entropy per particle via Maxwell relation
System in the thermostat described by the Gibbs free energy:
dG (T ,P,N) = d(E − TS + PV ) = −SdT + VdP + µdN, so that

(

∂G

∂T

)

p,n

= −S ,

(

∂G

∂n

)

T ,p

= µ

Maxwell relation,

s =

(

∂S

∂n

)

T

= −
(

∂µ

∂T

)

n

makes entropy per particle measurable quantity.
A.Y. Kuntsevich, Y.V. Tupikov, V.M. Pudalov, I.S. Burmistrov,
“Strongly correlated two-dimensional plasma explored from entropy
measurements”, Nature Commun. 6, 7298 (15).
Thermodynamic method to measure the entropy per electron in
gated structures. Technique appears to be three orders of magnitude
superior in sensitivity to a.c. calorimetry, allowing entropy
measurements with only 108 electrons.



Measuring entropy per particle

Example of the measurements in
Si-MOS structures. Magnetic field
applied ⊥ to the structure B = 9T

∂S/∂n versus electron density
(1011cm−2).

Modulation of the sample
temperature
T (t) = T0 +∆T cos(ωt) changes
the chemical potential and causes
recharging of the gated structure.
The derivative ∂µ/∂T is directly
determined in the experiment from
the measured recharging current:
i(T ) = ∂µ

∂T
∆TωC sin(ωt).

Here, C stands for the capacitance
between the gate electrode and
2D electron layer, ∆T ∼ 0.1K ,
ω/(2π) ∼ 0.5Hz .



Quasi-two-dimensional electron gas

Electron subbands in the quasi-2D

electron gas: εj(k) = Ej +
~
2k2

‖

2m∗ .
In the absence of scattering, the
density of electronic states in a
non-interacting 2DEG has a
staircase-like shape

D(ε) =
m∗

π~2

∞
∑

j=1

θ (ε− Ej) .

Electronic topological transition or Lifshitz transition in quasi-2DEG,
δD(ε) = Cθ(E − Ec).
The presence of impurities results in the level broadening:

θ′(ε) = δ(ε) → δγ(ε) ≡
γ

π(ε2 + γ2)
,

where ~/γ is a finite life-time. The steps of the DOS are smeared
θγ (ε) =

1
2 + 1

π arctan
(

ε
γ

)

.



Quantization of entropy per particle
Formal matters :

s = −
(

∂µ

∂T

)

n

=

(

∂n

∂T

)

µ

(

∂n

∂µ

)−1

T

, n (µ,T ) =

+∞
∫

−∞

D(ε)

exp
( ε−µ

T

)

+ 1
dε.

A. Varlamov, A. Kavokin, and Y. Galperin, PRB 93, 155404 (16).

The value of the entropy per particle in the
N-th maximum depends only on the
size-quantization quantum number N:

s(T → 0)|µ=En
=

ln 2

N − 1/2
kB = 1.

In the absence of scattering this result is
independent of the shape of the transversal
potential that confines 2DEG and of the
material parameters including the electron
effective mass and dielectric constant.



Exact formulas for 2DEG at finite temperature and scattering rate

(

∂n

∂T

)

µ
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2m∗

π~2

∑

j=1

Re

[
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2T
Ψ

(

1

2
+
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2πT

)

− γ

2T
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Γ
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1

2
+
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2πT
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π

2
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,

(

∂n

∂µ

)

T

=
m∗

2π~2

∑

j=1

{

1 +
2

π
ImΨ

(

1

2
+

γ + i(µ− Ej)

2πT

)}

,

where Ψ(z) is the digamma function. We have taken into account
that µ ≫ T . The general expression for entropy per particle in the
quasi-2DEG can be calculated from the above expressions.



Role of temperature and disorder
Dependence of the
entropy per particle, s,
on
(µ− EN)/2T ≡ δN/2T
for (a) N = 2, 3; γ → 0;
(b) N = 2;
γ/2T = 0, 0.2.

Asymptotic in the vicinity of the peak:

s(µ = EN + δN) =















|δN |
T

exp
(

−
|δN |

T

)

N−1+exp
(

−
|δN |

T

) , δN ≪ −T ,

ln 2
N−1/2

, 0 < δN ≪ T ,
δN
TN

exp(−δN/T ), δN ≫ T .

The peak is suppressed by the elastic scattering of electrons:

s|µ=EN
=

ln 2− (γ/πT )

N − 1/2
.



Low-buckled Dirac materials

Silicene: vertical distance between
sublattices 2d ≈ 0.46Å. Lattice
constant a = 3.87Å. So far grown
on metallic substrates Ag, Au, Pt,
Al, as well as less interactive
substrates such as MoS2 (gap
∼ 1.23− 1.8eV ). 2D sheets of
Ge, Sn and P atoms (germanene,
stanene and phosphorene). No
transport measurements yet.

The same hexagonal lattice as in
graphene, but due to buckling there is
also a strong intrinsic spin-orbit
interaction

HSO = i
∆SO

3
√
3

∑

〈〈i ,j〉〉
σσ′

c
†
iσ(ννν ij · σσσ)σσ′cjσ′ ,

νzij = ±1, ∆SO ≈ 4.2meV in silicene,
∆SO ≈ 11.8meV in germanene.

Perpendicular to the plane electric field
Ez opens the tunable gap ∆el = Ezd .
Interplay of two gaps: ∆SO and ∆el .



Low-energy Hamiltonian of silicene

Hη = σ0 ⊗ [~vF (ηkxτ1 + kyτ2) + ∆elτ3]− η∆SOσ3 ⊗ τ3,

τττ and σσσ – sublattice and spin; k is measured from the Kη points.
There is a spin σ = ±, and valley η = ± dependent gap (or mass ∆ησ/v

2
F )

∆ησ = ∆el − ησ∆SO, εησ(k) = ±
√

~2v2k2 +∆2
ησ.

C. Liu, W. Feng, and Y. Yao, PRL 107, 076802 (11); N. Drummond, V. Zólyomi, and V. Fal’ko, PRB 85, 075423 (12);

M. Ezawa, New J. Phys. 14, 033003 (12), J. Phys. Soc. Jpn. 81, 064705 (12).

Time-reversal symmetry (TRS) is unbroken.

The band structure: bulk and edge states in nanoribbons for varying ∆el .



DOS of the Dirac materials

Generic form of the DOS: D (ε) = f (ε)

M
∑

i=1

θ
(

ε2 −∆2
i

)

.

M = 1: gapped graphene
ε(k) = ±

√

~2v 2
Fk

2 +∆2

and f (ε) = 2|ε|/(π~2v 2
F )

(spin-valley degeneracy is
included).

M = 2: silicene, germanene, etc.

εησ(k) = ±
√

~2v 2
Fk

2 +∆2
ησ and

f (ε) = |ε|/(π~2v 2
F ).

i = 1 corresponds to η = σ = ± with
∆1 = |∆SO −∆z | and i = 2 corresponds
to η = −σ = ± with ∆2 = |∆z +∆SO|.

Since D (ε) = D (−ε), instead of the total density of electrons one
operates with the difference between the densities of electrons and
holes (γ = 0):

n(T , µ,∆1,∆2, . . . ,∆M) =
1

4

∫ ∞

−∞

dεD(ε)

[

tanh
ε+ µ

2T
− tanh

ε− µ

2T

]

.

Clearly, n(T , µ) = n(T ,−µ), so that n(T , µ = 0) = 0. V. Tsaran, A.
Kavokin, S. Sharapov, A. Varlamov, and V.G., Sci. Rep. 7, 10271 (2017).



Quantization of entropy in Dirac materials
We need ∂n/∂T and ∂n/∂µ. For ∆i < |µ| < ∆i+1 and T → 0:

∂n(T , µ)

∂T
= D ′(|µ|)π

2T

3
sign(µ), ∆i > 0.

and at the discontinuity points µ = ±∆N at T → 0,

∂n(T , µ)

∂T

∣

∣

∣

∣

µ=±∆N

=± [D(∆N + 0)− D(∆N − 0)]

∞
∫

0

x dx

cosh2 x
=±f (∆N)ln 2.

If µ = ±∆N with N < M and T → 0, one obtains

∂n(T , µ)

∂µ

∣

∣

∣

∣

µ=±∆N

= f (∆N)

M
∑

i=1

θ(∆2
N −∆2

i ) = f (∆N)(N − 1/2),

The entropy per particle in Dirac materials is

s(T → 0, µ = ±∆N) = ± ln 2

N − 1/2
, N = 1, 2, . . .M .



Gapped graphene and silicene: analytics

Carrier imbalance in gapped graphene:

n(T , µ,∆) =
2T 2

π~2v2F





∆

T
ln

1 + exp
(

µ−∆
T

)

1 + exp
(

−µ+∆
T

) + Li2

(

−e−
µ+∆
T

)

− Li2

(

−e
µ−∆
T

)





where Li2(x) is the dilogarithm function:

Lis(x) =
∑∞

k=1
zk

ks
, Liν(1) = ζ(ν).

E. Gorbar, V.G., V. Miransky, and I. Shovkovy, PRBB 66, 045108 (2002).
The Fermi-Dirac integral

Fα(µ) =

∫ ∞

0
dǫ

ǫα

eǫ−µ + 1
= −αΓ(α)Liα+1(−eµ).

One can consider silicene as a superposition of two gapped graphene
layers characterized by different gaps:
n(T , µ,∆1,∆2) = 1/2 [n(T , µ,∆1) + n(T , µ,∆2)] .



Results: gapped graphene
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The entropy per electron s

vs the chemical potential
µ > 0, s(−µ) = −s(µ).

⊛ The most prominent feature is a sharp peak observed for the
chemical potential in the temperature vicinity of the Dirac point,
|µ| ∼ T .
Near the Dirac point:

s(T , µ,∆) ≃ µ∆

T 2

[

1 + O(e−∆/T )
]

, |µ| ≪ T ≪ ∆.

⊛ Near µ = ±∆, the dependence s(µ) is monotonic function, no
spikes (the DOS has just one discontinuity).



Results: gapped graphene vs silicene

The entropy per electron s(−µ) = −s(µ). Left: (a): Gapped
graphene. Right: (b): Silicene. The vicinity of µ = ∆2 = 2∆1 is
shown in the insert.
⊛ The presence of the second gap in silicene, germanene and similar
materials, ∆2 > ∆1, results in the appearance of the peak in s(µ):

s(T , µ = ±∆2) = ±
[

2 ln 2

3
+

π2 − 4 ln2 2

9

T

∆2

]

, T ≪ ∆2.



Case of gapless graphene: ∆ = 0

s(T , µ, 0) =

{

µ
T

(

1− µ2

T 2
1

6 ln 2

)

, |µ| ≪ T ,
π2

3
T
µ
, T ≪ |µ|.

The second line by the factor kB/e yields the Seebeck coefficient for a

free electron gas: S = −π2

3
kB
|e|

kBT
µ . This is not surprising, because

s(µ,T ) =
1

T

∫∞
−∞ dεD(ε)(ε− µ) cosh−2

(ε−µ
2T

)

∫∞
−∞ dεD(ε) cosh−2

( ε−µ
2T

)

compared to the thermal power

STP = − kB

|e|T

∫∞
−∞ dε (ε − µ)σ(ε) cosh−2

(

ε−µ
2kBT

)

∫∞
−∞ dεσ(ε) cosh−2

(

ε−µ
2kBT

) , σ(ε) = v2F (ε)τ(ε)D(ε).

When one of the gaps turns to zero, the peak near the Dirac point

becomes less sharp: compare ∼ 1/T vs ∼ 1/T 2. Of course,

thermodynamics does not allow to distinguish topological and band

insulators.



How to detect topological transition?
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and behavior of s(µ) shown underneath. (a) Massless Dirac fermions
in graphene. (b) Silicene and others at the point of topological
transition. (c) Two gaps are equal to each other. (d) Two different
gaps.



Ab initio calculations of the DOS in germanene
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Numerical experiment
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Transition-metal dichalcogenides

The effective Hamiltonian for monolayer compounds MX2 (M = Mo, W is
a transition metal, and X = S, Se, Te is a chalcogen atom):

H =
∑

τ=±1

[

~vF (τkxσx + kyσy ) +
∆

2
σz + λvτ

σ0 + σz
2

sz + λcτ
σ0 − σz

2
sz

]

,

sz is the Pauli matrix for the spin, ∆ ∼ 1− 2eV, vF ∼ 0.5× 106m/s
2λv ∼ 150− 500eV is the spin splitting at the valence-band top caused by
the spin-orbit coupling, 2λc is the spin splitting at the conduction-band
bottom. DFT calculations show that 2λv ≫ |2λc | ∼ 3− 50meV and
λc > 0 for MoX2 and λc < 0 for WeX2 compounds.

ǫc,v =
λv + λc

2
τσ ±

√

~2v2Fk
2 + [∆ − (λv − λc)τσ]2/4.



Transition-metal dichalcogenides

Energy spectra of MoS2 and WS2:
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The energy spectrum of the Hamiltonian for the valley τ = 1 and
τ = −1 in case of MoS2 (∆ = 1.66eV, 2λv = 0.15eV and
λc = −0.02eV) (two left panels) and WS2 (∆ = 1.79eV,
2λv = 0.43eV and λc = 0.03eV) (two right panels). Red and blue
lines correspond to spin-up and spin-down, respectively.



Transition-metal dichalcogenides
M = Mo, W is a transition
metal, and X = S, Se, Te is a
chalcogen atom

More chances to succeed
with experiment.
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D(ε) =
1

π(~vF )2

∑

i=±1

|ε− Ei | θ
[

(ε− Ei )
2 −∆2

i

]

.

Peaks in s can be observed for higher T due to large band gap, 1eV to
2eV, but there is no quantization of s. V. Shubnyi, V.G., S. Sharapov,
and A. Varlamov, Low Temp. Physics (Kharkov) 44, 721 (18).



Concluding remarks

Entropy per particle is expected to be approximately quantized
at T → 0.

The strong resonant feature of s in the close vicinity of µ = 0 is
nearly fully suppressed at the topological transition.

The interaction effects were neglected. The motion of electrons
in graphene can become hydrodynamic when the frequency of
electron-electron collisions is much larger than the rates of both
electron-phonon and electron-impurity scattering.

Review: Y. Galperin, D. Grassano, V.G, A. Kavokin, O.

Pulci, S. Sharapov, V. Shubnyi, A. Varlamov, JETP 127,

958-983 (2018).
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