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OUTLINE
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Ø Introduction to fluctuation corrections, 
qualitative picture

Ø Diagrammatic representation
Ø Complete exact result for the Nernst coefficient
Ø Fluctuoscopy of the Nernst coefficient 

Ø Numerical Fluctuoscopy
Ø Application to experiments
Ø Ghost field

Ø Summary



SUPERCONDUCTING FLUCTUATIONS
QUALITATIVE PICTURE



SUPERCONDUCTING FLUCTUATIONS AND WHY 
THEY ARE USEFUL
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Superconducting Fluctuations (SF)
² Are due to Cooper pairs with finite lifetime above the 

transition (FCPs) 
² do not form a stable condensate yet
² affect thermodynamic and transport properties of the 

normal state directly and through the changes in the 
normal quasiparticle subsystem, sometimes up to room 
temperature

à Complex behavior and multitude of interesting 
physical phenomena

à Provide valuable information about microscopic 
properties of normal and superconducting state: 
Fluctuation Spectroscopy or Fluctuoscopy



SMEARING OF THE SUPERCONDUCTING 
TRANSITION
Heat capacity in small, 0D superconducting granules (Schmidt, 1966)
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Critical temperature region of “smearing” determined the Ginzburg-Levanyuk number Gi,
here by Gi0Tc with:

Gi~(10-14-10-6)Tc0 in 3D
Gi~(10-2-10-3)Tc0 in 1D, 2D

e=ln(T/Tc)



SCHEMATIC PHASE DIAGRAM
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QUALITATIVE PICTURE:
SUPERCONDUCTING FLUCTUATIONS NEAR TC
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In normal state, above Tc0, no persistent 
Cooper pairs, but FCPs with finite life time: 

Characteristic size, in dirty SC:
and ξDðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
DτGL

p
∼ vF

ffiffiffiffiffiffiffiffiffi
ττGL

p
.3 In the case of a clean

superconductor, where kBTτ ≫ ℏ, impurity scattering no
longer affects the electron-electron correlations. In this case,
the characteristic time of the ballistic electron motion turns out
to be less than the electron-impurity scattering time τ and is
determined by the uncertainty principle, being ∼ℏ=kBT. It is
this latter time that has to be used to estimate the effective
FCP size ξclðTÞ ∼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏτGL=kBT

p
. In both cases, the coher-

ence length grows as ϵ−1=2 when approaching the critical
temperature, where

ϵ≡ ln
T
Tc0

≈
T −Tc0

Tc0
≪ 1 ð2Þ

is the reduced temperature. In the GL region (close to, but
beyond the immediate vicinity of Tc0, i.e., Gi≲ ϵ ≪ 1) we
define the coherence length as

ξGLðϵÞ ¼ ξ=
ffiffiffi
ϵ

p
: ð3Þ
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where de ¼ 1, 2, 3 is the effective dimension of the electron
motion.4 Equation (4) was obtained for the first time by
Gor’kov (1960) as a result of a microscopic calculation. It is
important to note that it differs only by a numerical coefficient
from the BCS expression for the coherence length at zero
temperature ξBCS. We see that the fluctuating order parameter
ΔðflÞðr; tÞ varies close to Tc0 on the relatively large scale
ξGLðϵÞ ≫ ξBCS; see Eq. (3).
It is important to note that FCPs, strictly speaking, cannot

be considered as Landau quasiparticles. Indeed, while the
energy of a well-defined quasiparticle has to be much larger
than its inverse lifetime, the binding energy ΔEs for a FCP
turns out to be of the same order ℏ=τGL. Yet, close to Tc0, they
still can be treated as classical objects, but in the sense of
Rayleigh-Jeans waves rather than Boltzmann particles. This
means that in the general Bose-Einstein distribution function
only small energies εðqÞ ≪ kBT (q is the momentum of the
center of mass of FCP) are involved, and the exponential
function in the Bose-Einstein distribution can be expanded:

nðqÞ ¼ 1

exp½εðqÞ=kBT&−1
→

kBT
εðqÞ

: ð5Þ

For this reason, the more appropriate tool to study fluctuation
phenomena is the GL equation written for classical fields
rather than the Boltzmann transport equation.
Nevertheless, the treatment of FCPs as particles often turns

out to be useful. In this approach, their energy consists of the
“binding energy” and the kinetic energy of the center of mass
motion:

εðqÞ ¼ kBðT −Tc0Þ þ
q2

2m ' ; ð6Þ

where m ' is the effective mass of FCP.
The concentration of FCPs can be estimated by integration

of the distribution function (5) over the momenta in the range
jqj ≤ℏξ−1 [corresponding to the conditions εðqÞ ≪ kBT]:

NðdÞ ¼
Z

jqj≲ℏ=ξ
nðqÞ ddq

ð2πℏÞd

¼ m 'kBTc0

2πℏ2

8
>><

>>:

2πξGLðϵÞ d ¼ 1;

ln ð1=ϵÞ d ¼ 2;

const−ξ−1GLðϵÞ d ¼ 3.

ð7Þ

The physical three-dimensional concentration for wires and
films can be related to Eq. (7) by ~Nð3Þ ¼ NðdÞsd−3.

5 It turns out
to be divergent when approaching the transition in the 1D and
2D cases. Recall that these results were obtained in the long-
wavelength approximation (i.e., not too far from the transi-
tion) and do not account for the interaction of fluctuations
(i.e., not too close to Tc0), which means Gi≲ ϵ ≪ 1.

2. Manifestations of SF close to Tc0

Using the estimates for the lifetime, Eq. (1), coherence
length, Eqs. (3) and (4), and concentration of FCPs, Eq. (7),
we can evaluate their contribution to different physical
characteristics of a metal close to (but above) the transition
to the superconducting state. For example, we can quantify the
smearing of the jump of the heat capacity at the transition. We
start with the evaluation of the energy density of FCPs in the
Rayleigh-Jeans approximation (5):

EðFCPÞ

V
¼
Z

εðqÞnðqÞ ddq
ð2πℏÞd

≈kBTc0

Z

jqj≲ℏ=ξ
ddq

ð2πℏÞd
∼
kBTc0

ξd
:

3Strictly speaking, in the majority of expressions below τ has the
meaning of the electron transport scattering time τtr . Nevertheless,
as is well known, in the case of isotropic scattering these values
coincide; so for simplicity we use hereafter the symbol τ.

4With the introduction of de we stress the difference between the
effective dimensionality for FCPs d and electron motion. When we
discuss a 2D superconductor, we mean a superconducting film of
thickness s ≪ ξ, or a strongly layered material with the interlayer
distance larger than the perpendicular coherence length. This con-
dition is less restrictive in the GL region, where the requirement
s ≪ ξGLðϵÞ is sufficient for two-dimensional FCP motion. Regarding
the effective dimensionality of the electron motion de, it is deter-
mined by the specifics of its spectrum or confined electron diffusion
due to sample geometry.

5We define the FCP concentration in d-dimensional space. This
means that it determines the number of pairs per volume in the 3D
case, the number of pairs per unit square in the 2D case, and the
number of pairs per unit length in 1D. Since both wires and films are
actual objects in three-dimensional space, we can approximate the 3D
concentration of FCPs ~Nð3Þ by ~Nð3Þ ¼ Nð1Þ=s2 for wires, where s2 is

the wire cross section and ~Nð3Þ ¼ Nð2Þ=s for films, where s is the
thickness of the film, respectively.
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either in spin or in charge channels. The resulting interaction
does not even need to be attractive. Also the type of pairing
symmetry is not important, as the BCS theory can be extended
to p-, d-, and higher angular momenta pairing mechanisms
(Tsuei and Kirtley, 2000; Chubukov, Pines, and Schmalian,
2008; Scalapino, 2012; Loktev and Pogorelov, 2015). In
this language we can say that fluctuations in the framework
of the generic BCS scheme describe thermodynamic and
transport properties of superconductors beyond the mean-field
approximation.
With the discovery of high-temperature superconductors

(HTSs) a new field of research was generated, yet a
generally accepted mechanism of this phenomenon is still
not available. Underdoped cuprates show clear features of
electron state localization (Mott physics), such that the BCS
theory does not apply to them. HTS oxide superconductors
with low superconducting carrier density are characterized
by a relatively small phase stiffness and poor screening,
both of which imply a significantly larger role for phase
fluctuations (Emery and Kivelson, 1995). However, SC
properties of optimally doped and overdoped cuprates can
be described, at least to a first approximation, using models
with moderately strong electron-electron interaction. The
fundamental properties of such systems are not qualitatively
different from BCS superconductors. For this reason, we will
also apply the fluctuation-spectroscopy approach to analyze
the measurements on optimally and overdoped HTSs in
addition to experimental results obtained for conventional
superconductors.
This review is organized as follows: In Sec. II we present

the qualitative picture of fluctuation phenomena in super-
conductors by demonstrating how the main results can be
obtained from the point of view of the uncertainty principle
and basic formulas of condensed matter physics. In Sec. III
we report on the main ideas and necessary mathematical
elements of the microscopic description of SFs at arbitrary
temperatures and magnetic fields. The following sections are
organized in a common systematic way: we focus on one
physical property of the superconductor at a time, briefly
review how it is calculated in the Matsubara diagrammatic
technique, present the general analytical expression for
the corresponding fluctuation contribution including its
asymptotic analysis, when possible present 3D visualization
obtained as a result of numerical calculation for the
entire phase diagram, and, finally, its comparison with the
available experimental data. We start this sequence of proper-
ties with the discussion of the fluctuation diamagnetism
(Sec. IV), followed by the fluctuation conductivity
(Sec. V), Hall conductivity (Sec. VI), Nernst-Ettingshausen
effect (Sec. VII), pseudogap and low-bias anomaly
(Sec. VIII), and nuclear magnetic resonance (NMR) relax-
ation rate (Sec. IX). In Sec. X we discuss some aspects of
fluctuation corrections in quasi-2D, two-band, clean, and
nanocrystalline superconductors. Finally, we summarize the
more technical aspects required for the numerical evaluation
of the complete expressions for fluctuation corrections and
numerical fluctuation spectroscopy in Sec. XI. The numerical
codes needed to fit experimental data and, as a result, to
extract the fundamental microscopic parameters of the super-
conducting systems (fluctuation spectroscopy) are supplied

as Supplemental Material [242]. These codes were also used
to produce the 3D surface plots of fluctuation corrections
presented in this review.

II. QUALITATIVE PICTURE

A. Thermodynamic fluctuations in superconductors close to Tc0

1. Rayleigh-Jeans waves rather than Boltzmann particles

The BCS theory (Bardeen, Cooper, and Schrieffer, 1957a,
1957b), being a mean-field approximation, deals only with
thermally equilibrated Cooper pairs, which form a Bose-
Einstein condensate. Any deviations from this mean-field
model can be considered fluctuations. For example, four-
particle interactions with the formation of one or two non-
equilibrium Cooper pairs, or vice versa, interactions resulting
in the decay of a Cooper pair belonging to the condensate into
two quasiparticles are taken into account in the fluctuation
theory (Dinter, 1977; Kulik, Entin-Wohlman, and Orbach,
1981; Varlamov and Dorin, 1986). Using the language of the
Ginzburg-Landau approach, one can say that the BCS
approximation corresponds to the saddle point solution of
the GL functional. The latter describes the equilibrium
distribution of the order parameter in a superconductor and
allows for the study of its properties in the mean-field
approximation. Yet, any other imaginable ΔðrÞ also contrib-
utes to the partition function of a superconductor, being
weighted by means of the corresponding canonical
distribution.
Above the critical temperature of the superconducting

transition Tc0, the conditions for the formation of persistent
Cooper pairs are not yet fulfilled. Nevertheless, these kind
of objects appear even in the normal phase of super-
conductors as fluctuations before the system undergoes the
phase transition into the superconducting state (see Fig. 3).
These FCPs appear and decay, without forming a con-
densate. The corresponding lifetime τGL, the so-called
Ginzburg-Landau time, can be estimated by utilizing the
uncertainty principle. At the transition temperature, an
equilibrium superconducting condensate with infinite life-
time emerges. Hence, for continuity reasons τGL must
diverge to infinity when T → Tc0. Let us estimate the
binding energy of FCPs ΔEs using dimensionality argu-
ments: While the Fermi energy, the Debye temperature, and
the critical temperature can be expressed in units of energy,
the only quantity that vanishes at the critical temperature is
kBðT − Tc0Þ. Assuming that the binding energy of a FCP is
proportional to this quantity, we immediately see that τGL ∼
ℏ=ΔEs becomes infinite at the phase transition point. The
microscopic theory confirms this hypothesis and gives the
exact coefficient

τGL ¼ πℏ
8kBðT − Tc0Þ

: ð1Þ

One can also estimate the characteristic “size” of a FCP ξGL,
which is determined by the distance in which two electrons fly
away from each other in a time τGL. In the case of a dirty
superconductor, the electron motion is diffusive, with the
diffusion coefficientD ∼ v2Fτ (τ is the electron scattering time)
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and ξDðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
DτGL

p
∼ vF

ffiffiffiffiffiffiffiffiffi
ττGL

p
.3 In the case of a clean

superconductor, where kBTτ ≫ ℏ, impurity scattering no
longer affects the electron-electron correlations. In this case,
the characteristic time of the ballistic electron motion turns out
to be less than the electron-impurity scattering time τ and is
determined by the uncertainty principle, being ∼ℏ=kBT. It is
this latter time that has to be used to estimate the effective
FCP size ξclðTÞ ∼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏτGL=kBT

p
. In both cases, the coher-

ence length grows as ϵ−1=2 when approaching the critical
temperature, where

ϵ≡ ln
T
Tc0

≈
T −Tc0

Tc0
≪ 1 ð2Þ

is the reduced temperature. In the GL region (close to, but
beyond the immediate vicinity of Tc0, i.e., Gi≲ ϵ ≪ 1) we
define the coherence length as

ξGLðϵÞ ¼ ξ=
ffiffiffi
ϵ

p
: ð3Þ

Here ξ ¼ ξcl;D,

ξ2 ¼ −
τ2v2F
de
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where de ¼ 1, 2, 3 is the effective dimension of the electron
motion.4 Equation (4) was obtained for the first time by
Gor’kov (1960) as a result of a microscopic calculation. It is
important to note that it differs only by a numerical coefficient
from the BCS expression for the coherence length at zero
temperature ξBCS. We see that the fluctuating order parameter
ΔðflÞðr; tÞ varies close to Tc0 on the relatively large scale
ξGLðϵÞ ≫ ξBCS; see Eq. (3).
It is important to note that FCPs, strictly speaking, cannot

be considered as Landau quasiparticles. Indeed, while the
energy of a well-defined quasiparticle has to be much larger
than its inverse lifetime, the binding energy ΔEs for a FCP
turns out to be of the same order ℏ=τGL. Yet, close to Tc0, they
still can be treated as classical objects, but in the sense of
Rayleigh-Jeans waves rather than Boltzmann particles. This
means that in the general Bose-Einstein distribution function
only small energies εðqÞ ≪ kBT (q is the momentum of the
center of mass of FCP) are involved, and the exponential
function in the Bose-Einstein distribution can be expanded:

nðqÞ ¼ 1

exp½εðqÞ=kBT&−1
→

kBT
εðqÞ

: ð5Þ

For this reason, the more appropriate tool to study fluctuation
phenomena is the GL equation written for classical fields
rather than the Boltzmann transport equation.
Nevertheless, the treatment of FCPs as particles often turns

out to be useful. In this approach, their energy consists of the
“binding energy” and the kinetic energy of the center of mass
motion:

εðqÞ ¼ kBðT −Tc0Þ þ
q2

2m ' ; ð6Þ

where m ' is the effective mass of FCP.
The concentration of FCPs can be estimated by integration

of the distribution function (5) over the momenta in the range
jqj ≤ℏξ−1 [corresponding to the conditions εðqÞ ≪ kBT]:

NðdÞ ¼
Z

jqj≲ℏ=ξ
nðqÞ ddq

ð2πℏÞd

¼ m 'kBTc0

2πℏ2

8
>><

>>:

2πξGLðϵÞ d ¼ 1;

ln ð1=ϵÞ d ¼ 2;

const−ξ−1GLðϵÞ d ¼ 3.

ð7Þ

The physical three-dimensional concentration for wires and
films can be related to Eq. (7) by ~Nð3Þ ¼ NðdÞsd−3.

5 It turns out
to be divergent when approaching the transition in the 1D and
2D cases. Recall that these results were obtained in the long-
wavelength approximation (i.e., not too far from the transi-
tion) and do not account for the interaction of fluctuations
(i.e., not too close to Tc0), which means Gi≲ ϵ ≪ 1.

2. Manifestations of SF close to Tc0

Using the estimates for the lifetime, Eq. (1), coherence
length, Eqs. (3) and (4), and concentration of FCPs, Eq. (7),
we can evaluate their contribution to different physical
characteristics of a metal close to (but above) the transition
to the superconducting state. For example, we can quantify the
smearing of the jump of the heat capacity at the transition. We
start with the evaluation of the energy density of FCPs in the
Rayleigh-Jeans approximation (5):

EðFCPÞ

V
¼
Z

εðqÞnðqÞ ddq
ð2πℏÞd

≈kBTc0

Z

jqj≲ℏ=ξ
ddq

ð2πℏÞd
∼
kBTc0

ξd
:

3Strictly speaking, in the majority of expressions below τ has the
meaning of the electron transport scattering time τtr . Nevertheless,
as is well known, in the case of isotropic scattering these values
coincide; so for simplicity we use hereafter the symbol τ.

4With the introduction of de we stress the difference between the
effective dimensionality for FCPs d and electron motion. When we
discuss a 2D superconductor, we mean a superconducting film of
thickness s ≪ ξ, or a strongly layered material with the interlayer
distance larger than the perpendicular coherence length. This con-
dition is less restrictive in the GL region, where the requirement
s ≪ ξGLðϵÞ is sufficient for two-dimensional FCP motion. Regarding
the effective dimensionality of the electron motion de, it is deter-
mined by the specifics of its spectrum or confined electron diffusion
due to sample geometry.

5We define the FCP concentration in d-dimensional space. This
means that it determines the number of pairs per volume in the 3D
case, the number of pairs per unit square in the 2D case, and the
number of pairs per unit length in 1D. Since both wires and films are
actual objects in three-dimensional space, we can approximate the 3D
concentration of FCPs ~Nð3Þ by ~Nð3Þ ¼ Nð1Þ=s2 for wires, where s2 is

the wire cross section and ~Nð3Þ ¼ Nð2Þ=s for films, where s is the
thickness of the film, respectively.
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Characteristic size, in clean SC:

and ξDðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
DτGL

p
∼ vF

ffiffiffiffiffiffiffiffiffi
ττGL

p
.3 In the case of a clean

superconductor, where kBTτ ≫ ℏ, impurity scattering no
longer affects the electron-electron correlations. In this case,
the characteristic time of the ballistic electron motion turns out
to be less than the electron-impurity scattering time τ and is
determined by the uncertainty principle, being ∼ℏ=kBT. It is
this latter time that has to be used to estimate the effective
FCP size ξclðTÞ ∼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏτGL=kBT

p
. In both cases, the coher-

ence length grows as ϵ−1=2 when approaching the critical
temperature, where

ϵ≡ ln
T
Tc0

≈
T −Tc0

Tc0
≪ 1 ð2Þ

is the reduced temperature. In the GL region (close to, but
beyond the immediate vicinity of Tc0, i.e., Gi≲ ϵ ≪ 1) we
define the coherence length as

ξGLðϵÞ ¼ ξ=
ffiffiffi
ϵ

p
: ð3Þ

Here ξ ¼ ξcl;D,

ξ2 ¼ −
τ2v2F
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where de ¼ 1, 2, 3 is the effective dimension of the electron
motion.4 Equation (4) was obtained for the first time by
Gor’kov (1960) as a result of a microscopic calculation. It is
important to note that it differs only by a numerical coefficient
from the BCS expression for the coherence length at zero
temperature ξBCS. We see that the fluctuating order parameter
ΔðflÞðr; tÞ varies close to Tc0 on the relatively large scale
ξGLðϵÞ ≫ ξBCS; see Eq. (3).
It is important to note that FCPs, strictly speaking, cannot

be considered as Landau quasiparticles. Indeed, while the
energy of a well-defined quasiparticle has to be much larger
than its inverse lifetime, the binding energy ΔEs for a FCP
turns out to be of the same order ℏ=τGL. Yet, close to Tc0, they
still can be treated as classical objects, but in the sense of
Rayleigh-Jeans waves rather than Boltzmann particles. This
means that in the general Bose-Einstein distribution function
only small energies εðqÞ ≪ kBT (q is the momentum of the
center of mass of FCP) are involved, and the exponential
function in the Bose-Einstein distribution can be expanded:

nðqÞ ¼ 1

exp½εðqÞ=kBT&−1
→

kBT
εðqÞ

: ð5Þ

For this reason, the more appropriate tool to study fluctuation
phenomena is the GL equation written for classical fields
rather than the Boltzmann transport equation.
Nevertheless, the treatment of FCPs as particles often turns

out to be useful. In this approach, their energy consists of the
“binding energy” and the kinetic energy of the center of mass
motion:

εðqÞ ¼ kBðT −Tc0Þ þ
q2

2m ' ; ð6Þ

where m ' is the effective mass of FCP.
The concentration of FCPs can be estimated by integration

of the distribution function (5) over the momenta in the range
jqj ≤ℏξ−1 [corresponding to the conditions εðqÞ ≪ kBT]:

NðdÞ ¼
Z

jqj≲ℏ=ξ
nðqÞ ddq

ð2πℏÞd

¼ m 'kBTc0

2πℏ2
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>>:

2πξGLðϵÞ d ¼ 1;

ln ð1=ϵÞ d ¼ 2;

const−ξ−1GLðϵÞ d ¼ 3.

ð7Þ

The physical three-dimensional concentration for wires and
films can be related to Eq. (7) by ~Nð3Þ ¼ NðdÞsd−3.

5 It turns out
to be divergent when approaching the transition in the 1D and
2D cases. Recall that these results were obtained in the long-
wavelength approximation (i.e., not too far from the transi-
tion) and do not account for the interaction of fluctuations
(i.e., not too close to Tc0), which means Gi≲ ϵ ≪ 1.

2. Manifestations of SF close to Tc0

Using the estimates for the lifetime, Eq. (1), coherence
length, Eqs. (3) and (4), and concentration of FCPs, Eq. (7),
we can evaluate their contribution to different physical
characteristics of a metal close to (but above) the transition
to the superconducting state. For example, we can quantify the
smearing of the jump of the heat capacity at the transition. We
start with the evaluation of the energy density of FCPs in the
Rayleigh-Jeans approximation (5):

EðFCPÞ

V
¼
Z

εðqÞnðqÞ ddq
ð2πℏÞd

≈kBTc0

Z

jqj≲ℏ=ξ
ddq

ð2πℏÞd
∼
kBTc0

ξd
:

3Strictly speaking, in the majority of expressions below τ has the
meaning of the electron transport scattering time τtr . Nevertheless,
as is well known, in the case of isotropic scattering these values
coincide; so for simplicity we use hereafter the symbol τ.

4With the introduction of de we stress the difference between the
effective dimensionality for FCPs d and electron motion. When we
discuss a 2D superconductor, we mean a superconducting film of
thickness s ≪ ξ, or a strongly layered material with the interlayer
distance larger than the perpendicular coherence length. This con-
dition is less restrictive in the GL region, where the requirement
s ≪ ξGLðϵÞ is sufficient for two-dimensional FCP motion. Regarding
the effective dimensionality of the electron motion de, it is deter-
mined by the specifics of its spectrum or confined electron diffusion
due to sample geometry.

5We define the FCP concentration in d-dimensional space. This
means that it determines the number of pairs per volume in the 3D
case, the number of pairs per unit square in the 2D case, and the
number of pairs per unit length in 1D. Since both wires and films are
actual objects in three-dimensional space, we can approximate the 3D
concentration of FCPs ~Nð3Þ by ~Nð3Þ ¼ Nð1Þ=s2 for wires, where s2 is

the wire cross section and ~Nð3Þ ¼ Nð2Þ=s for films, where s is the
thickness of the film, respectively.
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and ξDðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
DτGL

p
∼ vF

ffiffiffiffiffiffiffiffiffi
ττGL

p
.3 In the case of a clean

superconductor, where kBTτ ≫ ℏ, impurity scattering no
longer affects the electron-electron correlations. In this case,
the characteristic time of the ballistic electron motion turns out
to be less than the electron-impurity scattering time τ and is
determined by the uncertainty principle, being ∼ℏ=kBT. It is
this latter time that has to be used to estimate the effective
FCP size ξclðTÞ ∼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏτGL=kBT

p
. In both cases, the coher-

ence length grows as ϵ−1=2 when approaching the critical
temperature, where

ϵ≡ ln
T
Tc0

≈
T −Tc0

Tc0
≪ 1 ð2Þ

is the reduced temperature. In the GL region (close to, but
beyond the immediate vicinity of Tc0, i.e., Gi≲ ϵ ≪ 1) we
define the coherence length as

ξGLðϵÞ ¼ ξ=
ffiffiffi
ϵ

p
: ð3Þ

Here ξ ¼ ξcl;D,

ξ2 ¼ −
τ2v2F
de

"
ψ

#
1

2
þ 1

4πTτ

$
−ψ

#
1

2

$
−

1

4πTτ
ψ 0
#
1

2

$%
; ð4Þ

where de ¼ 1, 2, 3 is the effective dimension of the electron
motion.4 Equation (4) was obtained for the first time by
Gor’kov (1960) as a result of a microscopic calculation. It is
important to note that it differs only by a numerical coefficient
from the BCS expression for the coherence length at zero
temperature ξBCS. We see that the fluctuating order parameter
ΔðflÞðr; tÞ varies close to Tc0 on the relatively large scale
ξGLðϵÞ ≫ ξBCS; see Eq. (3).
It is important to note that FCPs, strictly speaking, cannot

be considered as Landau quasiparticles. Indeed, while the
energy of a well-defined quasiparticle has to be much larger
than its inverse lifetime, the binding energy ΔEs for a FCP
turns out to be of the same order ℏ=τGL. Yet, close to Tc0, they
still can be treated as classical objects, but in the sense of
Rayleigh-Jeans waves rather than Boltzmann particles. This
means that in the general Bose-Einstein distribution function
only small energies εðqÞ ≪ kBT (q is the momentum of the
center of mass of FCP) are involved, and the exponential
function in the Bose-Einstein distribution can be expanded:

nðqÞ ¼ 1

exp½εðqÞ=kBT&−1
→

kBT
εðqÞ

: ð5Þ

For this reason, the more appropriate tool to study fluctuation
phenomena is the GL equation written for classical fields
rather than the Boltzmann transport equation.
Nevertheless, the treatment of FCPs as particles often turns

out to be useful. In this approach, their energy consists of the
“binding energy” and the kinetic energy of the center of mass
motion:

εðqÞ ¼ kBðT −Tc0Þ þ
q2

2m ' ; ð6Þ

where m ' is the effective mass of FCP.
The concentration of FCPs can be estimated by integration

of the distribution function (5) over the momenta in the range
jqj ≤ℏξ−1 [corresponding to the conditions εðqÞ ≪ kBT]:

NðdÞ ¼
Z

jqj≲ℏ=ξ
nðqÞ ddq

ð2πℏÞd

¼ m 'kBTc0

2πℏ2

8
>><

>>:

2πξGLðϵÞ d ¼ 1;

ln ð1=ϵÞ d ¼ 2;

const−ξ−1GLðϵÞ d ¼ 3.

ð7Þ

The physical three-dimensional concentration for wires and
films can be related to Eq. (7) by ~Nð3Þ ¼ NðdÞsd−3.

5 It turns out
to be divergent when approaching the transition in the 1D and
2D cases. Recall that these results were obtained in the long-
wavelength approximation (i.e., not too far from the transi-
tion) and do not account for the interaction of fluctuations
(i.e., not too close to Tc0), which means Gi≲ ϵ ≪ 1.

2. Manifestations of SF close to Tc0

Using the estimates for the lifetime, Eq. (1), coherence
length, Eqs. (3) and (4), and concentration of FCPs, Eq. (7),
we can evaluate their contribution to different physical
characteristics of a metal close to (but above) the transition
to the superconducting state. For example, we can quantify the
smearing of the jump of the heat capacity at the transition. We
start with the evaluation of the energy density of FCPs in the
Rayleigh-Jeans approximation (5):

EðFCPÞ

V
¼
Z

εðqÞnðqÞ ddq
ð2πℏÞd

≈kBTc0

Z

jqj≲ℏ=ξ
ddq

ð2πℏÞd
∼
kBTc0

ξd
:

3Strictly speaking, in the majority of expressions below τ has the
meaning of the electron transport scattering time τtr . Nevertheless,
as is well known, in the case of isotropic scattering these values
coincide; so for simplicity we use hereafter the symbol τ.

4With the introduction of de we stress the difference between the
effective dimensionality for FCPs d and electron motion. When we
discuss a 2D superconductor, we mean a superconducting film of
thickness s ≪ ξ, or a strongly layered material with the interlayer
distance larger than the perpendicular coherence length. This con-
dition is less restrictive in the GL region, where the requirement
s ≪ ξGLðϵÞ is sufficient for two-dimensional FCP motion. Regarding
the effective dimensionality of the electron motion de, it is deter-
mined by the specifics of its spectrum or confined electron diffusion
due to sample geometry.

5We define the FCP concentration in d-dimensional space. This
means that it determines the number of pairs per volume in the 3D
case, the number of pairs per unit square in the 2D case, and the
number of pairs per unit length in 1D. Since both wires and films are
actual objects in three-dimensional space, we can approximate the 3D
concentration of FCPs ~Nð3Þ by ~Nð3Þ ¼ Nð1Þ=s2 for wires, where s2 is

the wire cross section and ~Nð3Þ ¼ Nð2Þ=s for films, where s is the
thickness of the film, respectively.
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longer affects the electron-electron correlations. In this case,
the characteristic time of the ballistic electron motion turns out
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determined by the uncertainty principle, being ∼ℏ=kBT. It is
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where de ¼ 1, 2, 3 is the effective dimension of the electron
motion.4 Equation (4) was obtained for the first time by
Gor’kov (1960) as a result of a microscopic calculation. It is
important to note that it differs only by a numerical coefficient
from the BCS expression for the coherence length at zero
temperature ξBCS. We see that the fluctuating order parameter
ΔðflÞðr; tÞ varies close to Tc0 on the relatively large scale
ξGLðϵÞ ≫ ξBCS; see Eq. (3).
It is important to note that FCPs, strictly speaking, cannot

be considered as Landau quasiparticles. Indeed, while the
energy of a well-defined quasiparticle has to be much larger
than its inverse lifetime, the binding energy ΔEs for a FCP
turns out to be of the same order ℏ=τGL. Yet, close to Tc0, they
still can be treated as classical objects, but in the sense of
Rayleigh-Jeans waves rather than Boltzmann particles. This
means that in the general Bose-Einstein distribution function
only small energies εðqÞ ≪ kBT (q is the momentum of the
center of mass of FCP) are involved, and the exponential
function in the Bose-Einstein distribution can be expanded:

nðqÞ ¼ 1

exp½εðqÞ=kBT&−1
→

kBT
εðqÞ

: ð5Þ

For this reason, the more appropriate tool to study fluctuation
phenomena is the GL equation written for classical fields
rather than the Boltzmann transport equation.
Nevertheless, the treatment of FCPs as particles often turns

out to be useful. In this approach, their energy consists of the
“binding energy” and the kinetic energy of the center of mass
motion:

εðqÞ ¼ kBðT −Tc0Þ þ
q2

2m ' ; ð6Þ

where m ' is the effective mass of FCP.
The concentration of FCPs can be estimated by integration

of the distribution function (5) over the momenta in the range
jqj ≤ℏξ−1 [corresponding to the conditions εðqÞ ≪ kBT]:

NðdÞ ¼
Z

jqj≲ℏ=ξ
nðqÞ ddq

ð2πℏÞd

¼ m 'kBTc0
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const−ξ−1GLðϵÞ d ¼ 3.
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The physical three-dimensional concentration for wires and
films can be related to Eq. (7) by ~Nð3Þ ¼ NðdÞsd−3.

5 It turns out
to be divergent when approaching the transition in the 1D and
2D cases. Recall that these results were obtained in the long-
wavelength approximation (i.e., not too far from the transi-
tion) and do not account for the interaction of fluctuations
(i.e., not too close to Tc0), which means Gi≲ ϵ ≪ 1.

2. Manifestations of SF close to Tc0

Using the estimates for the lifetime, Eq. (1), coherence
length, Eqs. (3) and (4), and concentration of FCPs, Eq. (7),
we can evaluate their contribution to different physical
characteristics of a metal close to (but above) the transition
to the superconducting state. For example, we can quantify the
smearing of the jump of the heat capacity at the transition. We
start with the evaluation of the energy density of FCPs in the
Rayleigh-Jeans approximation (5):

EðFCPÞ

V
¼
Z

εðqÞnðqÞ ddq
ð2πℏÞd

≈kBTc0

Z

jqj≲ℏ=ξ
ddq

ð2πℏÞd
∼
kBTc0

ξd
:

3Strictly speaking, in the majority of expressions below τ has the
meaning of the electron transport scattering time τtr . Nevertheless,
as is well known, in the case of isotropic scattering these values
coincide; so for simplicity we use hereafter the symbol τ.

4With the introduction of de we stress the difference between the
effective dimensionality for FCPs d and electron motion. When we
discuss a 2D superconductor, we mean a superconducting film of
thickness s ≪ ξ, or a strongly layered material with the interlayer
distance larger than the perpendicular coherence length. This con-
dition is less restrictive in the GL region, where the requirement
s ≪ ξGLðϵÞ is sufficient for two-dimensional FCP motion. Regarding
the effective dimensionality of the electron motion de, it is deter-
mined by the specifics of its spectrum or confined electron diffusion
due to sample geometry.

5We define the FCP concentration in d-dimensional space. This
means that it determines the number of pairs per volume in the 3D
case, the number of pairs per unit square in the 2D case, and the
number of pairs per unit length in 1D. Since both wires and films are
actual objects in three-dimensional space, we can approximate the 3D
concentration of FCPs ~Nð3Þ by ~Nð3Þ ¼ Nð1Þ=s2 for wires, where s2 is

the wire cross section and ~Nð3Þ ¼ Nð2Þ=s for films, where s is the
thickness of the film, respectively.

A. A. Varlamov, A. Galda, and A. Glatz: Fluctuation spectroscopy: From Rayleigh-Jeans …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015009-6

Rayleigh-Jeans waves rather 
than Boltzmann particles
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the characteristic time of the ballistic electron motion turns out
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where de ¼ 1, 2, 3 is the effective dimension of the electron
motion.4 Equation (4) was obtained for the first time by
Gor’kov (1960) as a result of a microscopic calculation. It is
important to note that it differs only by a numerical coefficient
from the BCS expression for the coherence length at zero
temperature ξBCS. We see that the fluctuating order parameter
ΔðflÞðr; tÞ varies close to Tc0 on the relatively large scale
ξGLðϵÞ ≫ ξBCS; see Eq. (3).
It is important to note that FCPs, strictly speaking, cannot

be considered as Landau quasiparticles. Indeed, while the
energy of a well-defined quasiparticle has to be much larger
than its inverse lifetime, the binding energy ΔEs for a FCP
turns out to be of the same order ℏ=τGL. Yet, close to Tc0, they
still can be treated as classical objects, but in the sense of
Rayleigh-Jeans waves rather than Boltzmann particles. This
means that in the general Bose-Einstein distribution function
only small energies εðqÞ ≪ kBT (q is the momentum of the
center of mass of FCP) are involved, and the exponential
function in the Bose-Einstein distribution can be expanded:

nðqÞ ¼ 1

exp½εðqÞ=kBT&−1
→

kBT
εðqÞ

: ð5Þ

For this reason, the more appropriate tool to study fluctuation
phenomena is the GL equation written for classical fields
rather than the Boltzmann transport equation.
Nevertheless, the treatment of FCPs as particles often turns

out to be useful. In this approach, their energy consists of the
“binding energy” and the kinetic energy of the center of mass
motion:

εðqÞ ¼ kBðT −Tc0Þ þ
q2

2m ' ; ð6Þ

where m ' is the effective mass of FCP.
The concentration of FCPs can be estimated by integration

of the distribution function (5) over the momenta in the range
jqj ≤ℏξ−1 [corresponding to the conditions εðqÞ ≪ kBT]:

NðdÞ ¼
Z

jqj≲ℏ=ξ
nðqÞ ddq

ð2πℏÞd

¼ m 'kBTc0
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The physical three-dimensional concentration for wires and
films can be related to Eq. (7) by ~Nð3Þ ¼ NðdÞsd−3.

5 It turns out
to be divergent when approaching the transition in the 1D and
2D cases. Recall that these results were obtained in the long-
wavelength approximation (i.e., not too far from the transi-
tion) and do not account for the interaction of fluctuations
(i.e., not too close to Tc0), which means Gi≲ ϵ ≪ 1.

2. Manifestations of SF close to Tc0

Using the estimates for the lifetime, Eq. (1), coherence
length, Eqs. (3) and (4), and concentration of FCPs, Eq. (7),
we can evaluate their contribution to different physical
characteristics of a metal close to (but above) the transition
to the superconducting state. For example, we can quantify the
smearing of the jump of the heat capacity at the transition. We
start with the evaluation of the energy density of FCPs in the
Rayleigh-Jeans approximation (5):

EðFCPÞ

V
¼
Z

εðqÞnðqÞ ddq
ð2πℏÞd

≈kBTc0

Z

jqj≲ℏ=ξ
ddq

ð2πℏÞd
∼
kBTc0

ξd
:

3Strictly speaking, in the majority of expressions below τ has the
meaning of the electron transport scattering time τtr . Nevertheless,
as is well known, in the case of isotropic scattering these values
coincide; so for simplicity we use hereafter the symbol τ.

4With the introduction of de we stress the difference between the
effective dimensionality for FCPs d and electron motion. When we
discuss a 2D superconductor, we mean a superconducting film of
thickness s ≪ ξ, or a strongly layered material with the interlayer
distance larger than the perpendicular coherence length. This con-
dition is less restrictive in the GL region, where the requirement
s ≪ ξGLðϵÞ is sufficient for two-dimensional FCP motion. Regarding
the effective dimensionality of the electron motion de, it is deter-
mined by the specifics of its spectrum or confined electron diffusion
due to sample geometry.

5We define the FCP concentration in d-dimensional space. This
means that it determines the number of pairs per volume in the 3D
case, the number of pairs per unit square in the 2D case, and the
number of pairs per unit length in 1D. Since both wires and films are
actual objects in three-dimensional space, we can approximate the 3D
concentration of FCPs ~Nð3Þ by ~Nð3Þ ¼ Nð1Þ=s2 for wires, where s2 is

the wire cross section and ~Nð3Þ ¼ Nð2Þ=s for films, where s is the
thickness of the film, respectively.

A. A. Varlamov, A. Galda, and A. Glatz: Fluctuation spectroscopy: From Rayleigh-Jeans …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015009-6

Formation of FCPs depletes quasiparticle subsystem by 2N(d) à correction 

to heat capacity:

One can see that in this approximation this contribution does
not depend on ϵ and, hence, does not contribute to the heat
capacity. At this point we note that the formation of FCPs is
accompanied by a depletion of the quasiparticle subsystem,
i.e., the concentration of the latter is reduced by 2NðdÞ; see
Eq. (7). Therefore, the total energy density of the system
changes by EðflÞ ∼ −2kBTNðdÞ with related correction to heat
capacity

CðflÞ
V ¼

!
dEðflÞ

dT

"

V
∼ −2kB

dNðdÞðϵÞ
dϵ

∼
kB
ξd

ϵd=2−2:

Similarly, a qualitative understanding of the increase in the
diamagnetic susceptibility above the critical temperature can
be obtained from the well-known Langevin expression for
the atomic susceptibility (Kittel, 2012). Identifying the con-
centration of FCPs with Eq. (7), their mass with m $, their
charge with 2e, and the average square rotation radius by
ξ2GLðϵÞ, one finds

ΔχðflÞ ¼ −
2e2

3c2
~Nð3Þ

m $ ξ2GLðϵÞ → −
e2

c2
kBTc0

πℏ2s3−d
ξ4−dGL ðϵÞ: ð8Þ

Equation (8) is valid for d ¼ 2, 3 (with logarithmic accuracy
in d ¼ 2).
Analogously, one can evaluate the direct contribution of

FCPs to the conductivity (Aslamazov-Larkin paraconductiv-
ity). It may be done by using the Drude formula. It is
important to remember that impurities do not present obstacles
for the FCP motion in an applied electric field. Indeed, the
diffusive character of electron motion was already taken into
account when we estimated the size of FCPs. Its square ξ2

determines the inverse effective mass m $, i.e., its inertia. The
motion of FCPs in an electric field has ballistic character and
applying the Drude formula, one should use for the lifetime
τGL rather than the elastic scattering time τ, 2e for the carrier
charge, m $ for its mass, and NðdÞðϵÞ for the concentration of
FCPs. Using Eqs. (1) and (7) one finds

σðALÞxx ¼
4 ~Nð3ÞðϵÞe2τGLðϵÞ

m $ ∼
e2

ℏs3−d
ξ2−dϵd=2−2: ð9Þ

This contribution to conductivity of the normal phase of a
superconductor corresponds to the opening of a new channel
of charge transfer above Tc0 due to the formation of FCPs.
Besides the direct FCP effect on the properties of a

superconductor in its normal phase, indirect manifestation
of SFs can be found due to their influence on the quasi-
particle subsystem. These have a purely quantum nature
and, in contrast to paraconductivity, require microscopic
consideration.
The first of them is the Maki-Thompson (MT) contribution

(Maki, 1968; Thompson, 1970), which is relevant for trans-
port coefficients of dirty SCs near Tc0, where its singular
temperature dependence is similar to that of paraconductivity.
The physical origin of the MT contribution is a result of the
fact that, in a system with impurities, an electron can move
along a self-intersecting trajectory during the process of
diffusion and return to its origin after some time. The

interference of the wave functions of two electrons, moving
along such trajectories in the opposite directions, leads to the
decrease of the Drude conductivity [this is the phenomenon of
weak localization (Abrikosov, 1988)]. This quantum effect
is nothing more than the precursor of the metal-insulator
transition.
One can imagine that along such a trajectory, two electrons

with opposite spins move simultaneously with opposite
momenta, interacting with each other (see Fig. 4). They
can form some specific FCPs. Here one should note that
the amplitude of the BCS interaction of electrons drastically
increases when T → TBCS

c (Bardeen, Cooper, and Schrieffer,
1957a, 1957b):

geff ¼
g

1 − ρeg lnðωD=2πTÞ
¼ 1

lnðT=TBCS
c Þ

→
1

ϵ
;

where ωD is the Debye frequency, g is the electron-electron
interaction constant, and ρe is the one-electron density of
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FIG. 3. The temperature dependence of the averaged mean
square value of the superconducting order parameter (solid blue
line). The dashed green line corresponds to the mean-field BCS
picture (hjΔBCSðrÞji and becomes zero at the point TBCS

c ). The
thick red line describes the same hjΔðrÞji dependence, but with
the fluctuation renormalized transition temperature Tc0, which is
lower than the mean-field value TBCS

c (Larkin and Varlamov,
2009). A finite concentration of fluctuating Cooper pairs, without
long-range spatial coherence, exists in the normal phase of a
superconductor for any temperature above Tc0. Their lifetime
increases approaching the transition line from the normal state.

FIG. 4. Anomalous MT Cooper pairing. One electron moves
clockwise with momentum p, scattering at impurity potentials
(green Gaussian peaks), while interacting with another electron
with momentum −p on almost the same path (counterclockwise).
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Direct contribution to conductivity (Azlamasov-Larkin paraconductivity):

One can see that in this approximation this contribution does
not depend on ϵ and, hence, does not contribute to the heat
capacity. At this point we note that the formation of FCPs is
accompanied by a depletion of the quasiparticle subsystem,
i.e., the concentration of the latter is reduced by 2NðdÞ; see
Eq. (7). Therefore, the total energy density of the system
changes by EðflÞ ∼ −2kBTNðdÞ with related correction to heat
capacity
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Similarly, a qualitative understanding of the increase in the
diamagnetic susceptibility above the critical temperature can
be obtained from the well-known Langevin expression for
the atomic susceptibility (Kittel, 2012). Identifying the con-
centration of FCPs with Eq. (7), their mass with m $, their
charge with 2e, and the average square rotation radius by
ξ2GLðϵÞ, one finds
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Equation (8) is valid for d ¼ 2, 3 (with logarithmic accuracy
in d ¼ 2).
Analogously, one can evaluate the direct contribution of

FCPs to the conductivity (Aslamazov-Larkin paraconductiv-
ity). It may be done by using the Drude formula. It is
important to remember that impurities do not present obstacles
for the FCP motion in an applied electric field. Indeed, the
diffusive character of electron motion was already taken into
account when we estimated the size of FCPs. Its square ξ2

determines the inverse effective mass m $, i.e., its inertia. The
motion of FCPs in an electric field has ballistic character and
applying the Drude formula, one should use for the lifetime
τGL rather than the elastic scattering time τ, 2e for the carrier
charge, m $ for its mass, and NðdÞðϵÞ for the concentration of
FCPs. Using Eqs. (1) and (7) one finds
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This contribution to conductivity of the normal phase of a
superconductor corresponds to the opening of a new channel
of charge transfer above Tc0 due to the formation of FCPs.
Besides the direct FCP effect on the properties of a

superconductor in its normal phase, indirect manifestation
of SFs can be found due to their influence on the quasi-
particle subsystem. These have a purely quantum nature
and, in contrast to paraconductivity, require microscopic
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The first of them is the Maki-Thompson (MT) contribution

(Maki, 1968; Thompson, 1970), which is relevant for trans-
port coefficients of dirty SCs near Tc0, where its singular
temperature dependence is similar to that of paraconductivity.
The physical origin of the MT contribution is a result of the
fact that, in a system with impurities, an electron can move
along a self-intersecting trajectory during the process of
diffusion and return to its origin after some time. The

interference of the wave functions of two electrons, moving
along such trajectories in the opposite directions, leads to the
decrease of the Drude conductivity [this is the phenomenon of
weak localization (Abrikosov, 1988)]. This quantum effect
is nothing more than the precursor of the metal-insulator
transition.
One can imagine that along such a trajectory, two electrons

with opposite spins move simultaneously with opposite
momenta, interacting with each other (see Fig. 4). They
can form some specific FCPs. Here one should note that
the amplitude of the BCS interaction of electrons drastically
increases when T → TBCS

c (Bardeen, Cooper, and Schrieffer,
1957a, 1957b):
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FIG. 3. The temperature dependence of the averaged mean
square value of the superconducting order parameter (solid blue
line). The dashed green line corresponds to the mean-field BCS
picture (hjΔBCSðrÞji and becomes zero at the point TBCS

c ). The
thick red line describes the same hjΔðrÞji dependence, but with
the fluctuation renormalized transition temperature Tc0, which is
lower than the mean-field value TBCS

c (Larkin and Varlamov,
2009). A finite concentration of fluctuating Cooper pairs, without
long-range spatial coherence, exists in the normal phase of a
superconductor for any temperature above Tc0. Their lifetime
increases approaching the transition line from the normal state.

FIG. 4. Anomalous MT Cooper pairing. One electron moves
clockwise with momentum p, scattering at impurity potentials
(green Gaussian peaks), while interacting with another electron
with momentum −p on almost the same path (counterclockwise).
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INDIRECT MANIFESTATIONS OF SFS
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Besides the direct AL contribution there are indirect, purely quantum manifestations:
• Maki-Thompson: relevant for transport coefficients near Tc0 in dirty SCs

Electron moves along self-intersecting diffusive trajectory 
and returns to origin after some time à decrease of 
Drude conductivity [weak localization]
Minimal time: tGL
Maximum time: tj (phase-breaking time)

In 2D:

states. What is the reason for this increase? One possible
mechanism is electron-electron scattering accompanied by the
formation of virtual Cooper pairs. The probability of such
induced pair irradiation (remember that Cooper pairs are Bose
particles) is proportional to their number in the final state, i.e.,
nðpÞ [see Eq. (5)]. For small momenta nðpÞ ∼ 1=ϵ.
During the diffusive motion of an electron, the volume it

explores grows as ðDtÞd=2. During a time dt the electron
covers the elementary volume λd−1F vFdt. Hence the probability
to return to the initial point is (Abrikosov, 1988)

w ∼
Z

tmax

tmin

λd−1F

ðDtÞd=2
vFdt:

Since we are interested in fluctuation Cooper pairing
of electrons, the corresponding minimal time on such trajec-
tories is τGL. The upper limit of the integral is governed
by the phase-breaking time τφ since for larger time intervals
the phase coherence, which is necessary for the pair for-
mation, is broken. As a result, the relative correction to
conductivity due to such processes is equal to the product of
the self-intersecting trajectory probability and the effective
interaction constant σðMTÞ

xx =σ ¼ wgeff . In the 2D case,

σðMT;anÞ
ð2Þ ∼

e2

8ϵℏ
ln

τφ
τGL

:

One can see that the MT contribution is extremely sensitive to
the electron phase-breaking processes and to the type of
symmetry of orbital pairing; this is why it can often be
suppressed.
However, the Aslamazov-Larkin (AL) and MT contribu-

tions, which are positive and singular in ϵ close to Tc0, do not
capture the full picture of fluctuation effects on conductivity.
The involvement of quasiparticles in the fluctuation pairing
results in the depletion of their density of states at the Fermi
level, i.e., in the opening of a pseudogap in the one-electron
spectrum and the consequent decrease of the one-particle
Drude-like conductivity. This indirect effect of FCP formation
is usually referred to as the density of states (DOS) contri-
bution and can be estimated using the Drude formula with
doubled concentration of FCPs compared to the concentration
of electrons missing at the Fermi level:

σðDOSÞxxð2Þ ∼ −
2Nð2Þe2τ

m e
∼ −

e2

ℏ
ln
1

ϵ
: ð10Þ

It is seen that the DOS contribution has an opposite sign
compared to the AL and MT contributions. In the close
vicinity of Tc0 it does not compete with them, since it has a
weaker dependence on temperature (Larkin and Varlamov,
2009). Let us point out the different roles FCPs play in the
cases of heat capacity and conductivity: In the former their
formation is “cheap” in terms of energy, and the main change
in heat capacity of the system is related to the removal of
quasiparticles. In the case of conductivity, the opening of a
new channel for the charge transfer due to the formation
of FCPs dominates over the changes in the one-particle
conductivity.

Finally, a renormalization of the one-electron diffusion
coefficient (DCR) in the presence of fluctuation pairing
happens. Close to Tc0, this contribution is not singular in ϵ:

σðDCRÞxx ∼
e2

ℏ
ln ln

1

Tc0τ
þ OðϵÞ:

For this reason it was ignored until recently. A few years ago
Serbyn et al. (2009) and Glatz, Varlamov, and Vinokur
(2011a) showed that the renormalization of the one-electron
diffusion coefficient becomes of primary importance rela-
tively far from Tc0 and at very low temperatures. Because
of the term σðDCRÞxx , the sign of the overall contribution of
fluctuations to the conductivity σðflÞxxð2Þ is changed in a wide
region of the phase diagram, especially close to T ¼ 0, in
the region of quantum fluctuations (Glatz, Varlamov, and
Vinokur, 2011a); see Fig. 5, where regions with dominating
fluctuation contributions to magnetoconductivity are shown.
Special attention has been paid to the giant Nernst-

Ettingshausen effect observed in the pseudogap state of
underdoped phases of HTSs (Xu et al., 2000). After the
observation in HTSs, a giant Nernst-Ettingshausen signal (3
orders of magnitude larger than the value of the corresponding
coefficient in typical metals) was detected in a wide range of
temperatures in the conventional, disordered superconductor
NbxSi1−x (Pourret, Behnia et al., 2006). These groundbreak-
ing experiments have led to experimental and theoretical
activities in the last decade (Ussishkin, Sondhi, and Huse,
2002; Michaeli and Finkel’stein, 2009a; Serbyn et al., 2009;
Levchenko, Norman, and Varlamov, 2011; Chang et al., 2012;
Kavokin and Varlamov, 2015; Behnia and Aubin, 2016).
The origin of the giant contribution of fluctuations to

the thermomagnetic signal is closely related to giant fluctua-
tions in the diamagnetic susceptibility occurring in the normal
phase of superconductors. It was noticed half a century
ago (Obraztsov, 1964) that noncompensated magnetization
currents, which appear in nonhomogeneously heated samples,
can play a crucial role for the correct calculation of the

FIG. 5. Contours of constant fluctuation conductivity [σðflÞxx ðt; hÞ
is shown in units of e2=ℏ]. The dominant fluctuation contribu-
tions are indicated by the bold italic labels (AL for Aslamazov-
Larkin, MT for Maki-Thompson, DOS for density of states,
and DCR for diffusion coefficient renormalization). The dashed
line separates the domain of quantum fluctuations (QF) (the
dark area of σðflÞxx > 0) and thermal fluctuations (TF). From Glatz,
Varlamov, and Vinokur, 2011a.
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• DOS contribution: due to depletion of qp density of states à opening 
of pseudogap in one-electron spectrum, leading to decrease of 
decrease of Drude-like conductivity

• Renormalization of the one-electron diffusion coefficient (DCR)

states. What is the reason for this increase? One possible
mechanism is electron-electron scattering accompanied by the
formation of virtual Cooper pairs. The probability of such
induced pair irradiation (remember that Cooper pairs are Bose
particles) is proportional to their number in the final state, i.e.,
nðpÞ [see Eq. (5)]. For small momenta nðpÞ ∼ 1=ϵ.
During the diffusive motion of an electron, the volume it

explores grows as ðDtÞd=2. During a time dt the electron
covers the elementary volume λd−1F vFdt. Hence the probability
to return to the initial point is (Abrikosov, 1988)

w ∼
Z

tmax

tmin

λd−1F

ðDtÞd=2
vFdt:

Since we are interested in fluctuation Cooper pairing
of electrons, the corresponding minimal time on such trajec-
tories is τGL. The upper limit of the integral is governed
by the phase-breaking time τφ since for larger time intervals
the phase coherence, which is necessary for the pair for-
mation, is broken. As a result, the relative correction to
conductivity due to such processes is equal to the product of
the self-intersecting trajectory probability and the effective
interaction constant σðMTÞ

xx =σ ¼ wgeff . In the 2D case,

σðMT;anÞ
ð2Þ ∼

e2

8ϵℏ
ln

τφ
τGL

:

One can see that the MT contribution is extremely sensitive to
the electron phase-breaking processes and to the type of
symmetry of orbital pairing; this is why it can often be
suppressed.
However, the Aslamazov-Larkin (AL) and MT contribu-

tions, which are positive and singular in ϵ close to Tc0, do not
capture the full picture of fluctuation effects on conductivity.
The involvement of quasiparticles in the fluctuation pairing
results in the depletion of their density of states at the Fermi
level, i.e., in the opening of a pseudogap in the one-electron
spectrum and the consequent decrease of the one-particle
Drude-like conductivity. This indirect effect of FCP formation
is usually referred to as the density of states (DOS) contri-
bution and can be estimated using the Drude formula with
doubled concentration of FCPs compared to the concentration
of electrons missing at the Fermi level:

σðDOSÞxxð2Þ ∼ −
2Nð2Þe2τ

m e
∼ −

e2

ℏ
ln
1

ϵ
: ð10Þ

It is seen that the DOS contribution has an opposite sign
compared to the AL and MT contributions. In the close
vicinity of Tc0 it does not compete with them, since it has a
weaker dependence on temperature (Larkin and Varlamov,
2009). Let us point out the different roles FCPs play in the
cases of heat capacity and conductivity: In the former their
formation is “cheap” in terms of energy, and the main change
in heat capacity of the system is related to the removal of
quasiparticles. In the case of conductivity, the opening of a
new channel for the charge transfer due to the formation
of FCPs dominates over the changes in the one-particle
conductivity.

Finally, a renormalization of the one-electron diffusion
coefficient (DCR) in the presence of fluctuation pairing
happens. Close to Tc0, this contribution is not singular in ϵ:

σðDCRÞxx ∼
e2

ℏ
ln ln

1

Tc0τ
þ OðϵÞ:

For this reason it was ignored until recently. A few years ago
Serbyn et al. (2009) and Glatz, Varlamov, and Vinokur
(2011a) showed that the renormalization of the one-electron
diffusion coefficient becomes of primary importance rela-
tively far from Tc0 and at very low temperatures. Because
of the term σðDCRÞxx , the sign of the overall contribution of
fluctuations to the conductivity σðflÞxxð2Þ is changed in a wide
region of the phase diagram, especially close to T ¼ 0, in
the region of quantum fluctuations (Glatz, Varlamov, and
Vinokur, 2011a); see Fig. 5, where regions with dominating
fluctuation contributions to magnetoconductivity are shown.
Special attention has been paid to the giant Nernst-

Ettingshausen effect observed in the pseudogap state of
underdoped phases of HTSs (Xu et al., 2000). After the
observation in HTSs, a giant Nernst-Ettingshausen signal (3
orders of magnitude larger than the value of the corresponding
coefficient in typical metals) was detected in a wide range of
temperatures in the conventional, disordered superconductor
NbxSi1−x (Pourret, Behnia et al., 2006). These groundbreak-
ing experiments have led to experimental and theoretical
activities in the last decade (Ussishkin, Sondhi, and Huse,
2002; Michaeli and Finkel’stein, 2009a; Serbyn et al., 2009;
Levchenko, Norman, and Varlamov, 2011; Chang et al., 2012;
Kavokin and Varlamov, 2015; Behnia and Aubin, 2016).
The origin of the giant contribution of fluctuations to

the thermomagnetic signal is closely related to giant fluctua-
tions in the diamagnetic susceptibility occurring in the normal
phase of superconductors. It was noticed half a century
ago (Obraztsov, 1964) that noncompensated magnetization
currents, which appear in nonhomogeneously heated samples,
can play a crucial role for the correct calculation of the

FIG. 5. Contours of constant fluctuation conductivity [σðflÞxx ðt; hÞ
is shown in units of e2=ℏ]. The dominant fluctuation contribu-
tions are indicated by the bold italic labels (AL for Aslamazov-
Larkin, MT for Maki-Thompson, DOS for density of states,
and DCR for diffusion coefficient renormalization). The dashed
line separates the domain of quantum fluctuations (QF) (the
dark area of σðflÞxx > 0) and thermal fluctuations (TF). From Glatz,
Varlamov, and Vinokur, 2011a.
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Negative, but has weaker temperature dependence as AL & MT, since 
opening of new transport channel dominates

states. What is the reason for this increase? One possible
mechanism is electron-electron scattering accompanied by the
formation of virtual Cooper pairs. The probability of such
induced pair irradiation (remember that Cooper pairs are Bose
particles) is proportional to their number in the final state, i.e.,
nðpÞ [see Eq. (5)]. For small momenta nðpÞ ∼ 1=ϵ.
During the diffusive motion of an electron, the volume it

explores grows as ðDtÞd=2. During a time dt the electron
covers the elementary volume λd−1F vFdt. Hence the probability
to return to the initial point is (Abrikosov, 1988)

w ∼
Z

tmax

tmin

λd−1F

ðDtÞd=2
vFdt:

Since we are interested in fluctuation Cooper pairing
of electrons, the corresponding minimal time on such trajec-
tories is τGL. The upper limit of the integral is governed
by the phase-breaking time τφ since for larger time intervals
the phase coherence, which is necessary for the pair for-
mation, is broken. As a result, the relative correction to
conductivity due to such processes is equal to the product of
the self-intersecting trajectory probability and the effective
interaction constant σðMTÞ

xx =σ ¼ wgeff . In the 2D case,

σðMT;anÞ
ð2Þ ∼

e2

8ϵℏ
ln

τφ
τGL

:

One can see that the MT contribution is extremely sensitive to
the electron phase-breaking processes and to the type of
symmetry of orbital pairing; this is why it can often be
suppressed.
However, the Aslamazov-Larkin (AL) and MT contribu-

tions, which are positive and singular in ϵ close to Tc0, do not
capture the full picture of fluctuation effects on conductivity.
The involvement of quasiparticles in the fluctuation pairing
results in the depletion of their density of states at the Fermi
level, i.e., in the opening of a pseudogap in the one-electron
spectrum and the consequent decrease of the one-particle
Drude-like conductivity. This indirect effect of FCP formation
is usually referred to as the density of states (DOS) contri-
bution and can be estimated using the Drude formula with
doubled concentration of FCPs compared to the concentration
of electrons missing at the Fermi level:

σðDOSÞxxð2Þ ∼ −
2Nð2Þe2τ

m e
∼ −

e2

ℏ
ln
1

ϵ
: ð10Þ

It is seen that the DOS contribution has an opposite sign
compared to the AL and MT contributions. In the close
vicinity of Tc0 it does not compete with them, since it has a
weaker dependence on temperature (Larkin and Varlamov,
2009). Let us point out the different roles FCPs play in the
cases of heat capacity and conductivity: In the former their
formation is “cheap” in terms of energy, and the main change
in heat capacity of the system is related to the removal of
quasiparticles. In the case of conductivity, the opening of a
new channel for the charge transfer due to the formation
of FCPs dominates over the changes in the one-particle
conductivity.

Finally, a renormalization of the one-electron diffusion
coefficient (DCR) in the presence of fluctuation pairing
happens. Close to Tc0, this contribution is not singular in ϵ:

σðDCRÞxx ∼
e2

ℏ
ln ln

1

Tc0τ
þ OðϵÞ:

For this reason it was ignored until recently. A few years ago
Serbyn et al. (2009) and Glatz, Varlamov, and Vinokur
(2011a) showed that the renormalization of the one-electron
diffusion coefficient becomes of primary importance rela-
tively far from Tc0 and at very low temperatures. Because
of the term σðDCRÞxx , the sign of the overall contribution of
fluctuations to the conductivity σðflÞxxð2Þ is changed in a wide
region of the phase diagram, especially close to T ¼ 0, in
the region of quantum fluctuations (Glatz, Varlamov, and
Vinokur, 2011a); see Fig. 5, where regions with dominating
fluctuation contributions to magnetoconductivity are shown.
Special attention has been paid to the giant Nernst-

Ettingshausen effect observed in the pseudogap state of
underdoped phases of HTSs (Xu et al., 2000). After the
observation in HTSs, a giant Nernst-Ettingshausen signal (3
orders of magnitude larger than the value of the corresponding
coefficient in typical metals) was detected in a wide range of
temperatures in the conventional, disordered superconductor
NbxSi1−x (Pourret, Behnia et al., 2006). These groundbreak-
ing experiments have led to experimental and theoretical
activities in the last decade (Ussishkin, Sondhi, and Huse,
2002; Michaeli and Finkel’stein, 2009a; Serbyn et al., 2009;
Levchenko, Norman, and Varlamov, 2011; Chang et al., 2012;
Kavokin and Varlamov, 2015; Behnia and Aubin, 2016).
The origin of the giant contribution of fluctuations to

the thermomagnetic signal is closely related to giant fluctua-
tions in the diamagnetic susceptibility occurring in the normal
phase of superconductors. It was noticed half a century
ago (Obraztsov, 1964) that noncompensated magnetization
currents, which appear in nonhomogeneously heated samples,
can play a crucial role for the correct calculation of the

FIG. 5. Contours of constant fluctuation conductivity [σðflÞxx ðt; hÞ
is shown in units of e2=ℏ]. The dominant fluctuation contribu-
tions are indicated by the bold italic labels (AL for Aslamazov-
Larkin, MT for Maki-Thompson, DOS for density of states,
and DCR for diffusion coefficient renormalization). The dashed
line separates the domain of quantum fluctuations (QF) (the
dark area of σðflÞxx > 0) and thermal fluctuations (TF). From Glatz,
Varlamov, and Vinokur, 2011a.
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Not singular in e close to 
Tc0, was neglected till 
recently, but becomes 
important far from Tc0 at 
low temperatures



GIANT NERNST-ETTINGSHAUSEN EFFECT AND 
CHEMICAL POTENTIAL: QUALITATIVE PICTURE

11

• Important: Uncompensated magnetization currents in non-
homogeneously heated samples can play crucial role (Obraztsov, 1964).

• Thermodynamic part:

• For electron gas in normal metal with elastic electron scattering and 
µ(T)≈µ(0)-pk2T2/[12µ(0)] gives

• Now use AL result and N(d), but need to define chemical potential of 
FCPs - since usual (Bose) systems with variable particle numbers have 
zero µ

Nernst coefficient, in particular, validating the third law of
thermodynamics.
In the case of measurements of the Nernst-Ettingshausen

coefficient with a high resistive voltmeter, its thermodynamic
part (without the contribution of magnetization currents)
can be related to the temperature derivative of the chemical
potential (Serbyn et al., 2009; Varlamov and Kavokin, 2009)

νðthÞðdÞ ¼
σðdÞ

NðdÞce2

!
dμðdÞ
dT

"
: ð11Þ

For the electron gas in a normal metal μðTÞ ≈
μð0Þ − πk2BT

2=½12μð0Þ% and Eq. (11) leads to the known
Sondheimer result (Sondheimer, 1948) for the case of electron
scattering on elastic impurities:

νe ¼ −
πτ

6m ec

!
kBT
μð0Þ

"
;

proportional to the small electron-hole asymmetry factor.
Alternatively, one could also try to use Eq. (11) with the

values σðALÞxxðdÞðϵÞ and NðdÞðϵÞ presented earlier. However, one
needs to clarify what the chemical potential of fluctuating
Cooper pairs μðflÞ is since it is known that in thermal
equilibrium the chemical potential of a system with variable
number of particles is zero, such as the textbook examples of
photon or phonon gases. A naive application of this “theorem”
to the FCP “gas” leads to the wrong conclusion that μðflÞ ¼ 0.
However, one needs to be careful when dealing with Cooper
pairs, since they do not form an isolated system, but are rather
only one subsystem with the other being formed by fermionic
quasiparticles, which always have to be taken into account as
well. In a multicomponent system, the chemical potential of
the ith component μi is defined as the derivative of the free
energy with respect to the number of particles of the ith kind:

μi ¼ ð∂FðflÞ=∂NiÞV;T;Nj
; ð12Þ

provided the numbers of particles of all other species are fixed
Nj≠i ¼ const. In deriving the condition for thermodynamic
equilibrium, one should now take into account the fact that the
creation of a Cooper pair must be accompanied by removing
two quasiparticles from the fermionic subsystem. This leads
to μðflÞ − 2μðqpÞ ¼ 0, where μðqpÞ is the chemical potential of
quasiparticles. Therefore, the equilibrium condition does not
fix μðflÞ, μðqpÞ to zero, even though the numbers of Cooper
pairs and quasiparticles are not conserved. The simplest way
to estimate μðflÞ is to identify it with the binding energy of
FCPs ΔEs taken with the opposite sign μðflÞ ¼ Tc0 − T.
A more consistent consideration performed in the frame-

work of the Ginzburg-Landau fluctuation theory confirms this
estimate. The fluctuation part of free energy close to Tc0 takes
the form (Larkin and Varlamov, 2009)

FðflÞ
ð2Þ ðϵÞ ¼ −

Tc0

4πξ2
ϵ ln

1

ϵ
: ð13Þ

Similarly, the coefficient in Eq. (7) can be expressed in terms
of the correlation length, Eq. (4), due to the relation between

the coefficients of the Ginzburg-Landau functional (Larkin
and Varlamov, 2009):

NðflÞ
ð2Þ ðϵÞ ¼

1

4πξ2
ln
1

ϵ
: ð14Þ

Substituting these expressions into Eq. (12) one finds

μðflÞð2Þ ¼

0

@∂FðflÞ
ð2Þ

∂NðflÞ
ð2Þ

1

A

V;T

¼
∂FðflÞ

ð2Þ=∂ξ
∂NðflÞ

ð2Þ=∂ξ
¼ −Tc0ϵ: ð15Þ

Applying Eq. (15) to the subsystem of FCPs close to Tc0
and identifying its conductivity with Eq. (9), one finds the
Nernst-Ettingshausen coefficient generated by FCPs in weak
fields close to Tc0:

νðthÞ;ðflÞð2Þ ¼ −
σðALÞxxð2Þ

ð2eÞ2NðflÞ
ð2Þc

¼ −
τGLðϵÞ
m &c

∼ −
kBξ2

cℏ
1

ϵ
; ð16Þ

which dramatically exceeds Sondheimer’s value. These strong
fluctuation effects are a consequence of the extremely strong
dependence of the chemical potential of FCPs on temperature
and the relatively small concentration of FCPs.

B. Quantum fluctuations in superconductors above Hc2ð0Þ

1. Dynamic clustering of fluctuation Cooper pairs

The qualitative picture for SF in the quantum region,
at very low temperatures and close to Hc2ð0Þ, drastically
differs from the Ginzburg-Landau one, valid close to Tc0. As
we saw, the latter can be described in terms of a set of
long-wavelength fluctuationmodes [with λ ∼ ξGLðTÞ ≫ ξBCS]
of the order parameter, with characteristic lifetime
τGL ¼ πℏ=8kBðT − Tc0Þ. In the former, the order parameter
oscillates on much smaller scales, such that fluctuation modes
with wavelengths up to ξBCS and frequencies up toΔBCS=ℏ are
excited.
Indeed, one can visualize the situation in this region as

rotating FCPs, analogously to Cooper pairs within Abrikosov
vortices, just below Hc2ð0Þ. The period of Cooper pairs
rotating in an Abrikosov vortex in that region is τcp ∼
Ω−1

Hc2ð0Þ ∼ ΔBCS (ΩH ¼ 4DeH=c is the cyclotron frequency
of Cooper pairs) and the corresponding Larmor radius
is rL ∼ ξBCS.
The microscopic theory (Galitski and Larkin, 2001a; Glatz,

Varlamov, and Vinokur, 2011a) shows that close to Hc2ð0Þ at
zero temperature SFs are characterized by the lifetime

τQF ∼
Δ−1

BCS
~h

≫ τcp; ~h ¼ ½H −Hc2ð0Þ%=Hc2ð0Þ; ð17Þ

and by the spatial scale

ξQFð ~hÞ ∼
ξBCSffiffiffi

~h
p ≫ ξBCS: ð18Þ

One sees that the dependence of both these values on the
parameter governing the transition is completely symmetric to
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Nernst coefficient, in particular, validating the third law of
thermodynamics.
In the case of measurements of the Nernst-Ettingshausen

coefficient with a high resistive voltmeter, its thermodynamic
part (without the contribution of magnetization currents)
can be related to the temperature derivative of the chemical
potential (Serbyn et al., 2009; Varlamov and Kavokin, 2009)

νðthÞðdÞ ¼
σðdÞ

NðdÞce2

!
dμðdÞ
dT

"
: ð11Þ

For the electron gas in a normal metal μðTÞ ≈
μð0Þ − πk2BT

2=½12μð0Þ% and Eq. (11) leads to the known
Sondheimer result (Sondheimer, 1948) for the case of electron
scattering on elastic impurities:

νe ¼ −
πτ

6m ec

!
kBT
μð0Þ

"
;

proportional to the small electron-hole asymmetry factor.
Alternatively, one could also try to use Eq. (11) with the

values σðALÞxxðdÞðϵÞ and NðdÞðϵÞ presented earlier. However, one
needs to clarify what the chemical potential of fluctuating
Cooper pairs μðflÞ is since it is known that in thermal
equilibrium the chemical potential of a system with variable
number of particles is zero, such as the textbook examples of
photon or phonon gases. A naive application of this “theorem”
to the FCP “gas” leads to the wrong conclusion that μðflÞ ¼ 0.
However, one needs to be careful when dealing with Cooper
pairs, since they do not form an isolated system, but are rather
only one subsystem with the other being formed by fermionic
quasiparticles, which always have to be taken into account as
well. In a multicomponent system, the chemical potential of
the ith component μi is defined as the derivative of the free
energy with respect to the number of particles of the ith kind:

μi ¼ ð∂FðflÞ=∂NiÞV;T;Nj
; ð12Þ

provided the numbers of particles of all other species are fixed
Nj≠i ¼ const. In deriving the condition for thermodynamic
equilibrium, one should now take into account the fact that the
creation of a Cooper pair must be accompanied by removing
two quasiparticles from the fermionic subsystem. This leads
to μðflÞ − 2μðqpÞ ¼ 0, where μðqpÞ is the chemical potential of
quasiparticles. Therefore, the equilibrium condition does not
fix μðflÞ, μðqpÞ to zero, even though the numbers of Cooper
pairs and quasiparticles are not conserved. The simplest way
to estimate μðflÞ is to identify it with the binding energy of
FCPs ΔEs taken with the opposite sign μðflÞ ¼ Tc0 − T.
A more consistent consideration performed in the frame-

work of the Ginzburg-Landau fluctuation theory confirms this
estimate. The fluctuation part of free energy close to Tc0 takes
the form (Larkin and Varlamov, 2009)

FðflÞ
ð2Þ ðϵÞ ¼ −

Tc0

4πξ2
ϵ ln

1

ϵ
: ð13Þ

Similarly, the coefficient in Eq. (7) can be expressed in terms
of the correlation length, Eq. (4), due to the relation between

the coefficients of the Ginzburg-Landau functional (Larkin
and Varlamov, 2009):

NðflÞ
ð2Þ ðϵÞ ¼

1

4πξ2
ln
1

ϵ
: ð14Þ

Substituting these expressions into Eq. (12) one finds

μðflÞð2Þ ¼

0

@∂FðflÞ
ð2Þ

∂NðflÞ
ð2Þ

1

A

V;T

¼
∂FðflÞ

ð2Þ=∂ξ
∂NðflÞ

ð2Þ=∂ξ
¼ −Tc0ϵ: ð15Þ

Applying Eq. (15) to the subsystem of FCPs close to Tc0
and identifying its conductivity with Eq. (9), one finds the
Nernst-Ettingshausen coefficient generated by FCPs in weak
fields close to Tc0:

νðthÞ;ðflÞð2Þ ¼ −
σðALÞxxð2Þ

ð2eÞ2NðflÞ
ð2Þc

¼ −
τGLðϵÞ
m &c

∼ −
kBξ2

cℏ
1

ϵ
; ð16Þ

which dramatically exceeds Sondheimer’s value. These strong
fluctuation effects are a consequence of the extremely strong
dependence of the chemical potential of FCPs on temperature
and the relatively small concentration of FCPs.

B. Quantum fluctuations in superconductors above Hc2ð0Þ

1. Dynamic clustering of fluctuation Cooper pairs

The qualitative picture for SF in the quantum region,
at very low temperatures and close to Hc2ð0Þ, drastically
differs from the Ginzburg-Landau one, valid close to Tc0. As
we saw, the latter can be described in terms of a set of
long-wavelength fluctuationmodes [with λ ∼ ξGLðTÞ ≫ ξBCS]
of the order parameter, with characteristic lifetime
τGL ¼ πℏ=8kBðT − Tc0Þ. In the former, the order parameter
oscillates on much smaller scales, such that fluctuation modes
with wavelengths up to ξBCS and frequencies up toΔBCS=ℏ are
excited.
Indeed, one can visualize the situation in this region as

rotating FCPs, analogously to Cooper pairs within Abrikosov
vortices, just below Hc2ð0Þ. The period of Cooper pairs
rotating in an Abrikosov vortex in that region is τcp ∼
Ω−1

Hc2ð0Þ ∼ ΔBCS (ΩH ¼ 4DeH=c is the cyclotron frequency
of Cooper pairs) and the corresponding Larmor radius
is rL ∼ ξBCS.
The microscopic theory (Galitski and Larkin, 2001a; Glatz,

Varlamov, and Vinokur, 2011a) shows that close to Hc2ð0Þ at
zero temperature SFs are characterized by the lifetime

τQF ∼
Δ−1

BCS
~h

≫ τcp; ~h ¼ ½H −Hc2ð0Þ%=Hc2ð0Þ; ð17Þ

and by the spatial scale

ξQFð ~hÞ ∼
ξBCSffiffiffi

~h
p ≫ ξBCS: ð18Þ

One sees that the dependence of both these values on the
parameter governing the transition is completely symmetric to
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Sondheimer 1948



CHEMICAL POTENTIAL OF FCPs

12

Is finite since Cooper pairs do not form an isolated system
• Creation of a FCP removes two quasiparticles from the fermionic subsystem

• µ for multicomponent system:

• Therefore µ(fl)-2µ(qp)=0 and not µ(fl)=µ(qp)=0

• µ(fl) can be estimated as negative binding energy of FCPs: µ(fl)=Tc0-T

or using more accurately the fluctuation free energy near Tc0 (in 2D)

Nernst coefficient, in particular, validating the third law of
thermodynamics.
In the case of measurements of the Nernst-Ettingshausen

coefficient with a high resistive voltmeter, its thermodynamic
part (without the contribution of magnetization currents)
can be related to the temperature derivative of the chemical
potential (Serbyn et al., 2009; Varlamov and Kavokin, 2009)

νðthÞðdÞ ¼
σðdÞ

NðdÞce2

!
dμðdÞ
dT

"
: ð11Þ

For the electron gas in a normal metal μðTÞ ≈
μð0Þ − πk2BT

2=½12μð0Þ% and Eq. (11) leads to the known
Sondheimer result (Sondheimer, 1948) for the case of electron
scattering on elastic impurities:

νe ¼ −
πτ

6m ec

!
kBT
μð0Þ

"
;

proportional to the small electron-hole asymmetry factor.
Alternatively, one could also try to use Eq. (11) with the

values σðALÞxxðdÞðϵÞ and NðdÞðϵÞ presented earlier. However, one
needs to clarify what the chemical potential of fluctuating
Cooper pairs μðflÞ is since it is known that in thermal
equilibrium the chemical potential of a system with variable
number of particles is zero, such as the textbook examples of
photon or phonon gases. A naive application of this “theorem”
to the FCP “gas” leads to the wrong conclusion that μðflÞ ¼ 0.
However, one needs to be careful when dealing with Cooper
pairs, since they do not form an isolated system, but are rather
only one subsystem with the other being formed by fermionic
quasiparticles, which always have to be taken into account as
well. In a multicomponent system, the chemical potential of
the ith component μi is defined as the derivative of the free
energy with respect to the number of particles of the ith kind:

μi ¼ ð∂FðflÞ=∂NiÞV;T;Nj
; ð12Þ

provided the numbers of particles of all other species are fixed
Nj≠i ¼ const. In deriving the condition for thermodynamic
equilibrium, one should now take into account the fact that the
creation of a Cooper pair must be accompanied by removing
two quasiparticles from the fermionic subsystem. This leads
to μðflÞ − 2μðqpÞ ¼ 0, where μðqpÞ is the chemical potential of
quasiparticles. Therefore, the equilibrium condition does not
fix μðflÞ, μðqpÞ to zero, even though the numbers of Cooper
pairs and quasiparticles are not conserved. The simplest way
to estimate μðflÞ is to identify it with the binding energy of
FCPs ΔEs taken with the opposite sign μðflÞ ¼ Tc0 − T.
A more consistent consideration performed in the frame-

work of the Ginzburg-Landau fluctuation theory confirms this
estimate. The fluctuation part of free energy close to Tc0 takes
the form (Larkin and Varlamov, 2009)

FðflÞ
ð2Þ ðϵÞ ¼ −

Tc0

4πξ2
ϵ ln

1

ϵ
: ð13Þ

Similarly, the coefficient in Eq. (7) can be expressed in terms
of the correlation length, Eq. (4), due to the relation between

the coefficients of the Ginzburg-Landau functional (Larkin
and Varlamov, 2009):

NðflÞ
ð2Þ ðϵÞ ¼

1

4πξ2
ln
1

ϵ
: ð14Þ

Substituting these expressions into Eq. (12) one finds
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∂NðflÞ
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¼ −Tc0ϵ: ð15Þ

Applying Eq. (15) to the subsystem of FCPs close to Tc0
and identifying its conductivity with Eq. (9), one finds the
Nernst-Ettingshausen coefficient generated by FCPs in weak
fields close to Tc0:

νðthÞ;ðflÞð2Þ ¼ −
σðALÞxxð2Þ

ð2eÞ2NðflÞ
ð2Þc

¼ −
τGLðϵÞ
m &c

∼ −
kBξ2

cℏ
1
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; ð16Þ

which dramatically exceeds Sondheimer’s value. These strong
fluctuation effects are a consequence of the extremely strong
dependence of the chemical potential of FCPs on temperature
and the relatively small concentration of FCPs.

B. Quantum fluctuations in superconductors above Hc2ð0Þ

1. Dynamic clustering of fluctuation Cooper pairs

The qualitative picture for SF in the quantum region,
at very low temperatures and close to Hc2ð0Þ, drastically
differs from the Ginzburg-Landau one, valid close to Tc0. As
we saw, the latter can be described in terms of a set of
long-wavelength fluctuationmodes [with λ ∼ ξGLðTÞ ≫ ξBCS]
of the order parameter, with characteristic lifetime
τGL ¼ πℏ=8kBðT − Tc0Þ. In the former, the order parameter
oscillates on much smaller scales, such that fluctuation modes
with wavelengths up to ξBCS and frequencies up toΔBCS=ℏ are
excited.
Indeed, one can visualize the situation in this region as

rotating FCPs, analogously to Cooper pairs within Abrikosov
vortices, just below Hc2ð0Þ. The period of Cooper pairs
rotating in an Abrikosov vortex in that region is τcp ∼
Ω−1

Hc2ð0Þ ∼ ΔBCS (ΩH ¼ 4DeH=c is the cyclotron frequency
of Cooper pairs) and the corresponding Larmor radius
is rL ∼ ξBCS.
The microscopic theory (Galitski and Larkin, 2001a; Glatz,

Varlamov, and Vinokur, 2011a) shows that close to Hc2ð0Þ at
zero temperature SFs are characterized by the lifetime

τQF ∼
Δ−1

BCS
~h

≫ τcp; ~h ¼ ½H −Hc2ð0Þ%=Hc2ð0Þ; ð17Þ

and by the spatial scale

ξQFð ~hÞ ∼
ξBCSffiffiffi

~h
p ≫ ξBCS: ð18Þ

One sees that the dependence of both these values on the
parameter governing the transition is completely symmetric to
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j≠i, here i,j={fl,qp}

Nernst coefficient, in particular, validating the third law of
thermodynamics.
In the case of measurements of the Nernst-Ettingshausen

coefficient with a high resistive voltmeter, its thermodynamic
part (without the contribution of magnetization currents)
can be related to the temperature derivative of the chemical
potential (Serbyn et al., 2009; Varlamov and Kavokin, 2009)

νðthÞðdÞ ¼
σðdÞ

NðdÞce2

!
dμðdÞ
dT

"
: ð11Þ

For the electron gas in a normal metal μðTÞ ≈
μð0Þ − πk2BT

2=½12μð0Þ% and Eq. (11) leads to the known
Sondheimer result (Sondheimer, 1948) for the case of electron
scattering on elastic impurities:

νe ¼ −
πτ

6m ec

!
kBT
μð0Þ

"
;

proportional to the small electron-hole asymmetry factor.
Alternatively, one could also try to use Eq. (11) with the

values σðALÞxxðdÞðϵÞ and NðdÞðϵÞ presented earlier. However, one
needs to clarify what the chemical potential of fluctuating
Cooper pairs μðflÞ is since it is known that in thermal
equilibrium the chemical potential of a system with variable
number of particles is zero, such as the textbook examples of
photon or phonon gases. A naive application of this “theorem”
to the FCP “gas” leads to the wrong conclusion that μðflÞ ¼ 0.
However, one needs to be careful when dealing with Cooper
pairs, since they do not form an isolated system, but are rather
only one subsystem with the other being formed by fermionic
quasiparticles, which always have to be taken into account as
well. In a multicomponent system, the chemical potential of
the ith component μi is defined as the derivative of the free
energy with respect to the number of particles of the ith kind:

μi ¼ ð∂FðflÞ=∂NiÞV;T;Nj
; ð12Þ

provided the numbers of particles of all other species are fixed
Nj≠i ¼ const. In deriving the condition for thermodynamic
equilibrium, one should now take into account the fact that the
creation of a Cooper pair must be accompanied by removing
two quasiparticles from the fermionic subsystem. This leads
to μðflÞ − 2μðqpÞ ¼ 0, where μðqpÞ is the chemical potential of
quasiparticles. Therefore, the equilibrium condition does not
fix μðflÞ, μðqpÞ to zero, even though the numbers of Cooper
pairs and quasiparticles are not conserved. The simplest way
to estimate μðflÞ is to identify it with the binding energy of
FCPs ΔEs taken with the opposite sign μðflÞ ¼ Tc0 − T.
A more consistent consideration performed in the frame-

work of the Ginzburg-Landau fluctuation theory confirms this
estimate. The fluctuation part of free energy close to Tc0 takes
the form (Larkin and Varlamov, 2009)

FðflÞ
ð2Þ ðϵÞ ¼ −

Tc0

4πξ2
ϵ ln

1

ϵ
: ð13Þ

Similarly, the coefficient in Eq. (7) can be expressed in terms
of the correlation length, Eq. (4), due to the relation between

the coefficients of the Ginzburg-Landau functional (Larkin
and Varlamov, 2009):

NðflÞ
ð2Þ ðϵÞ ¼

1

4πξ2
ln
1

ϵ
: ð14Þ

Substituting these expressions into Eq. (12) one finds

μðflÞð2Þ ¼

0

@∂FðflÞ
ð2Þ

∂NðflÞ
ð2Þ
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V;T

¼
∂FðflÞ

ð2Þ=∂ξ
∂NðflÞ

ð2Þ=∂ξ
¼ −Tc0ϵ: ð15Þ

Applying Eq. (15) to the subsystem of FCPs close to Tc0
and identifying its conductivity with Eq. (9), one finds the
Nernst-Ettingshausen coefficient generated by FCPs in weak
fields close to Tc0:

νðthÞ;ðflÞð2Þ ¼ −
σðALÞxxð2Þ

ð2eÞ2NðflÞ
ð2Þc

¼ −
τGLðϵÞ
m &c

∼ −
kBξ2

cℏ
1

ϵ
; ð16Þ

which dramatically exceeds Sondheimer’s value. These strong
fluctuation effects are a consequence of the extremely strong
dependence of the chemical potential of FCPs on temperature
and the relatively small concentration of FCPs.

B. Quantum fluctuations in superconductors above Hc2ð0Þ

1. Dynamic clustering of fluctuation Cooper pairs

The qualitative picture for SF in the quantum region,
at very low temperatures and close to Hc2ð0Þ, drastically
differs from the Ginzburg-Landau one, valid close to Tc0. As
we saw, the latter can be described in terms of a set of
long-wavelength fluctuationmodes [with λ ∼ ξGLðTÞ ≫ ξBCS]
of the order parameter, with characteristic lifetime
τGL ¼ πℏ=8kBðT − Tc0Þ. In the former, the order parameter
oscillates on much smaller scales, such that fluctuation modes
with wavelengths up to ξBCS and frequencies up toΔBCS=ℏ are
excited.
Indeed, one can visualize the situation in this region as

rotating FCPs, analogously to Cooper pairs within Abrikosov
vortices, just below Hc2ð0Þ. The period of Cooper pairs
rotating in an Abrikosov vortex in that region is τcp ∼
Ω−1

Hc2ð0Þ ∼ ΔBCS (ΩH ¼ 4DeH=c is the cyclotron frequency
of Cooper pairs) and the corresponding Larmor radius
is rL ∼ ξBCS.
The microscopic theory (Galitski and Larkin, 2001a; Glatz,

Varlamov, and Vinokur, 2011a) shows that close to Hc2ð0Þ at
zero temperature SFs are characterized by the lifetime

τQF ∼
Δ−1

BCS
~h

≫ τcp; ~h ¼ ½H −Hc2ð0Þ%=Hc2ð0Þ; ð17Þ

and by the spatial scale

ξQFð ~hÞ ∼
ξBCSffiffiffi

~h
p ≫ ξBCS: ð18Þ

One sees that the dependence of both these values on the
parameter governing the transition is completely symmetric to
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and

Nernst coefficient, in particular, validating the third law of
thermodynamics.
In the case of measurements of the Nernst-Ettingshausen

coefficient with a high resistive voltmeter, its thermodynamic
part (without the contribution of magnetization currents)
can be related to the temperature derivative of the chemical
potential (Serbyn et al., 2009; Varlamov and Kavokin, 2009)

νðthÞðdÞ ¼
σðdÞ

NðdÞce2

!
dμðdÞ
dT

"
: ð11Þ

For the electron gas in a normal metal μðTÞ ≈
μð0Þ − πk2BT

2=½12μð0Þ% and Eq. (11) leads to the known
Sondheimer result (Sondheimer, 1948) for the case of electron
scattering on elastic impurities:

νe ¼ −
πτ

6m ec

!
kBT
μð0Þ

"
;

proportional to the small electron-hole asymmetry factor.
Alternatively, one could also try to use Eq. (11) with the

values σðALÞxxðdÞðϵÞ and NðdÞðϵÞ presented earlier. However, one
needs to clarify what the chemical potential of fluctuating
Cooper pairs μðflÞ is since it is known that in thermal
equilibrium the chemical potential of a system with variable
number of particles is zero, such as the textbook examples of
photon or phonon gases. A naive application of this “theorem”
to the FCP “gas” leads to the wrong conclusion that μðflÞ ¼ 0.
However, one needs to be careful when dealing with Cooper
pairs, since they do not form an isolated system, but are rather
only one subsystem with the other being formed by fermionic
quasiparticles, which always have to be taken into account as
well. In a multicomponent system, the chemical potential of
the ith component μi is defined as the derivative of the free
energy with respect to the number of particles of the ith kind:

μi ¼ ð∂FðflÞ=∂NiÞV;T;Nj
; ð12Þ

provided the numbers of particles of all other species are fixed
Nj≠i ¼ const. In deriving the condition for thermodynamic
equilibrium, one should now take into account the fact that the
creation of a Cooper pair must be accompanied by removing
two quasiparticles from the fermionic subsystem. This leads
to μðflÞ − 2μðqpÞ ¼ 0, where μðqpÞ is the chemical potential of
quasiparticles. Therefore, the equilibrium condition does not
fix μðflÞ, μðqpÞ to zero, even though the numbers of Cooper
pairs and quasiparticles are not conserved. The simplest way
to estimate μðflÞ is to identify it with the binding energy of
FCPs ΔEs taken with the opposite sign μðflÞ ¼ Tc0 − T.
A more consistent consideration performed in the frame-

work of the Ginzburg-Landau fluctuation theory confirms this
estimate. The fluctuation part of free energy close to Tc0 takes
the form (Larkin and Varlamov, 2009)

FðflÞ
ð2Þ ðϵÞ ¼ −

Tc0

4πξ2
ϵ ln

1

ϵ
: ð13Þ

Similarly, the coefficient in Eq. (7) can be expressed in terms
of the correlation length, Eq. (4), due to the relation between

the coefficients of the Ginzburg-Landau functional (Larkin
and Varlamov, 2009):

NðflÞ
ð2Þ ðϵÞ ¼

1

4πξ2
ln
1

ϵ
: ð14Þ

Substituting these expressions into Eq. (12) one finds
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¼ −Tc0ϵ: ð15Þ

Applying Eq. (15) to the subsystem of FCPs close to Tc0
and identifying its conductivity with Eq. (9), one finds the
Nernst-Ettingshausen coefficient generated by FCPs in weak
fields close to Tc0:

νðthÞ;ðflÞð2Þ ¼ −
σðALÞxxð2Þ

ð2eÞ2NðflÞ
ð2Þc

¼ −
τGLðϵÞ
m &c

∼ −
kBξ2

cℏ
1

ϵ
; ð16Þ

which dramatically exceeds Sondheimer’s value. These strong
fluctuation effects are a consequence of the extremely strong
dependence of the chemical potential of FCPs on temperature
and the relatively small concentration of FCPs.

B. Quantum fluctuations in superconductors above Hc2ð0Þ

1. Dynamic clustering of fluctuation Cooper pairs

The qualitative picture for SF in the quantum region,
at very low temperatures and close to Hc2ð0Þ, drastically
differs from the Ginzburg-Landau one, valid close to Tc0. As
we saw, the latter can be described in terms of a set of
long-wavelength fluctuationmodes [with λ ∼ ξGLðTÞ ≫ ξBCS]
of the order parameter, with characteristic lifetime
τGL ¼ πℏ=8kBðT − Tc0Þ. In the former, the order parameter
oscillates on much smaller scales, such that fluctuation modes
with wavelengths up to ξBCS and frequencies up toΔBCS=ℏ are
excited.
Indeed, one can visualize the situation in this region as

rotating FCPs, analogously to Cooper pairs within Abrikosov
vortices, just below Hc2ð0Þ. The period of Cooper pairs
rotating in an Abrikosov vortex in that region is τcp ∼
Ω−1

Hc2ð0Þ ∼ ΔBCS (ΩH ¼ 4DeH=c is the cyclotron frequency
of Cooper pairs) and the corresponding Larmor radius
is rL ∼ ξBCS.
The microscopic theory (Galitski and Larkin, 2001a; Glatz,

Varlamov, and Vinokur, 2011a) shows that close to Hc2ð0Þ at
zero temperature SFs are characterized by the lifetime

τQF ∼
Δ−1

BCS
~h

≫ τcp; ~h ¼ ½H −Hc2ð0Þ%=Hc2ð0Þ; ð17Þ

and by the spatial scale

ξQFð ~hÞ ∼
ξBCSffiffiffi

~h
p ≫ ξBCS: ð18Þ

One sees that the dependence of both these values on the
parameter governing the transition is completely symmetric to
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Nernst coefficient, in particular, validating the third law of
thermodynamics.
In the case of measurements of the Nernst-Ettingshausen

coefficient with a high resistive voltmeter, its thermodynamic
part (without the contribution of magnetization currents)
can be related to the temperature derivative of the chemical
potential (Serbyn et al., 2009; Varlamov and Kavokin, 2009)

νðthÞðdÞ ¼
σðdÞ

NðdÞce2

!
dμðdÞ
dT

"
: ð11Þ

For the electron gas in a normal metal μðTÞ ≈
μð0Þ − πk2BT

2=½12μð0Þ% and Eq. (11) leads to the known
Sondheimer result (Sondheimer, 1948) for the case of electron
scattering on elastic impurities:

νe ¼ −
πτ
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kBT
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proportional to the small electron-hole asymmetry factor.
Alternatively, one could also try to use Eq. (11) with the

values σðALÞxxðdÞðϵÞ and NðdÞðϵÞ presented earlier. However, one
needs to clarify what the chemical potential of fluctuating
Cooper pairs μðflÞ is since it is known that in thermal
equilibrium the chemical potential of a system with variable
number of particles is zero, such as the textbook examples of
photon or phonon gases. A naive application of this “theorem”
to the FCP “gas” leads to the wrong conclusion that μðflÞ ¼ 0.
However, one needs to be careful when dealing with Cooper
pairs, since they do not form an isolated system, but are rather
only one subsystem with the other being formed by fermionic
quasiparticles, which always have to be taken into account as
well. In a multicomponent system, the chemical potential of
the ith component μi is defined as the derivative of the free
energy with respect to the number of particles of the ith kind:

μi ¼ ð∂FðflÞ=∂NiÞV;T;Nj
; ð12Þ

provided the numbers of particles of all other species are fixed
Nj≠i ¼ const. In deriving the condition for thermodynamic
equilibrium, one should now take into account the fact that the
creation of a Cooper pair must be accompanied by removing
two quasiparticles from the fermionic subsystem. This leads
to μðflÞ − 2μðqpÞ ¼ 0, where μðqpÞ is the chemical potential of
quasiparticles. Therefore, the equilibrium condition does not
fix μðflÞ, μðqpÞ to zero, even though the numbers of Cooper
pairs and quasiparticles are not conserved. The simplest way
to estimate μðflÞ is to identify it with the binding energy of
FCPs ΔEs taken with the opposite sign μðflÞ ¼ Tc0 − T.
A more consistent consideration performed in the frame-

work of the Ginzburg-Landau fluctuation theory confirms this
estimate. The fluctuation part of free energy close to Tc0 takes
the form (Larkin and Varlamov, 2009)
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4πξ2
ϵ ln
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Similarly, the coefficient in Eq. (7) can be expressed in terms
of the correlation length, Eq. (4), due to the relation between

the coefficients of the Ginzburg-Landau functional (Larkin
and Varlamov, 2009):
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Substituting these expressions into Eq. (12) one finds
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Applying Eq. (15) to the subsystem of FCPs close to Tc0
and identifying its conductivity with Eq. (9), one finds the
Nernst-Ettingshausen coefficient generated by FCPs in weak
fields close to Tc0:

νðthÞ;ðflÞð2Þ ¼ −
σðALÞxxð2Þ

ð2eÞ2NðflÞ
ð2Þc

¼ −
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∼ −
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which dramatically exceeds Sondheimer’s value. These strong
fluctuation effects are a consequence of the extremely strong
dependence of the chemical potential of FCPs on temperature
and the relatively small concentration of FCPs.

B. Quantum fluctuations in superconductors above Hc2ð0Þ

1. Dynamic clustering of fluctuation Cooper pairs

The qualitative picture for SF in the quantum region,
at very low temperatures and close to Hc2ð0Þ, drastically
differs from the Ginzburg-Landau one, valid close to Tc0. As
we saw, the latter can be described in terms of a set of
long-wavelength fluctuationmodes [with λ ∼ ξGLðTÞ ≫ ξBCS]
of the order parameter, with characteristic lifetime
τGL ¼ πℏ=8kBðT − Tc0Þ. In the former, the order parameter
oscillates on much smaller scales, such that fluctuation modes
with wavelengths up to ξBCS and frequencies up toΔBCS=ℏ are
excited.
Indeed, one can visualize the situation in this region as

rotating FCPs, analogously to Cooper pairs within Abrikosov
vortices, just below Hc2ð0Þ. The period of Cooper pairs
rotating in an Abrikosov vortex in that region is τcp ∼
Ω−1

Hc2ð0Þ ∼ ΔBCS (ΩH ¼ 4DeH=c is the cyclotron frequency
of Cooper pairs) and the corresponding Larmor radius
is rL ∼ ξBCS.
The microscopic theory (Galitski and Larkin, 2001a; Glatz,

Varlamov, and Vinokur, 2011a) shows that close to Hc2ð0Þ at
zero temperature SFs are characterized by the lifetime

τQF ∼
Δ−1

BCS
~h

≫ τcp; ~h ¼ ½H −Hc2ð0Þ%=Hc2ð0Þ; ð17Þ

and by the spatial scale

ξQFð ~hÞ ∼
ξBCSffiffiffi

~h
p ≫ ξBCS: ð18Þ

One sees that the dependence of both these values on the
parameter governing the transition is completely symmetric to
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Nernst coefficient, in particular, validating the third law of
thermodynamics.
In the case of measurements of the Nernst-Ettingshausen

coefficient with a high resistive voltmeter, its thermodynamic
part (without the contribution of magnetization currents)
can be related to the temperature derivative of the chemical
potential (Serbyn et al., 2009; Varlamov and Kavokin, 2009)

νðthÞðdÞ ¼
σðdÞ

NðdÞce2

!
dμðdÞ
dT

"
: ð11Þ

For the electron gas in a normal metal μðTÞ ≈
μð0Þ − πk2BT

2=½12μð0Þ% and Eq. (11) leads to the known
Sondheimer result (Sondheimer, 1948) for the case of electron
scattering on elastic impurities:

νe ¼ −
πτ

6m ec

!
kBT
μð0Þ

"
;

proportional to the small electron-hole asymmetry factor.
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; ð12Þ

provided the numbers of particles of all other species are fixed
Nj≠i ¼ const. In deriving the condition for thermodynamic
equilibrium, one should now take into account the fact that the
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FðflÞ
ð2Þ ðϵÞ ¼ −

Tc0

4πξ2
ϵ ln

1

ϵ
: ð13Þ
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NðflÞ
ð2Þ ðϵÞ ¼

1

4πξ2
ln
1

ϵ
: ð14Þ

Substituting these expressions into Eq. (12) one finds
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@∂FðflÞ
ð2Þ

∂NðflÞ
ð2Þ

1

A

V;T

¼
∂FðflÞ

ð2Þ=∂ξ
∂NðflÞ

ð2Þ=∂ξ
¼ −Tc0ϵ: ð15Þ

Applying Eq. (15) to the subsystem of FCPs close to Tc0
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ð2eÞ2NðflÞ
ð2Þc
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τGLðϵÞ
m &c

∼ −
kBξ2

cℏ
1

ϵ
; ð16Þ

which dramatically exceeds Sondheimer’s value. These strong
fluctuation effects are a consequence of the extremely strong
dependence of the chemical potential of FCPs on temperature
and the relatively small concentration of FCPs.

B. Quantum fluctuations in superconductors above Hc2ð0Þ

1. Dynamic clustering of fluctuation Cooper pairs
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τGL ¼ πℏ=8kBðT − Tc0Þ. In the former, the order parameter
oscillates on much smaller scales, such that fluctuation modes
with wavelengths up to ξBCS and frequencies up toΔBCS=ℏ are
excited.
Indeed, one can visualize the situation in this region as

rotating FCPs, analogously to Cooper pairs within Abrikosov
vortices, just below Hc2ð0Þ. The period of Cooper pairs
rotating in an Abrikosov vortex in that region is τcp ∼
Ω−1

Hc2ð0Þ ∼ ΔBCS (ΩH ¼ 4DeH=c is the cyclotron frequency
of Cooper pairs) and the corresponding Larmor radius
is rL ∼ ξBCS.
The microscopic theory (Galitski and Larkin, 2001a; Glatz,

Varlamov, and Vinokur, 2011a) shows that close to Hc2ð0Þ at
zero temperature SFs are characterized by the lifetime

τQF ∼
Δ−1

BCS
~h

≫ τcp; ~h ¼ ½H −Hc2ð0Þ%=Hc2ð0Þ; ð17Þ

and by the spatial scale

ξQFð ~hÞ ∼
ξBCSffiffiffi

~h
p ≫ ξBCS: ð18Þ

One sees that the dependence of both these values on the
parameter governing the transition is completely symmetric to
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QUANTUM FLUCTUATIONS NEAR HC2(0): 
QUALITATIVE PICTURE
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Vicinity of Tc Vicinity of Hc2(0)

τGL =  /ΔEGL τQF =  /ΔEQF

ΔEGL ~ kB T −Tc( ) = kBTcε ΔEQF ~ ω H( )− ω Hc2( ) ~ ΔBCS h

τGL = πTc
−1 / 8kBε τQF = ΔBCS

−1 / h

ξGL = DτGL = ξBCS / ε ξQF = DτQF = ξBCS / h

ε = T −Tc( ) /Tc <<1 h = H −Hc2 (0)( ) /Hc2 (0)



FCPs vs VORTICES – ROTATING FCP CLUSTERS
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Vortices in the SC phase,
just below Hc2(0)

FCP clusters above Hc2(0)
size: xQF(|h|)
life time: tQF(|h|)

~
~

FCP & vortex size: xBCS
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At T=0 and H>Hc2(0), fluctuation corrections change considerably:

• Free rotation of FCP à no direct contribution to transverse transport: AL 

contribution vanishes [probability for hopping ~ T2]

• Anomalous MT [no phase coherence] and 

• DOS [field suppresses fluctuation gap in one-electron spectrum] 

contributions become zero as well

• All corrections come from DCR:

• Contribution of QFs to Nernst follows from µ(QF)=-DBCSh(t)

completely destroy the phase coherence, whereas the latter
disappears since the magnetic field suppresses the fluctuation
gap in the one-electron spectrum. Therefore the effect of
fluctuations on the conductivity at zero temperature is reduced
to the renormalization of the one-electron diffusion coeffi-
cient. In this region FCPs occupy the lowest Landau level, but
all dynamic fluctuations in the frequency interval from 0 to
ΔBCS should be taken into account:

σðDCRÞxx ∼ −
e2

ΔBCS

Z
ΔBCS

0

dω
~hþ ℏω=ΔBCS

∼ −
e2

ℏ
ln
1

~h
: ð19Þ

In terms of the characteristics τQF and ξQF for QFs, one can
understand the meaning of the QF contributions to different
physical values in the vicinity of H c2ð0Þ and derive others,
which are essential in this region. For example, one could
estimate the direct contribution of the FCPs to conductivity
by replacing τGL → τQF in the classic AL formula, which

would give σðALÞ$ ∼ ðe2=ℏÞτQF. Nevertheless, as already
noted, FCPs at zero temperature cannot drift along the
electric field but rotate only around fixed centers. As
temperature deviates from zero, the FCPs can change their
state due to the interaction with the thermal bath, i.e.,
hopping to an adjacent rotation trajectory along the applied
electric field becomes possible. This means that FCPs can
participate in longitudinal charge transport as well. This
process can be mapped to the paraconductivity of granular
superconductors (Lerner, Varlamov, and Vinokur, 2008) at
temperatures above Tc0, where the tunneling of FCPs
between grains occurs in two steps: first one electron jumps,
then the second follows. The probability of each hopping
event is proportional to the intergrain electron tunneling
rate Γ. To conserve the superconducting coherence between
both events, the latter should occur in the FCP lifetime τGL.
The probability of FCP tunneling between two grains is
determined by the conditional probability of two one-electron
hopping events and is given by WΓ ¼ Γ2τGL. Returning to
the situation of FCPs above H c2ð0Þ, one can identify the
tunneling rate by the temperature T, while τGL corresponds
to τQF. In order to get a final expression, σðALÞ$ should be
therefore multiplied by the probability factor WQF ¼ T2τQF
of the FCP hopping to a neighboring trajectory:

σðALÞxx ∼
e2

ℏ

!
T
Tc0

"
2 1

~h2
:

In order to estimate the contribution of QFs to the
fluctuation magnetic susceptibility of the SC in the vicinity
of H c2ð0Þ, one can apply Langevin’s formula to a coherent
cluster of FCPs and identify its average size with the rotator
radius; one finds

χ ðALÞð2Þ ¼
e2NQF

ð2Þ

c2m $ hξ2QFð ~hÞi ∼
e2ΔBCS

c2
ξ2BCS
~h

; ð20Þ

in complete agreement with Galitski and Larkin (2001a).
Here it was assumed that the ratio of the FCP concentration
over its mass in the region of quantum fluctuations is

NQF
ð2Þ=m

$ ∼ ΔBCS—with logarithmic accuracy and in analogy
to Eq. (7).
Finally, one can reproduce the contribution of QFs to the

Nernst coefficient. Close to H c2ð0Þ, the chemical potential of
FCPs can be written as μðQFÞ ¼ −ΔBCS

~h (in analogy to that
one close to Tc0). Its temperature derivative differs from zero
due to the temperature dependence of H c2ðTÞ:

dμðQFÞ=dT ∼ dH c2ðTÞ=dT ∼ −T=ΔBCS: ð21Þ

Using the relation between the latter and the Nernst coef-
ficient, it is possible to reproduce one of the results of Serbyn
et al. (2009) (with accuracy up to the numerical factor):

νðQFÞ ∼
τQF
m $c

!
dμðQFÞ

dT

"
∼ −

kBξ2BCS
cℏ

!
kBT
ΔBCS

"
1

~h
: ð22Þ

III. BASIC ELEMENTS OF MICROSCOPIC DESCRIPTION
OF SF IN MAGNETIC FIELD

Let us begin by recalling the basic ideas of the microscopic
description of fluctuations in the normal phase of a super-
conductor. For this purpose one can employ the formalism
of the Matsubara diagrammatic technique. In the BCS theory,
the electron-electron attraction leads to the reconstruction
of the ground state of the electron system of a normal metal
upon approaching the critical temperature from above
(T → TBCS

c þ 0). Formally, this fact is manifested by the
appearance of a pole in the two-particle Green’s function

Lðp; p0; qÞ ¼ hTτ½~ψpþq;σ ~ψ−p;−σ ~ψ
þ
p0þq;σ0 ~ψ

þ
−p0;−σ0'i; ð23Þ

where ~ψpþq;σ are electron field operators, Tτ is the time
ordering operator, and 4D vector notations for electron
momentum (or other quantum numbers) are used. The two-
particle Green’s function can be expressed in terms of the
vertex part (Abrikosov et al., 1965). It is this vertex part of the
electron-electron interaction in the Cooper channel Lðq;ΩkÞ
that is called the fluctuation propagator.
The Dyson equation for Lðq;ΩkÞ, accounting for the

electron-electron attraction in the ladder approximation, is
represented graphically in Fig. 7. The solid lines denote the
single-particle Green’s functions, and the wavy lines corre-
spond to the fluctuation propagators. The equation can be
written analytically as

L−1ðq;ΩkÞ ¼ −g−1 þ ⟪Πðq;ΩkÞ⟫imp; ð24Þ

FIG. 7. The Dyson equation for the fluctuation propagator
(wavy lines) in the ladder approximation. Solid lines represent
one-electron Green’s functions, the circles represent the electron-
electron interactions, and the triangles correspond to the Cooper-
ons (see Fig. 8).

A. A. Varlamov, A. Galda, and A. Glatz: Fluctuation spectroscopy: From Rayleigh-Jeans …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015009-11

completely destroy the phase coherence, whereas the latter
disappears since the magnetic field suppresses the fluctuation
gap in the one-electron spectrum. Therefore the effect of
fluctuations on the conductivity at zero temperature is reduced
to the renormalization of the one-electron diffusion coeffi-
cient. In this region FCPs occupy the lowest Landau level, but
all dynamic fluctuations in the frequency interval from 0 to
ΔBCS should be taken into account:

σðDCRÞxx ∼ −
e2

ΔBCS

Z
ΔBCS

0

dω
~hþ ℏω=ΔBCS

∼ −
e2

ℏ
ln
1

~h
: ð19Þ

In terms of the characteristics τQF and ξQF for QFs, one can
understand the meaning of the QF contributions to different
physical values in the vicinity of H c2ð0Þ and derive others,
which are essential in this region. For example, one could
estimate the direct contribution of the FCPs to conductivity
by replacing τGL → τQF in the classic AL formula, which

would give σðALÞ$ ∼ ðe2=ℏÞτQF. Nevertheless, as already
noted, FCPs at zero temperature cannot drift along the
electric field but rotate only around fixed centers. As
temperature deviates from zero, the FCPs can change their
state due to the interaction with the thermal bath, i.e.,
hopping to an adjacent rotation trajectory along the applied
electric field becomes possible. This means that FCPs can
participate in longitudinal charge transport as well. This
process can be mapped to the paraconductivity of granular
superconductors (Lerner, Varlamov, and Vinokur, 2008) at
temperatures above Tc0, where the tunneling of FCPs
between grains occurs in two steps: first one electron jumps,
then the second follows. The probability of each hopping
event is proportional to the intergrain electron tunneling
rate Γ. To conserve the superconducting coherence between
both events, the latter should occur in the FCP lifetime τGL.
The probability of FCP tunneling between two grains is
determined by the conditional probability of two one-electron
hopping events and is given by WΓ ¼ Γ2τGL. Returning to
the situation of FCPs above H c2ð0Þ, one can identify the
tunneling rate by the temperature T, while τGL corresponds
to τQF. In order to get a final expression, σðALÞ$ should be
therefore multiplied by the probability factor WQF ¼ T2τQF
of the FCP hopping to a neighboring trajectory:

σðALÞxx ∼
e2

ℏ

!
T
Tc0

"
2 1

~h2
:

In order to estimate the contribution of QFs to the
fluctuation magnetic susceptibility of the SC in the vicinity
of H c2ð0Þ, one can apply Langevin’s formula to a coherent
cluster of FCPs and identify its average size with the rotator
radius; one finds

χ ðALÞð2Þ ¼
e2NQF

ð2Þ

c2m $ hξ2QFð ~hÞi ∼
e2ΔBCS

c2
ξ2BCS
~h

; ð20Þ

in complete agreement with Galitski and Larkin (2001a).
Here it was assumed that the ratio of the FCP concentration
over its mass in the region of quantum fluctuations is

NQF
ð2Þ=m

$ ∼ ΔBCS—with logarithmic accuracy and in analogy
to Eq. (7).
Finally, one can reproduce the contribution of QFs to the

Nernst coefficient. Close to H c2ð0Þ, the chemical potential of
FCPs can be written as μðQFÞ ¼ −ΔBCS

~h (in analogy to that
one close to Tc0). Its temperature derivative differs from zero
due to the temperature dependence of H c2ðTÞ:

dμðQFÞ=dT ∼ dH c2ðTÞ=dT ∼ −T=ΔBCS: ð21Þ

Using the relation between the latter and the Nernst coef-
ficient, it is possible to reproduce one of the results of Serbyn
et al. (2009) (with accuracy up to the numerical factor):

νðQFÞ ∼
τQF
m $c

!
dμðQFÞ

dT

"
∼ −

kBξ2BCS
cℏ

!
kBT
ΔBCS

"
1

~h
: ð22Þ

III. BASIC ELEMENTS OF MICROSCOPIC DESCRIPTION
OF SF IN MAGNETIC FIELD

Let us begin by recalling the basic ideas of the microscopic
description of fluctuations in the normal phase of a super-
conductor. For this purpose one can employ the formalism
of the Matsubara diagrammatic technique. In the BCS theory,
the electron-electron attraction leads to the reconstruction
of the ground state of the electron system of a normal metal
upon approaching the critical temperature from above
(T → TBCS

c þ 0). Formally, this fact is manifested by the
appearance of a pole in the two-particle Green’s function

Lðp; p0; qÞ ¼ hTτ½~ψpþq;σ ~ψ−p;−σ ~ψ
þ
p0þq;σ0 ~ψ

þ
−p0;−σ0'i; ð23Þ

where ~ψpþq;σ are electron field operators, Tτ is the time
ordering operator, and 4D vector notations for electron
momentum (or other quantum numbers) are used. The two-
particle Green’s function can be expressed in terms of the
vertex part (Abrikosov et al., 1965). It is this vertex part of the
electron-electron interaction in the Cooper channel Lðq;ΩkÞ
that is called the fluctuation propagator.
The Dyson equation for Lðq;ΩkÞ, accounting for the

electron-electron attraction in the ladder approximation, is
represented graphically in Fig. 7. The solid lines denote the
single-particle Green’s functions, and the wavy lines corre-
spond to the fluctuation propagators. The equation can be
written analytically as

L−1ðq;ΩkÞ ¼ −g−1 þ ⟪Πðq;ΩkÞ⟫imp; ð24Þ

FIG. 7. The Dyson equation for the fluctuation propagator
(wavy lines) in the ladder approximation. Solid lines represent
one-electron Green’s functions, the circles represent the electron-
electron interactions, and the triangles correspond to the Cooper-
ons (see Fig. 8).
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completely destroy the phase coherence, whereas the latter
disappears since the magnetic field suppresses the fluctuation
gap in the one-electron spectrum. Therefore the effect of
fluctuations on the conductivity at zero temperature is reduced
to the renormalization of the one-electron diffusion coeffi-
cient. In this region FCPs occupy the lowest Landau level, but
all dynamic fluctuations in the frequency interval from 0 to
ΔBCS should be taken into account:

σðDCRÞxx ∼ −
e2

ΔBCS

Z
ΔBCS

0

dω
~hþ ℏω=ΔBCS

∼ −
e2

ℏ
ln
1

~h
: ð19Þ

In terms of the characteristics τQF and ξQF for QFs, one can
understand the meaning of the QF contributions to different
physical values in the vicinity of H c2ð0Þ and derive others,
which are essential in this region. For example, one could
estimate the direct contribution of the FCPs to conductivity
by replacing τGL → τQF in the classic AL formula, which

would give σðALÞ$ ∼ ðe2=ℏÞτQF. Nevertheless, as already
noted, FCPs at zero temperature cannot drift along the
electric field but rotate only around fixed centers. As
temperature deviates from zero, the FCPs can change their
state due to the interaction with the thermal bath, i.e.,
hopping to an adjacent rotation trajectory along the applied
electric field becomes possible. This means that FCPs can
participate in longitudinal charge transport as well. This
process can be mapped to the paraconductivity of granular
superconductors (Lerner, Varlamov, and Vinokur, 2008) at
temperatures above Tc0, where the tunneling of FCPs
between grains occurs in two steps: first one electron jumps,
then the second follows. The probability of each hopping
event is proportional to the intergrain electron tunneling
rate Γ. To conserve the superconducting coherence between
both events, the latter should occur in the FCP lifetime τGL.
The probability of FCP tunneling between two grains is
determined by the conditional probability of two one-electron
hopping events and is given by WΓ ¼ Γ2τGL. Returning to
the situation of FCPs above H c2ð0Þ, one can identify the
tunneling rate by the temperature T, while τGL corresponds
to τQF. In order to get a final expression, σðALÞ$ should be
therefore multiplied by the probability factor WQF ¼ T2τQF
of the FCP hopping to a neighboring trajectory:

σðALÞxx ∼
e2

ℏ

!
T
Tc0

"
2 1

~h2
:

In order to estimate the contribution of QFs to the
fluctuation magnetic susceptibility of the SC in the vicinity
of H c2ð0Þ, one can apply Langevin’s formula to a coherent
cluster of FCPs and identify its average size with the rotator
radius; one finds

χ ðALÞð2Þ ¼
e2NQF

ð2Þ

c2m $ hξ2QFð ~hÞi ∼
e2ΔBCS

c2
ξ2BCS
~h

; ð20Þ

in complete agreement with Galitski and Larkin (2001a).
Here it was assumed that the ratio of the FCP concentration
over its mass in the region of quantum fluctuations is

NQF
ð2Þ=m

$ ∼ ΔBCS—with logarithmic accuracy and in analogy
to Eq. (7).
Finally, one can reproduce the contribution of QFs to the

Nernst coefficient. Close to H c2ð0Þ, the chemical potential of
FCPs can be written as μðQFÞ ¼ −ΔBCS

~h (in analogy to that
one close to Tc0). Its temperature derivative differs from zero
due to the temperature dependence of H c2ðTÞ:

dμðQFÞ=dT ∼ dH c2ðTÞ=dT ∼ −T=ΔBCS: ð21Þ

Using the relation between the latter and the Nernst coef-
ficient, it is possible to reproduce one of the results of Serbyn
et al. (2009) (with accuracy up to the numerical factor):
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τQF
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"
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kBξ2BCS
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ΔBCS

"
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~h
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Let us begin by recalling the basic ideas of the microscopic
description of fluctuations in the normal phase of a super-
conductor. For this purpose one can employ the formalism
of the Matsubara diagrammatic technique. In the BCS theory,
the electron-electron attraction leads to the reconstruction
of the ground state of the electron system of a normal metal
upon approaching the critical temperature from above
(T → TBCS

c þ 0). Formally, this fact is manifested by the
appearance of a pole in the two-particle Green’s function

Lðp; p0; qÞ ¼ hTτ½~ψpþq;σ ~ψ−p;−σ ~ψ
þ
p0þq;σ0 ~ψ

þ
−p0;−σ0'i; ð23Þ

where ~ψpþq;σ are electron field operators, Tτ is the time
ordering operator, and 4D vector notations for electron
momentum (or other quantum numbers) are used. The two-
particle Green’s function can be expressed in terms of the
vertex part (Abrikosov et al., 1965). It is this vertex part of the
electron-electron interaction in the Cooper channel Lðq;ΩkÞ
that is called the fluctuation propagator.
The Dyson equation for Lðq;ΩkÞ, accounting for the

electron-electron attraction in the ladder approximation, is
represented graphically in Fig. 7. The solid lines denote the
single-particle Green’s functions, and the wavy lines corre-
spond to the fluctuation propagators. The equation can be
written analytically as

L−1ðq;ΩkÞ ¼ −g−1 þ ⟪Πðq;ΩkÞ⟫imp; ð24Þ

FIG. 7. The Dyson equation for the fluctuation propagator
(wavy lines) in the ladder approximation. Solid lines represent
one-electron Green’s functions, the circles represent the electron-
electron interactions, and the triangles correspond to the Cooper-
ons (see Fig. 8).
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Staring point: BCS model in diffusive electron scattering regime (diffusion constant D)
Using Matsubara diagrammatic technique
• fluctuation propagator L(q,Wk) [e-e interaction in Cooper channel] described by 

Dyson equation:

• With single electron Green’s function
• e-e interaction

• Cooperon           defined by

given in Landau representation: 

completely destroy the phase coherence, whereas the latter
disappears since the magnetic field suppresses the fluctuation
gap in the one-electron spectrum. Therefore the effect of
fluctuations on the conductivity at zero temperature is reduced
to the renormalization of the one-electron diffusion coeffi-
cient. In this region FCPs occupy the lowest Landau level, but
all dynamic fluctuations in the frequency interval from 0 to
ΔBCS should be taken into account:

σðDCRÞxx ∼ −
e2

ΔBCS

Z
ΔBCS

0

dω
~hþ ℏω=ΔBCS

∼ −
e2

ℏ
ln
1

~h
: ð19Þ

In terms of the characteristics τQF and ξQF for QFs, one can
understand the meaning of the QF contributions to different
physical values in the vicinity of H c2ð0Þ and derive others,
which are essential in this region. For example, one could
estimate the direct contribution of the FCPs to conductivity
by replacing τGL → τQF in the classic AL formula, which

would give σðALÞ$ ∼ ðe2=ℏÞτQF. Nevertheless, as already
noted, FCPs at zero temperature cannot drift along the
electric field but rotate only around fixed centers. As
temperature deviates from zero, the FCPs can change their
state due to the interaction with the thermal bath, i.e.,
hopping to an adjacent rotation trajectory along the applied
electric field becomes possible. This means that FCPs can
participate in longitudinal charge transport as well. This
process can be mapped to the paraconductivity of granular
superconductors (Lerner, Varlamov, and Vinokur, 2008) at
temperatures above Tc0, where the tunneling of FCPs
between grains occurs in two steps: first one electron jumps,
then the second follows. The probability of each hopping
event is proportional to the intergrain electron tunneling
rate Γ. To conserve the superconducting coherence between
both events, the latter should occur in the FCP lifetime τGL.
The probability of FCP tunneling between two grains is
determined by the conditional probability of two one-electron
hopping events and is given by WΓ ¼ Γ2τGL. Returning to
the situation of FCPs above H c2ð0Þ, one can identify the
tunneling rate by the temperature T, while τGL corresponds
to τQF. In order to get a final expression, σðALÞ$ should be
therefore multiplied by the probability factor WQF ¼ T2τQF
of the FCP hopping to a neighboring trajectory:

σðALÞxx ∼
e2

ℏ

!
T
Tc0

"
2 1

~h2
:

In order to estimate the contribution of QFs to the
fluctuation magnetic susceptibility of the SC in the vicinity
of H c2ð0Þ, one can apply Langevin’s formula to a coherent
cluster of FCPs and identify its average size with the rotator
radius; one finds

χ ðALÞð2Þ ¼
e2NQF

ð2Þ

c2m $ hξ2QFð ~hÞi ∼
e2ΔBCS

c2
ξ2BCS
~h

; ð20Þ

in complete agreement with Galitski and Larkin (2001a).
Here it was assumed that the ratio of the FCP concentration
over its mass in the region of quantum fluctuations is

NQF
ð2Þ=m

$ ∼ ΔBCS—with logarithmic accuracy and in analogy
to Eq. (7).
Finally, one can reproduce the contribution of QFs to the

Nernst coefficient. Close to H c2ð0Þ, the chemical potential of
FCPs can be written as μðQFÞ ¼ −ΔBCS

~h (in analogy to that
one close to Tc0). Its temperature derivative differs from zero
due to the temperature dependence of H c2ðTÞ:

dμðQFÞ=dT ∼ dH c2ðTÞ=dT ∼ −T=ΔBCS: ð21Þ

Using the relation between the latter and the Nernst coef-
ficient, it is possible to reproduce one of the results of Serbyn
et al. (2009) (with accuracy up to the numerical factor):

νðQFÞ ∼
τQF
m $c

!
dμðQFÞ

dT

"
∼ −

kBξ2BCS
cℏ

!
kBT
ΔBCS

"
1

~h
: ð22Þ

III. BASIC ELEMENTS OF MICROSCOPIC DESCRIPTION
OF SF IN MAGNETIC FIELD

Let us begin by recalling the basic ideas of the microscopic
description of fluctuations in the normal phase of a super-
conductor. For this purpose one can employ the formalism
of the Matsubara diagrammatic technique. In the BCS theory,
the electron-electron attraction leads to the reconstruction
of the ground state of the electron system of a normal metal
upon approaching the critical temperature from above
(T → TBCS

c þ 0). Formally, this fact is manifested by the
appearance of a pole in the two-particle Green’s function

Lðp; p0; qÞ ¼ hTτ½~ψpþq;σ ~ψ−p;−σ ~ψ
þ
p0þq;σ0 ~ψ

þ
−p0;−σ0'i; ð23Þ

where ~ψpþq;σ are electron field operators, Tτ is the time
ordering operator, and 4D vector notations for electron
momentum (or other quantum numbers) are used. The two-
particle Green’s function can be expressed in terms of the
vertex part (Abrikosov et al., 1965). It is this vertex part of the
electron-electron interaction in the Cooper channel Lðq;ΩkÞ
that is called the fluctuation propagator.
The Dyson equation for Lðq;ΩkÞ, accounting for the

electron-electron attraction in the ladder approximation, is
represented graphically in Fig. 7. The solid lines denote the
single-particle Green’s functions, and the wavy lines corre-
spond to the fluctuation propagators. The equation can be
written analytically as

L−1ðq;ΩkÞ ¼ −g−1 þ ⟪Πðq;ΩkÞ⟫imp; ð24Þ

FIG. 7. The Dyson equation for the fluctuation propagator
(wavy lines) in the ladder approximation. Solid lines represent
one-electron Green’s functions, the circles represent the electron-
electron interactions, and the triangles correspond to the Cooper-
ons (see Fig. 8).
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completely destroy the phase coherence, whereas the latter
disappears since the magnetic field suppresses the fluctuation
gap in the one-electron spectrum. Therefore the effect of
fluctuations on the conductivity at zero temperature is reduced
to the renormalization of the one-electron diffusion coeffi-
cient. In this region FCPs occupy the lowest Landau level, but
all dynamic fluctuations in the frequency interval from 0 to
ΔBCS should be taken into account:

σðDCRÞxx ∼ −
e2

ΔBCS

Z
ΔBCS

0

dω
~hþ ℏω=ΔBCS

∼ −
e2

ℏ
ln
1

~h
: ð19Þ

In terms of the characteristics τQF and ξQF for QFs, one can
understand the meaning of the QF contributions to different
physical values in the vicinity of H c2ð0Þ and derive others,
which are essential in this region. For example, one could
estimate the direct contribution of the FCPs to conductivity
by replacing τGL → τQF in the classic AL formula, which

would give σðALÞ$ ∼ ðe2=ℏÞτQF. Nevertheless, as already
noted, FCPs at zero temperature cannot drift along the
electric field but rotate only around fixed centers. As
temperature deviates from zero, the FCPs can change their
state due to the interaction with the thermal bath, i.e.,
hopping to an adjacent rotation trajectory along the applied
electric field becomes possible. This means that FCPs can
participate in longitudinal charge transport as well. This
process can be mapped to the paraconductivity of granular
superconductors (Lerner, Varlamov, and Vinokur, 2008) at
temperatures above Tc0, where the tunneling of FCPs
between grains occurs in two steps: first one electron jumps,
then the second follows. The probability of each hopping
event is proportional to the intergrain electron tunneling
rate Γ. To conserve the superconducting coherence between
both events, the latter should occur in the FCP lifetime τGL.
The probability of FCP tunneling between two grains is
determined by the conditional probability of two one-electron
hopping events and is given by WΓ ¼ Γ2τGL. Returning to
the situation of FCPs above H c2ð0Þ, one can identify the
tunneling rate by the temperature T, while τGL corresponds
to τQF. In order to get a final expression, σðALÞ$ should be
therefore multiplied by the probability factor WQF ¼ T2τQF
of the FCP hopping to a neighboring trajectory:

σðALÞxx ∼
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T
Tc0

"
2 1

~h2
:

In order to estimate the contribution of QFs to the
fluctuation magnetic susceptibility of the SC in the vicinity
of H c2ð0Þ, one can apply Langevin’s formula to a coherent
cluster of FCPs and identify its average size with the rotator
radius; one finds

χ ðALÞð2Þ ¼
e2NQF

ð2Þ

c2m $ hξ2QFð ~hÞi ∼
e2ΔBCS

c2
ξ2BCS
~h

; ð20Þ

in complete agreement with Galitski and Larkin (2001a).
Here it was assumed that the ratio of the FCP concentration
over its mass in the region of quantum fluctuations is

NQF
ð2Þ=m

$ ∼ ΔBCS—with logarithmic accuracy and in analogy
to Eq. (7).
Finally, one can reproduce the contribution of QFs to the

Nernst coefficient. Close to H c2ð0Þ, the chemical potential of
FCPs can be written as μðQFÞ ¼ −ΔBCS

~h (in analogy to that
one close to Tc0). Its temperature derivative differs from zero
due to the temperature dependence of H c2ðTÞ:

dμðQFÞ=dT ∼ dH c2ðTÞ=dT ∼ −T=ΔBCS: ð21Þ

Using the relation between the latter and the Nernst coef-
ficient, it is possible to reproduce one of the results of Serbyn
et al. (2009) (with accuracy up to the numerical factor):

νðQFÞ ∼
τQF
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dμðQFÞ
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∼ −

kBξ2BCS
cℏ

!
kBT
ΔBCS

"
1
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III. BASIC ELEMENTS OF MICROSCOPIC DESCRIPTION
OF SF IN MAGNETIC FIELD

Let us begin by recalling the basic ideas of the microscopic
description of fluctuations in the normal phase of a super-
conductor. For this purpose one can employ the formalism
of the Matsubara diagrammatic technique. In the BCS theory,
the electron-electron attraction leads to the reconstruction
of the ground state of the electron system of a normal metal
upon approaching the critical temperature from above
(T → TBCS

c þ 0). Formally, this fact is manifested by the
appearance of a pole in the two-particle Green’s function

Lðp; p0; qÞ ¼ hTτ½~ψpþq;σ ~ψ−p;−σ ~ψ
þ
p0þq;σ0 ~ψ

þ
−p0;−σ0'i; ð23Þ

where ~ψpþq;σ are electron field operators, Tτ is the time
ordering operator, and 4D vector notations for electron
momentum (or other quantum numbers) are used. The two-
particle Green’s function can be expressed in terms of the
vertex part (Abrikosov et al., 1965). It is this vertex part of the
electron-electron interaction in the Cooper channel Lðq;ΩkÞ
that is called the fluctuation propagator.
The Dyson equation for Lðq;ΩkÞ, accounting for the

electron-electron attraction in the ladder approximation, is
represented graphically in Fig. 7. The solid lines denote the
single-particle Green’s functions, and the wavy lines corre-
spond to the fluctuation propagators. The equation can be
written analytically as

L−1ðq;ΩkÞ ¼ −g−1 þ ⟪Πðq;ΩkÞ⟫imp; ð24Þ

FIG. 7. The Dyson equation for the fluctuation propagator
(wavy lines) in the ladder approximation. Solid lines represent
one-electron Green’s functions, the circles represent the electron-
electron interactions, and the triangles correspond to the Cooper-
ons (see Fig. 8).
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where the polarization operator Πðq;ΩkÞ is defined as a loop
of two single-particle Green’s functions in the particle-particle
channel6:

Πðq;ΩkÞ ¼ T
X

εn

Z
d3p
ð2πÞ3

Gðpþ q; εnþkÞGð−p; ε−nÞ: ð25Þ

Here Ωk ¼ 2πT and εn ¼ ð2nþ 1ÞπT are bosonic and fer-
mionic Matsubara frequencies, the symbol ⟪ % % %⟫imp denotes
averaging over the position of impurities.
Let us emphasize that the two quantities Lðp; p0; qÞ and

Lðq;ΩkÞ are closely connected to each other (Larkin and
Varlamov, 2009). Upon integration over the momenta p
and p0, the former becomes an average of the product of
two Fourier components of the superconducting order param-
eter (Abrikosov et al., 1965):

Z
dpdp0Lðp; p0; qÞ ¼ 1

g2
hΔqΔ&

qi: ð26Þ

From the Dyson equation in the ladder approximation for
the two-particle Green’s function (23), similar to the one
shown in Fig. 7, it follows that the expression in Eq. (26) can
be written in terms of the polarization operator Π and the
quantity L:

Z
dpdp0Lðp; p0; qÞ ¼ −

Π
1 − gΠ

¼ Π
g
L: ð27Þ

After analytic continuation to real frequencies, the fluctuation
propagator Lðq; iΩÞ coincides (up to a constant) with the
quantity defined by Eq. (26).
Next we consider a disordered 2D superconductor charac-

terized by the diffusion coefficient D ¼ v2Fτ=de, placed in a
perpendicular magnetic field H at temperatures T > TcðHÞ.
In order to be in the regime of Gaussian superconducting
fluctuations, i.e., to avoid the region of critical fluctuations,
the temperature must be above a certain value, which for
transport properties is determined by the condition

T=TcðHÞ − 1 ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gið2ÞðHÞ

q
. The Ginzburg-Levanyuk num-

ber close to Tc0 has the form

Gið2Þ ¼
7ζð3Þ
32π3

1

ρeTc0ξ2ð2Þ
; ð28Þ

with a slight dependence on the applied magnetic field away
from Tc0 (Larkin and Varlamov, 2009). Here ρe is the one-
electron density of states. The Ginzburg-Levanyuk parameter
is of the order of ðp2

FlsÞ−1 on both ends of the lineHc2ðTÞ and
can reach values of up to 10−2. The constant ξð2Þ, already
introduced in Eq. (4), coincides with the BCS coherence
length of Cooper pairs at zero temperature, up to a numerical
factor. In the case of a superconductor with impurities, it is
related to the electron diffusion coefficient ξ2 ¼ πD=8Tc0.

We assume for the temperature T ≪ min fτ−1;ωDg in
order to stay both in the diffusive regime of electron
scattering and in the framework of the BCS model (τ is
the electron elastic scattering time at impurities). The mag-
nitude of the magnetic field is limited by two conditions:
it must (i) remain below the regime of Shubnikov–de Haas
oscillations ΩHτ ≲ 1 ⇔ H ≲ ðTc0τÞ−1Hc2ð0Þ, and (ii) stay
below the Clogston limit H ≲ ðεFτÞHc2ð0Þ, i.e., H=Hc2ð0Þ ≪
min fðTc0τÞ−1; εFτg.
The single-electron state in the magnetic field in the

presence of impurity scattering can be described by the
Green’s function written in the form of a series over
Landau state eigenfunctions φkðx − l2

HpyÞ:

Gðx;x0;py;pz;εlÞ¼
X

k

φkðx−l2
HpyÞφ&

kðx0−l2
HpyÞ

i~εl−ξðk;pzÞ
; ð29Þ

where ~εl ¼ εl þ ð1=2τÞsgnεl, ξðk; pzÞ ¼ ωcðkþ 1=2Þ þ
ξzðpzÞ is the quasiparticle energy at the corresponding
Landau level (ωc is its cyclotron frequency), lH ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cℏ=ðeHÞ

p
is the electron magnetic length, and ξzðpzÞ is

its part related to the motion along the direction of the
magnetic field. The latter will be omitted in the discussion
of the properties of 2D superconductors. For the energy-
independent width of the Landau levels, a closed expression
for the Green’s function can be obtained by a straightforward
summation over quantum numbers or by using Schwinger’s
proper time method [see, for example, Gusynin, Loktev, and
Shovkovyi (1995)].
In addition to the appearance of the imaginary part of the

self-energy in the one-particle Green’s function [see Eq. (29)],
the effect of coherent electron scattering on impurities results
in the renormalization of the vertex part in the particle-particle
channel. It is determined by the Dyson equation in the ladder
approximation (see Fig. 8).
The details of the derivations can be found in Larkin and

Varlamov (2009); here we present only the results necessary
for further discussion. The Cooperon shown in Fig. 8 has the
following form in the Landau representation:

(a)

(b)

FIG. 8. (a) The Dyson equation for the Cooperon, i.e., the vertex
that accounts for the result of averaging over elastic impurity
scattering of electrons in the ladder approximation. Solid lines
correspond to bare one-electron Green’s functions. The dashed
line is associated with an impurity correlator hU2i ¼ 1=ð2πρeτÞ.
(b) The analogous Dyson equation for the four-leg Cooperon in
the ladder approximation.6In the following we mainly use units with ℏ ¼ kB ¼ c ¼ 1.
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λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form

L−1
n ðΩkÞ ¼ −ρe

!
ln

T
Tc0

þ ψ

"
1

2
þ jΩkjþ ΩHðnþ 1=2Þ

4πT

#

− ψ

"
1

2

#$
: ð32Þ

An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
~Hc2ð0Þ

¼ π2

8γE

H
Hc2ð0Þ

¼ 0.69
H

Hc2ð0Þ
:

In these dimensionless units, the fluctuation propagator (32)
acquires the form

L−1
n ðΩkÞ ¼ −ρeEnðt; h; jkjÞ:

The function

Enðt;h;xÞ≡ ln tþψ

!
xþ1

2
þ 4h
π2 t

"
nþ1

2

#$
−ψ

"
1

2

#
ð33Þ

and its derivatives with respect to the argument x,

EðnÞ
n ðt; h; xÞ≡ ∂n

∂xn Enðt; h; xÞ

¼ 2−nψ ðnÞ
!
1þ x
2

þ 4h
π2 t

"
nþ 1

2

#$
; ð34Þ

play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:

"∂En

∂h
#

¼ 8

π2 t

"
nþ 1

2

#
E0
n;

"∂2En

∂h2
#

¼
!

8

π2 t

"
nþ 1

2

#$
2

E00
n: ð35Þ

Throughout this review we present asymptotic expressions
of fluctuation contributions in nine different domains of the
phase diagram, shown and described in Fig. 9. Domains I–III
encompass the region of temperatures close to Tc0 and fields
h ≪ 1, corresponding to the regime of classical thermal
fluctuations accessible in the GL approach (with some restric-
tions for fluctuation diamagnetism). The vicinity of the

II
I

III

IV
V

VI
VII

classical, strong fields

Ginzburg -Landau
reg ion

Ginzburg -Landau
reg ion

quantum

quantum-to-
classical

VIII

IX

1

0.69

h

t

superconducting

0

normal

0

FIG. 9. Left: Schematic representation of the regions of different behavior of superconducting fluctuations in the h-t diagram. From
Glatz, Varlamov, and Vinokur, 2011a. Right: Classification of domains in terms of different limits for t and h. Here ϵ≡ ln t,
~h ¼ ½H −Hc2ðTÞ&=Hc2ðTÞ;H > Hc2ðTÞ.
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Nernst coefficient, in particular, validating the third law of
thermodynamics.
In the case of measurements of the Nernst-Ettingshausen

coefficient with a high resistive voltmeter, its thermodynamic
part (without the contribution of magnetization currents)
can be related to the temperature derivative of the chemical
potential (Serbyn et al., 2009; Varlamov and Kavokin, 2009)

νðthÞðdÞ ¼
σðdÞ

NðdÞce2

!
dμðdÞ
dT

"
: ð11Þ

For the electron gas in a normal metal μðTÞ ≈
μð0Þ − πk2BT

2=½12μð0Þ% and Eq. (11) leads to the known
Sondheimer result (Sondheimer, 1948) for the case of electron
scattering on elastic impurities:

νe ¼ −
πτ

6m ec

!
kBT
μð0Þ

"
;

proportional to the small electron-hole asymmetry factor.
Alternatively, one could also try to use Eq. (11) with the

values σðALÞxxðdÞðϵÞ and NðdÞðϵÞ presented earlier. However, one
needs to clarify what the chemical potential of fluctuating
Cooper pairs μðflÞ is since it is known that in thermal
equilibrium the chemical potential of a system with variable
number of particles is zero, such as the textbook examples of
photon or phonon gases. A naive application of this “theorem”
to the FCP “gas” leads to the wrong conclusion that μðflÞ ¼ 0.
However, one needs to be careful when dealing with Cooper
pairs, since they do not form an isolated system, but are rather
only one subsystem with the other being formed by fermionic
quasiparticles, which always have to be taken into account as
well. In a multicomponent system, the chemical potential of
the ith component μi is defined as the derivative of the free
energy with respect to the number of particles of the ith kind:

μi ¼ ð∂FðflÞ=∂NiÞV;T;Nj
; ð12Þ

provided the numbers of particles of all other species are fixed
Nj≠i ¼ const. In deriving the condition for thermodynamic
equilibrium, one should now take into account the fact that the
creation of a Cooper pair must be accompanied by removing
two quasiparticles from the fermionic subsystem. This leads
to μðflÞ − 2μðqpÞ ¼ 0, where μðqpÞ is the chemical potential of
quasiparticles. Therefore, the equilibrium condition does not
fix μðflÞ, μðqpÞ to zero, even though the numbers of Cooper
pairs and quasiparticles are not conserved. The simplest way
to estimate μðflÞ is to identify it with the binding energy of
FCPs ΔEs taken with the opposite sign μðflÞ ¼ Tc0 − T.
A more consistent consideration performed in the frame-

work of the Ginzburg-Landau fluctuation theory confirms this
estimate. The fluctuation part of free energy close to Tc0 takes
the form (Larkin and Varlamov, 2009)

FðflÞ
ð2Þ ðϵÞ ¼ −

Tc0

4πξ2
ϵ ln

1

ϵ
: ð13Þ

Similarly, the coefficient in Eq. (7) can be expressed in terms
of the correlation length, Eq. (4), due to the relation between

the coefficients of the Ginzburg-Landau functional (Larkin
and Varlamov, 2009):

NðflÞ
ð2Þ ðϵÞ ¼

1

4πξ2
ln
1

ϵ
: ð14Þ

Substituting these expressions into Eq. (12) one finds

μðflÞð2Þ ¼

0

@∂FðflÞ
ð2Þ

∂NðflÞ
ð2Þ

1

A

V;T

¼
∂FðflÞ

ð2Þ=∂ξ
∂NðflÞ

ð2Þ=∂ξ
¼ −Tc0ϵ: ð15Þ

Applying Eq. (15) to the subsystem of FCPs close to Tc0
and identifying its conductivity with Eq. (9), one finds the
Nernst-Ettingshausen coefficient generated by FCPs in weak
fields close to Tc0:

νðthÞ;ðflÞð2Þ ¼ −
σðALÞxxð2Þ

ð2eÞ2NðflÞ
ð2Þc

¼ −
τGLðϵÞ
m &c

∼ −
kBξ2

cℏ
1

ϵ
; ð16Þ

which dramatically exceeds Sondheimer’s value. These strong
fluctuation effects are a consequence of the extremely strong
dependence of the chemical potential of FCPs on temperature
and the relatively small concentration of FCPs.

B. Quantum fluctuations in superconductors above Hc2ð0Þ

1. Dynamic clustering of fluctuation Cooper pairs

The qualitative picture for SF in the quantum region,
at very low temperatures and close to Hc2ð0Þ, drastically
differs from the Ginzburg-Landau one, valid close to Tc0. As
we saw, the latter can be described in terms of a set of
long-wavelength fluctuationmodes [with λ ∼ ξGLðTÞ ≫ ξBCS]
of the order parameter, with characteristic lifetime
τGL ¼ πℏ=8kBðT − Tc0Þ. In the former, the order parameter
oscillates on much smaller scales, such that fluctuation modes
with wavelengths up to ξBCS and frequencies up toΔBCS=ℏ are
excited.
Indeed, one can visualize the situation in this region as

rotating FCPs, analogously to Cooper pairs within Abrikosov
vortices, just below Hc2ð0Þ. The period of Cooper pairs
rotating in an Abrikosov vortex in that region is τcp ∼
Ω−1

Hc2ð0Þ ∼ ΔBCS (ΩH ¼ 4DeH=c is the cyclotron frequency
of Cooper pairs) and the corresponding Larmor radius
is rL ∼ ξBCS.
The microscopic theory (Galitski and Larkin, 2001a; Glatz,

Varlamov, and Vinokur, 2011a) shows that close to Hc2ð0Þ at
zero temperature SFs are characterized by the lifetime

τQF ∼
Δ−1

BCS
~h

≫ τcp; ~h ¼ ½H −Hc2ð0Þ%=Hc2ð0Þ; ð17Þ

and by the spatial scale

ξQFð ~hÞ ∼
ξBCSffiffiffi

~h
p ≫ ξBCS: ð18Þ

One sees that the dependence of both these values on the
parameter governing the transition is completely symmetric to
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This finally results in

λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form
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An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
~Hc2ð0Þ

¼ π2

8γE

H
Hc2ð0Þ

¼ 0.69
H

Hc2ð0Þ
:

In these dimensionless units, the fluctuation propagator (32)
acquires the form

L−1
n ðΩkÞ ¼ −ρeEnðt; h; jkjÞ:
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:
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Throughout this review we present asymptotic expressions
of fluctuation contributions in nine different domains of the
phase diagram, shown and described in Fig. 9. Domains I–III
encompass the region of temperatures close to Tc0 and fields
h ≪ 1, corresponding to the regime of classical thermal
fluctuations accessible in the GL approach (with some restric-
tions for fluctuation diamagnetism). The vicinity of the

II
I

III

IV
V

VI
VII

classical, strong fields

Ginzburg -Landau
reg ion

Ginzburg -Landau
reg ion

quantum

quantum-to-
classical

VIII

IX

1

0.69

h

t

superconducting

0

normal

0

FIG. 9. Left: Schematic representation of the regions of different behavior of superconducting fluctuations in the h-t diagram. From
Glatz, Varlamov, and Vinokur, 2011a. Right: Classification of domains in terms of different limits for t and h. Here ϵ≡ ln t,
~h ¼ ½H −Hc2ðTÞ&=Hc2ðTÞ;H > Hc2ðTÞ.

A. A. Varlamov, A. Galda, and A. Glatz: Fluctuation spectroscopy: From Rayleigh-Jeans …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015009-13

λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form
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An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
~Hc2ð0Þ

¼ π2

8γE

H
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¼ 0.69
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:

In these dimensionless units, the fluctuation propagator (32)
acquires the form
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:
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Throughout this review we present asymptotic expressions
of fluctuation contributions in nine different domains of the
phase diagram, shown and described in Fig. 9. Domains I–III
encompass the region of temperatures close to Tc0 and fields
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fluctuations accessible in the GL approach (with some restric-
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valid for

λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form

L−1
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An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
~Hc2ð0Þ

¼ π2

8γE

H
Hc2ð0Þ

¼ 0.69
H

Hc2ð0Þ
:

In these dimensionless units, the fluctuation propagator (32)
acquires the form
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n ðΩkÞ ¼ −ρeEnðt; h; jkjÞ:
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:
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Throughout this review we present asymptotic expressions
of fluctuation contributions in nine different domains of the
phase diagram, shown and described in Fig. 9. Domains I–III
encompass the region of temperatures close to Tc0 and fields
h ≪ 1, corresponding to the regime of classical thermal
fluctuations accessible in the GL approach (with some restric-
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λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form

L−1
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An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
~Hc2ð0Þ

¼ π2

8γE

H
Hc2ð0Þ

¼ 0.69
H

Hc2ð0Þ
:

In these dimensionless units, the fluctuation propagator (32)
acquires the form

L−1
n ðΩkÞ ¼ −ρeEnðt; h; jkjÞ:
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:
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Throughout this review we present asymptotic expressions
of fluctuation contributions in nine different domains of the
phase diagram, shown and described in Fig. 9. Domains I–III
encompass the region of temperatures close to Tc0 and fields
h ≪ 1, corresponding to the regime of classical thermal
fluctuations accessible in the GL approach (with some restric-
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and

In dimensionless units

λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form
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An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
~Hc2ð0Þ

¼ π2

8γE

H
Hc2ð0Þ

¼ 0.69
H
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:

In these dimensionless units, the fluctuation propagator (32)
acquires the form
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:
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Throughout this review we present asymptotic expressions
of fluctuation contributions in nine different domains of the
phase diagram, shown and described in Fig. 9. Domains I–III
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λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form
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An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
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of fluctuation contributions in nine different domains of the
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encompass the region of temperatures close to Tc0 and fields
h ≪ 1, corresponding to the regime of classical thermal
fluctuations accessible in the GL approach (with some restric-
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λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form
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: ð32Þ

An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
~Hc2ð0Þ

¼ π2

8γE

H
Hc2ð0Þ

¼ 0.69
H

Hc2ð0Þ
:

In these dimensionless units, the fluctuation propagator (32)
acquires the form
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n ðΩkÞ ¼ −ρeEnðt; h; jkjÞ:
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:
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λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
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Finally, the expression for the fluctuation propagator in this
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An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:
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with

λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form

L−1
n ðΩkÞ ¼ −ρe

!
ln

T
Tc0

þ ψ

"
1

2
þ jΩkjþ ΩHðnþ 1=2Þ

4πT

#

− ψ

"
1

2

#$
: ð32Þ

An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
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8γE
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:
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
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Throughout this review we present asymptotic expressions
of fluctuation contributions in nine different domains of the
phase diagram, shown and described in Fig. 9. Domains I–III
encompass the region of temperatures close to Tc0 and fields
h ≪ 1, corresponding to the regime of classical thermal
fluctuations accessible in the GL approach (with some restric-
tions for fluctuation diamagnetism). The vicinity of the
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Standard Kubo formalism

• Current:

• Conductivity:

• Nernst (w/o magnetization):

• Tunnel current:

the 0D granule is inversely proportional to the mag-
netic field.
In Fig. 13, we present isothermal magnetization curves from

Lascialfari and Rigamonti (2017). The average size of the

particles, calculated based on the analysis of the up-turn field,
was found to be in excellent agreement with direct experimental
measurements. In the immediate vicinity of the transition, the
authors observed a deviation of the experimental curves from
the predictions of the quadratic GL approximation. Yet these
data (even the curve corresponding to T ¼ 7.095 K) turned out
to be in good agreement with the curves of fluctuation
magnetization obtained using the complete GL functional
including the fourth order term (Larkin and Varlamov, 2009).

V. FLUCTUATION CONDUCTIVITY

A. General expression for fluctuation conductivity

In the standard Kubo formalism, the electric current is
related to the vector potential by means of the electromagnetic
response operator

jα ¼ −
Z

Qαγðr; r0; t; t0ÞAγðr0; t0Þdr0dt0: ð53Þ

In the framework of the diagrammatic technique at finite
temperatures, the latter is graphically represented by a loop
diagram comprised of two-electron Green’s functions con-
nected through electromagnetic vertices.
Taking fluctuation pairing into account leads to a renorm-

alization of the Green’s functions and the vertices by inter-
actions in the Cooper channel (see Fig. 7), with additional
averaging over impurity positions. This results in ten leading-
order corrections to the electromagnetic response operator
shown in Fig. 14, each containing a small parameter of the
fluctuation theory [Ginzburg-Levanyuk number, Eq. (28)] as a
prefactor.
The fluctuation correction to conductivity is determined by

the imaginary part of the sum of all these diagrams:

FIG. 13. Magnetization curves above Tc0 ¼ 7.09$ 0.005 K for
the Pb sample with average particle diameters d ¼ 75 nm.
(a) The experimental data are compared to the theoretical curves
obtained in the GL quadratic approximation [see Eq. (52)].
(b) The same experimental data are compared with the predic-
tions done using the complete GL functional. From Lascialfari
and Rigamonti, 2017.

(a)

(c) (d)

(b)

FIG. 14. Feynman diagrams for the leading-order contributions
to the electromagnetic response operator. Wavy lines correspond
to fluctuation propagators [Eq. (32)], solid lines with arrows
represent impurity-averaged normal-state electron Green’s func-
tions, crossed circles are electric field vertices, dashed lines with a
circle represent additional impurity renormalizations, and trian-
gles and dotted rectangles are impurity ladders accounting for
the electron scattering at impurities [Cooperons, see Eqs. (30) and
(31)]. From Glatz, Varlamov, and Vinokur, 2011a.

0

χ/χ

1 2 3 4 5

h

hc2

χ(fl)(h,t=10-4)

hM(h,T=0)

FIG. 12. Fluctuation contribution to the susceptibility of a 2D
impure superconductor at low temperatures as a function of the
magnetic field above hc2. The solid blue (darker) line shows
the behavior of Eq. (38) at t ¼ 10−4, while the solid orange
(lighter) line shows the approximate expression at zero temper-
ature obtained from Eq. (50) as ∂hMðh; T ¼ 0Þ. Both curves
show similar asymptotic behavior in domains IV and IX. The
units of χ are arbitrary.
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σðflÞðT; H Þ ¼ −lim
ω→0

ImQðflÞðω; T; H Þ
ω

: ð54Þ

As mentioned, the effect of SF on conductivity close to the
superconducting critical temperature Tc0 is typically discussed
in terms of three major contributions: the Aslamazov-Larkin
process, corresponding to the opening of a new channel for the
charge transfer (Aslamasov and Larkin, 1968), the anomalous
Maki-Thompson process, which describes single-particle
quantum interference at impurities in the presence of SFs
(Maki, 1968; Thompson, 1970), and the change of the single-
particle DOS due to their involvement in the pairing of FCPs
(Dorin et al., 1993; Ioffe et al., 1993). The AL and MT
processes result in the appearance of positive singular con-
tributions to conductivity (diagrams 1 and 2 in Fig. 14). In
contrast, the DOS process depletes single-particle excitations
at the Fermi level and leads to a decrease of the Drude
conductivity (diagrams 3–6 in Fig. 14). The latter contribution
is less singular in temperature than the first two and can
compete with them only if the AL and MT processes are
suppressed (for example, in the case of c-axis transport in
layered superconductors). Diagrams 7–10 represent the
renormalization of the diffusion coefficient (DCR diagrams)
due to the presence of fluctuations, which are nonsingular
close to Tc0 in two and three dimensions.
These results were first obtained for the vicinity of Tc0

and later generalized to temperatures far from the transition
(Aslamasov and Varlamov, 1980; Larkin, 1980; Altshuler,
Reizer, andVarlamov, 1983) and to highmagnetic fields (Lopes
dos Santos and Abrahams, 1985). In 2D superconductors
the slowly (double-logarithmically) decreasing contributions
described by diagrams 3–10 start to dominate far from the
critical temperature (T ≫ Tc0). Later, the effect of quantum
fluctuations on conductivity was studied. Beloborodov and
Efetov (1999) and Beloborodov, Efetov, and Larkin (2000)

found that in granular superconductors at very low temper-
atures and close to H c2ð0Þ, the singular AL contribution decays
as T2, while the fluctuation suppression of the quasiparticle
DOS at zero temperature results in a negative contribution to
conductivity, which grows logarithmically in magnitude for
H → H c2ð0Þ. In Sec. X.D,we come back to the case of granular
superconductors.
The effects of quantum fluctuations on the magnetoconduc-

tivity of 2D superconductors, close to zero temperatures, were
studied by Galitski and Larkin (2001a). In this work, all ten
diagrams shown in Fig. 14 were analyzed in the LLL approxi-
mation, which is valid close to the critical line H c2ðTÞ. A
nontrivial nonmonotonic temperature dependence of the fluc-
tuation conductivity at fields close to H c2ð0Þ was found and,
analogously to the situation in granular SCs close to zero
temperature, the fluctuation contribution is shown to be
negative, i.e., QFs increase resistivity and not conductivity—
in contrast to the behavior close to Tc0.
The problem of calculating the fluctuation conductivity of

a disordered 2D superconductor placed in a perpendicular
magnetic field was revisited ten years later in the frameworks
of two different approaches by Glatz, Varlamov, and Vinokur
(2011b) (the Matsubara diagrammatic technique) and
Tikhonov, Schwiete, and Finkel’stein (2012) (the quantum
transport equation). In these papers exact calculations
(without the use of the LLL approximation) were performed
in the first order of perturbation theory, valid in the entire H -T
phase diagram beyond the superconducting region, i.e., for
fields and temperature obeying H ≥H c2ðTÞ or, equiva-
lently, T ≥Tc0ðH Þ.8
The complete expression for the fluctuation correction to

in-plane conductivity σðflÞxx ðT; H Þ of a disordered 2D SC in a
perpendicular magnetic field that holds in the T-H phase
diagram beyond the line H c2ðTÞ has the form (Glatz,
Varlamov, and Vinokur, 2011a, 2011b)

σðflÞxx ðt; hÞ ¼
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; ð55Þ

where γϕ ¼ π=ð8Tc0τϕÞ.
This complete expression allows for a straightforward

numerical evaluation and to derive asymptotic expressions in
all of its qualitatively different domains. A typical example

8The calculations were done within the model constraints speci-
fied in Sec. III and beyond the critical region.
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jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:

ð78Þ

Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form

νðflÞ ¼ β0R□
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ð80Þ

where η ¼ 4h=ðπ2 tÞ and β0 ¼ kBe=πℏ ¼ 6.68 nA=K is the quantum of thermoelectric conductance.
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The procedure of ensemble averaging with the density matrix
is described in detail by Richardson (1997). The tunneling
current is then determined by the loop (correlator) of two exact
one-electron Green’s functions GL and GR of the electrodes
(Varlamov and Dorin, 1983):

KðωkÞ ¼ 4T
X

εn

X

q;p

jTp;qj2GLðp; εn þ ωkÞGRðq; εnÞ. ð89Þ

Here the summations are performed over all momenta and
fermionic frequencies εn ¼ 2πTðnþ 1=2Þ. The external
bosonic frequency ωk ¼ 2πTk ðk ¼ 0; 1; 2;…Þ accounts for
the potential difference between the electrodes, and the factor
4 is due to the summation over the spin degrees of freedom.
The current is then given by

IðflÞðVÞ ¼ −eImKRðωk → −ieVÞ; ð90Þ

where the superscript R means that the correlator KðωkÞ is
continued to the plane of complex voltages in such a way
that it remains an analytic function in the upper complex
half plane.
The fluctuation correction to the tunneling current is

presented graphically by the diagram shown in Fig. 34(b).
The details of its calculation are reported by Glatz, Varlamov,
and Vinokur (2014), where the complete expression valid
for arbitrary temperatures, magnetic fields, and voltages was
derived:

IðflÞðt;h;vtÞ¼−
2eTc0Sh
π3σnRN

XMt

m ¼0

X∞

k¼0

ImE0
m ðk− ivtÞ
Em ðkÞ
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π3σnRN
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π
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$
; ð91Þ

with the dimensionless voltage v ¼ 2eV=ΔBCS used in the
parameter

vt ¼ v=ð2γEtÞ ¼ eV=ðπTÞ;

ΔBCS ¼ πTc0=γE the value of the BCS gap, and cutoff
Mt ¼ 1=ðtTc0τÞ.
Note that the AL and MT fluctuation contributions,

which are essential for the majority of the phenomena
discussed in this review, manifest themselves only in second
order ð∼jTp;kj4Þ in the barrier transparency (Larkin and
Varlamov, 2009).

D. Fluctuation pseudogap: Asymptotic analysis

We start the analysis of Eq. (91) in the strong pair-breaking
regime, when its second term is suppressed and the effect of
fluctuations is manifested by the pseudogap structure in tunnel
conductivity, already discussed qualitatively in the framework
of the phenomenological approach.

1. Tunnel conductivity in weak magnetic field

Close to Tc0, in domains I–III, in sufficiently weak
magnetic fields H ≪ Hc2ð0Þ, the most singular term in
Eq. (91) arises from zero frequency bosonic mode k ¼ 0.
The summation over Landau levels can be performed in terms
of polygamma functions ψ ðnÞðxÞ, and one finds an expression
valid for any combination of ϵ and h ≪ 1:

IðflÞðϵ; h; vtÞ ¼ −
eTS

2π3σnRN

%
ln

1

2h
− ψ

"
1

2
þ ϵ
2h

#&

× Imψ 0
"
1

2
ð1 − ivtÞ

#
: ð92Þ

Equation (92) reproduces the results of Varlamov and Dorin
(1983) and Reizer (1993). The corresponding contribution to
the tunneling conductance is

σðflÞtunðϵ; h; vtÞ ¼
Se2

4π4σnRN

%
ln

1

2h
− ψ

"
1

2
þ ϵ
2h

#&

× Reψ 00
"
1

2
ð1 − ivtÞ

#
; ð93Þ

which gives the pseudogap structure in the limit of the zero
field (domain I)

σðflÞtun ðϵ; vtÞ ¼
Se2

4π4σnRN
ln
1

ϵ
Reψ 00

"
1

2
ð1 − ivtÞ

#
: ð94Þ

A corresponding plot for the tunneling resistance is shown in
Fig. 38 for different values of ϵ. The value of the pseudogap
follows from the maximum of Eq. (94), which appears for
vt ¼ 1. This gives

eVmaxðϵ; h ¼ 0Þ ¼ γEΔBCSð1þ ϵÞ: ð95Þ

Far from Tc0, in domain VIII, one can restrict the consid-
eration to the study of the temperature dependence of the
magnitude of the fluctuation contribution to the differential
conductivity at zero voltage. When T ≫ Tc0 one can approxi-
mate the sums in Eq. (91) by integrals. For the k integration it
was assumed that the main k dependence is due to the
nominator and it can be omitted in the argument of the
ψ function. Cutting off the double logarithm divergence at
the upper limit in the usual way, one finds

σðflÞtun ðt≫ 1;vt ¼ 0Þ¼−
Se2

4π2σnRN

"
ln ln

1

Tc0τ
− lnln t

#
; ð96Þ
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The procedure of ensemble averaging with the density matrix
is described in detail by Richardson (1997). The tunneling
current is then determined by the loop (correlator) of two exact
one-electron Green’s functions GL and GR of the electrodes
(Varlamov and Dorin, 1983):

KðωkÞ ¼ 4T
X

εn

X

q;p

jTp;qj2GLðp; εn þ ωkÞGRðq; εnÞ. ð89Þ

Here the summations are performed over all momenta and
fermionic frequencies εn ¼ 2πTðnþ 1=2Þ. The external
bosonic frequency ωk ¼ 2πTk ðk ¼ 0; 1; 2;…Þ accounts for
the potential difference between the electrodes, and the factor
4 is due to the summation over the spin degrees of freedom.
The current is then given by

IðflÞðVÞ ¼ −eImKRðωk → −ieVÞ; ð90Þ

where the superscript R means that the correlator KðωkÞ is
continued to the plane of complex voltages in such a way
that it remains an analytic function in the upper complex
half plane.
The fluctuation correction to the tunneling current is

presented graphically by the diagram shown in Fig. 34(b).
The details of its calculation are reported by Glatz, Varlamov,
and Vinokur (2014), where the complete expression valid
for arbitrary temperatures, magnetic fields, and voltages was
derived:
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with the dimensionless voltage v ¼ 2eV=ΔBCS used in the
parameter

vt ¼ v=ð2γEtÞ ¼ eV=ðπTÞ;

ΔBCS ¼ πTc0=γE the value of the BCS gap, and cutoff
Mt ¼ 1=ðtTc0τÞ.
Note that the AL and MT fluctuation contributions,

which are essential for the majority of the phenomena
discussed in this review, manifest themselves only in second
order ð∼jTp;kj4Þ in the barrier transparency (Larkin and
Varlamov, 2009).

D. Fluctuation pseudogap: Asymptotic analysis

We start the analysis of Eq. (91) in the strong pair-breaking
regime, when its second term is suppressed and the effect of
fluctuations is manifested by the pseudogap structure in tunnel
conductivity, already discussed qualitatively in the framework
of the phenomenological approach.

1. Tunnel conductivity in weak magnetic field

Close to Tc0, in domains I–III, in sufficiently weak
magnetic fields H ≪ Hc2ð0Þ, the most singular term in
Eq. (91) arises from zero frequency bosonic mode k ¼ 0.
The summation over Landau levels can be performed in terms
of polygamma functions ψ ðnÞðxÞ, and one finds an expression
valid for any combination of ϵ and h ≪ 1:
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Equation (92) reproduces the results of Varlamov and Dorin
(1983) and Reizer (1993). The corresponding contribution to
the tunneling conductance is

σðflÞtunðϵ; h; vtÞ ¼
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which gives the pseudogap structure in the limit of the zero
field (domain I)
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A corresponding plot for the tunneling resistance is shown in
Fig. 38 for different values of ϵ. The value of the pseudogap
follows from the maximum of Eq. (94), which appears for
vt ¼ 1. This gives

eVmaxðϵ; h ¼ 0Þ ¼ γEΔBCSð1þ ϵÞ: ð95Þ

Far from Tc0, in domain VIII, one can restrict the consid-
eration to the study of the temperature dependence of the
magnitude of the fluctuation contribution to the differential
conductivity at zero voltage. When T ≫ Tc0 one can approxi-
mate the sums in Eq. (91) by integrals. For the k integration it
was assumed that the main k dependence is due to the
nominator and it can be omitted in the argument of the
ψ function. Cutting off the double logarithm divergence at
the upper limit in the usual way, one finds

σðflÞtun ðt≫ 1;vt ¼ 0Þ¼−
Se2
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the heat flow (Mahan, 2000) results in the violation of the
third law of thermodynamics which can be rectified only by
taking into account the fluctuating Meissner magnetization
above Hc2ð0Þ.

1. Definition of the NE coefficient

Let us review the definition of transport coefficients and
consider a conductor placed in a magnetic field H, subjected
to an applied temperature gradient ∇T. The electric and heat
transport currents in it are related to the applied weak-enough
electric field and temperature gradient by means of the
relations

jðeÞtr;α ¼ σαδðHÞEδ þ βαδðHÞ∇δT; ð72Þ

jðhÞtr;α ¼ γαδðHÞEδ − καδðHÞ∇δT; ð73Þ

where βαβðHÞ; γαβðHÞ and καβðHÞ are thermoelectricity and
heat conductivity tensors (here we use two superscripts for
tensors and subscripts for vector components). Thermoelectric
tensors βαβ and γαβ are connected by the Onsager relation
γαβðHÞ ¼ −Tβαβð−HÞ. Let us mention that the validity of the
Onsager relation follows from the principle of the symmetry
of transport coefficients, which is based on the invariance
of the quantum mechanical equations with respect to time
reversal.
The off-diagonal components of the tensor βαβ in the

absence of a magnetic field are equal to zero. If besides a
temperature gradient ∇T also a magnetic field H is applied to
the sample, a potential difference VðNEÞ appears along the y
axis. The circuit in this direction is supposed to be broken.
The corresponding open-circuit conditions are ∇xT ≠ 0,
jðhÞtr;x ¼ jðeÞtr;x ¼ jðeÞtr;y ¼ 0; see Fig. 25. This so-called Nernst-
Ettingshausen (or Nernst) effect10 is well pronounced in
semiconductors but is usually small in good metals. It is
characterized by the NE coefficient which can be expressed by
means of the conductivity and thermoelectric tensors11:

ν ¼
Ey

ð−∇xTÞH
¼ 1

H
βxyσxx − βxxσxy
ðσxxÞ2 þ ðσxyÞ2

: ð74Þ

Usually, when the Hall component of conductivity σxy ≪ σxx,
while both βxx and βxy are of the same order, Eq. (74) directly
relates the NE coefficient to the off-diagonal component of the
thermoelectric tensor

νðT;HÞ ¼ R
□

βxyðT;HÞ=H; ð75Þ

where R
□

¼ ðσxxÞ−1 is the sheet resistance of the film. In the
case under consideration, the validity of approximation (75) is
even more justified, considering the excess of the off-diagonal
thermoelectricity compared to the diagonal one.

2. Onsager relations and magnetization currents

It is well known that the absence of free-electron magnetism
in the classical theory is explained by the compensation of the
total current created by the electrons moving along closed
trajectories in the bulk of the sample by the current of the
electrons moving along the open “hopping” trajectories close
to its surface. In quantum theory such a compensation does
not occur (Teller, 1931) and Landau diamagnetism (Landau,
1930) takes place. In the middle of the 20th century a lively
debate concerning the fulfillment of reciprocal Onsager
relations in metals and semiconductors subjected to a mag-
netic field and gradient of temperature was taking place [see
Obraztsov (1964) and references therein]. Obraztsov demon-
strated the fact that microscopic surface currents inducing
electron magnetization can contribute considerably to the
density of the macroscopic current when a temperature
gradient is applied to the sample. Taking corresponding
contributions to the heat and electric currents flowing in
the system into account restores the fulfillment of the
reciprocal Onsager relations and validity of the third law of
thermodynamics.
The contribution to the electric current can be easily

expressed using Ampere’s law as

jmag ¼ c
4π

∇ × B;

where B ¼ Hþ 4πM, H is the spatially homogeneous
external magnetic field, and M is the local value of magneti-
zation. In the presence of a temperature gradient ∇xT one
can express the magnetization current as (Obraztsov, 1964;
Ussishkin, Sondhi, and Huse, 2002)

FIG. 25. Schematic representation of the FCP motion in a
superconducting film subjected to a temperature gradient along
its x axis. The concentration and size of FCPs vary with
temperature. The local magnetization parallel to the external
magnetic field varies along the x axis as well. The spatial
inhomogeneity of the magnetization leads to a transformation
of the FCP trajectories from circular to trochoidal, which is why
the magnetization currents appear. To compensate for these
currents a voltage is induced in the y direction that provides a
sizable contribution to the fluctuation NE coefficient.

10The Nernst-Ettingshausen effect is closely related to the Etting-
shausen effect, which is just the opposite: it consists of the
appearance of a temperature gradient in a conductor placed in
a magnetic field, when an electric current is applied.

11The Nernst signal is related to the NE coefficient through the
simple relation N ¼ νH.
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Figure 1 Nernst signal from sample 1. a,b, The Nernst signal (N ) as a function of
magnetic field for temperatures ranging from 0.19 K to 5.8 K, for sample 1 with
Tc = 0.165 K as detected by its resistive transition. A finite Nernst signal is present
for T > Tc. With increasing temperature, this signal decreases in magnitude and
becomes more field linear. c, The Nernst coefficient, ν = N/B, for the same sample
as a function of magnetic field in a log–log scale. Note that, except for the lowest
temperatures, the Nernst coefficient is constant at low magnetic field.

the Hall angle (tan θ = RH/ρxx , where RH is the Hall coefficient
and ρxx is the longitudinal resistivity). As seen in Fig. 2, in the
entire range of our measurements, the Nernst coefficient, ν, is three
orders of magnitude larger than Stan θ. In a multi-band metal, the
contribution of carriers with different signs to Stan θ cancel out and
its overall value could become smaller than ν (ref. 17), but such a
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Figure 2 Nernst signal from sample 2. a,b, The temperature dependence of the
Nernst coefficient (a) and the resistivity (b). The Nernst coefficient, which exceeds
the measured value of S tan θ at 2 T multiplied by 2,000, cannot be attributed to the
normal-state quasi-particles. c, The evolution of the Nernst signal with temperature
in sample 2 on a semi-log plot. The thick grey curve marks the onset of
superconductivity. Note the evolution of the Nernst signal across the critical
temperature. The large Nernst signal below Tc is caused by vortex movement due to
the thermal gradient and the reduction of the signal at lower fields for T = 0.25 K is
due to vortex pinning in the low-temperature-low-field region of the (B,T ) plane.

possibility can be easily ruled out here. The hypothetical existence
of two very small Fermi surface pockets hosting carriers of opposite
sign with long mean-free-path seems implausible. The small value
of tan θ ≈ 2 × 10−5 simply reflects an extremely short electronic
mean-free-path (of the order of interatomic distance ∼0.25 nm)
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the heat flow (Mahan, 2000) results in the violation of the
third law of thermodynamics which can be rectified only by
taking into account the fluctuating Meissner magnetization
above Hc2ð0Þ.

1. Definition of the NE coefficient

Let us review the definition of transport coefficients and
consider a conductor placed in a magnetic field H, subjected
to an applied temperature gradient ∇T. The electric and heat
transport currents in it are related to the applied weak-enough
electric field and temperature gradient by means of the
relations

jðeÞtr;α ¼ σαδðHÞEδ þ βαδðHÞ∇δT; ð72Þ

jðhÞtr;α ¼ γαδðHÞEδ − καδðHÞ∇δT; ð73Þ

where βαβðHÞ; γαβðHÞ and καβðHÞ are thermoelectricity and
heat conductivity tensors (here we use two superscripts for
tensors and subscripts for vector components). Thermoelectric
tensors βαβ and γαβ are connected by the Onsager relation
γαβðHÞ ¼ −Tβαβð−HÞ. Let us mention that the validity of the
Onsager relation follows from the principle of the symmetry
of transport coefficients, which is based on the invariance
of the quantum mechanical equations with respect to time
reversal.
The off-diagonal components of the tensor βαβ in the

absence of a magnetic field are equal to zero. If besides a
temperature gradient ∇T also a magnetic field H is applied to
the sample, a potential difference VðNEÞ appears along the y
axis. The circuit in this direction is supposed to be broken.
The corresponding open-circuit conditions are ∇xT ≠ 0,
jðhÞtr;x ¼ jðeÞtr;x ¼ jðeÞtr;y ¼ 0; see Fig. 25. This so-called Nernst-
Ettingshausen (or Nernst) effect10 is well pronounced in
semiconductors but is usually small in good metals. It is
characterized by the NE coefficient which can be expressed by
means of the conductivity and thermoelectric tensors11:

ν ¼
Ey

ð−∇xTÞH
¼ 1

H
βxyσxx − βxxσxy
ðσxxÞ2 þ ðσxyÞ2

: ð74Þ

Usually, when the Hall component of conductivity σxy ≪ σxx,
while both βxx and βxy are of the same order, Eq. (74) directly
relates the NE coefficient to the off-diagonal component of the
thermoelectric tensor

νðT;HÞ ¼ R
□

βxyðT;HÞ=H; ð75Þ

where R
□

¼ ðσxxÞ−1 is the sheet resistance of the film. In the
case under consideration, the validity of approximation (75) is
even more justified, considering the excess of the off-diagonal
thermoelectricity compared to the diagonal one.

2. Onsager relations and magnetization currents

It is well known that the absence of free-electron magnetism
in the classical theory is explained by the compensation of the
total current created by the electrons moving along closed
trajectories in the bulk of the sample by the current of the
electrons moving along the open “hopping” trajectories close
to its surface. In quantum theory such a compensation does
not occur (Teller, 1931) and Landau diamagnetism (Landau,
1930) takes place. In the middle of the 20th century a lively
debate concerning the fulfillment of reciprocal Onsager
relations in metals and semiconductors subjected to a mag-
netic field and gradient of temperature was taking place [see
Obraztsov (1964) and references therein]. Obraztsov demon-
strated the fact that microscopic surface currents inducing
electron magnetization can contribute considerably to the
density of the macroscopic current when a temperature
gradient is applied to the sample. Taking corresponding
contributions to the heat and electric currents flowing in
the system into account restores the fulfillment of the
reciprocal Onsager relations and validity of the third law of
thermodynamics.
The contribution to the electric current can be easily

expressed using Ampere’s law as

jmag ¼ c
4π

∇ × B;

where B ¼ Hþ 4πM, H is the spatially homogeneous
external magnetic field, and M is the local value of magneti-
zation. In the presence of a temperature gradient ∇xT one
can express the magnetization current as (Obraztsov, 1964;
Ussishkin, Sondhi, and Huse, 2002)

FIG. 25. Schematic representation of the FCP motion in a
superconducting film subjected to a temperature gradient along
its x axis. The concentration and size of FCPs vary with
temperature. The local magnetization parallel to the external
magnetic field varies along the x axis as well. The spatial
inhomogeneity of the magnetization leads to a transformation
of the FCP trajectories from circular to trochoidal, which is why
the magnetization currents appear. To compensate for these
currents a voltage is induced in the y direction that provides a
sizable contribution to the fluctuation NE coefficient.

10The Nernst-Ettingshausen effect is closely related to the Etting-
shausen effect, which is just the opposite: it consists of the
appearance of a temperature gradient in a conductor placed in
a magnetic field, when an electric current is applied.

11The Nernst signal is related to the NE coefficient through the
simple relation N ¼ νH.
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the heat flow (Mahan, 2000) results in the violation of the
third law of thermodynamics which can be rectified only by
taking into account the fluctuating Meissner magnetization
above Hc2ð0Þ.

1. Definition of the NE coefficient

Let us review the definition of transport coefficients and
consider a conductor placed in a magnetic field H, subjected
to an applied temperature gradient ∇T. The electric and heat
transport currents in it are related to the applied weak-enough
electric field and temperature gradient by means of the
relations

jðeÞtr;α ¼ σαδðHÞEδ þ βαδðHÞ∇δT; ð72Þ

jðhÞtr;α ¼ γαδðHÞEδ − καδðHÞ∇δT; ð73Þ

where βαβðHÞ; γαβðHÞ and καβðHÞ are thermoelectricity and
heat conductivity tensors (here we use two superscripts for
tensors and subscripts for vector components). Thermoelectric
tensors βαβ and γαβ are connected by the Onsager relation
γαβðHÞ ¼ −Tβαβð−HÞ. Let us mention that the validity of the
Onsager relation follows from the principle of the symmetry
of transport coefficients, which is based on the invariance
of the quantum mechanical equations with respect to time
reversal.
The off-diagonal components of the tensor βαβ in the

absence of a magnetic field are equal to zero. If besides a
temperature gradient ∇T also a magnetic field H is applied to
the sample, a potential difference VðNEÞ appears along the y
axis. The circuit in this direction is supposed to be broken.
The corresponding open-circuit conditions are ∇xT ≠ 0,
jðhÞtr;x ¼ jðeÞtr;x ¼ jðeÞtr;y ¼ 0; see Fig. 25. This so-called Nernst-
Ettingshausen (or Nernst) effect10 is well pronounced in
semiconductors but is usually small in good metals. It is
characterized by the NE coefficient which can be expressed by
means of the conductivity and thermoelectric tensors11:

ν ¼
Ey

ð−∇xTÞH
¼ 1

H
βxyσxx − βxxσxy
ðσxxÞ2 þ ðσxyÞ2

: ð74Þ

Usually, when the Hall component of conductivity σxy ≪ σxx,
while both βxx and βxy are of the same order, Eq. (74) directly
relates the NE coefficient to the off-diagonal component of the
thermoelectric tensor

νðT;HÞ ¼ R
□

βxyðT;HÞ=H; ð75Þ

where R
□

¼ ðσxxÞ−1 is the sheet resistance of the film. In the
case under consideration, the validity of approximation (75) is
even more justified, considering the excess of the off-diagonal
thermoelectricity compared to the diagonal one.

2. Onsager relations and magnetization currents

It is well known that the absence of free-electron magnetism
in the classical theory is explained by the compensation of the
total current created by the electrons moving along closed
trajectories in the bulk of the sample by the current of the
electrons moving along the open “hopping” trajectories close
to its surface. In quantum theory such a compensation does
not occur (Teller, 1931) and Landau diamagnetism (Landau,
1930) takes place. In the middle of the 20th century a lively
debate concerning the fulfillment of reciprocal Onsager
relations in metals and semiconductors subjected to a mag-
netic field and gradient of temperature was taking place [see
Obraztsov (1964) and references therein]. Obraztsov demon-
strated the fact that microscopic surface currents inducing
electron magnetization can contribute considerably to the
density of the macroscopic current when a temperature
gradient is applied to the sample. Taking corresponding
contributions to the heat and electric currents flowing in
the system into account restores the fulfillment of the
reciprocal Onsager relations and validity of the third law of
thermodynamics.
The contribution to the electric current can be easily

expressed using Ampere’s law as

jmag ¼ c
4π

∇ × B;

where B ¼ Hþ 4πM, H is the spatially homogeneous
external magnetic field, and M is the local value of magneti-
zation. In the presence of a temperature gradient ∇xT one
can express the magnetization current as (Obraztsov, 1964;
Ussishkin, Sondhi, and Huse, 2002)

FIG. 25. Schematic representation of the FCP motion in a
superconducting film subjected to a temperature gradient along
its x axis. The concentration and size of FCPs vary with
temperature. The local magnetization parallel to the external
magnetic field varies along the x axis as well. The spatial
inhomogeneity of the magnetization leads to a transformation
of the FCP trajectories from circular to trochoidal, which is why
the magnetization currents appear. To compensate for these
currents a voltage is induced in the y direction that provides a
sizable contribution to the fluctuation NE coefficient.

10The Nernst-Ettingshausen effect is closely related to the Etting-
shausen effect, which is just the opposite: it consists of the
appearance of a temperature gradient in a conductor placed in
a magnetic field, when an electric current is applied.

11The Nernst signal is related to the NE coefficient through the
simple relation N ¼ νH.
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For small Hall conductivity:

the heat flow (Mahan, 2000) results in the violation of the
third law of thermodynamics which can be rectified only by
taking into account the fluctuating Meissner magnetization
above Hc2ð0Þ.

1. Definition of the NE coefficient

Let us review the definition of transport coefficients and
consider a conductor placed in a magnetic field H, subjected
to an applied temperature gradient ∇T. The electric and heat
transport currents in it are related to the applied weak-enough
electric field and temperature gradient by means of the
relations

jðeÞtr;α ¼ σαδðHÞEδ þ βαδðHÞ∇δT; ð72Þ

jðhÞtr;α ¼ γαδðHÞEδ − καδðHÞ∇δT; ð73Þ

where βαβðHÞ; γαβðHÞ and καβðHÞ are thermoelectricity and
heat conductivity tensors (here we use two superscripts for
tensors and subscripts for vector components). Thermoelectric
tensors βαβ and γαβ are connected by the Onsager relation
γαβðHÞ ¼ −Tβαβð−HÞ. Let us mention that the validity of the
Onsager relation follows from the principle of the symmetry
of transport coefficients, which is based on the invariance
of the quantum mechanical equations with respect to time
reversal.
The off-diagonal components of the tensor βαβ in the

absence of a magnetic field are equal to zero. If besides a
temperature gradient ∇T also a magnetic field H is applied to
the sample, a potential difference VðNEÞ appears along the y
axis. The circuit in this direction is supposed to be broken.
The corresponding open-circuit conditions are ∇xT ≠ 0,
jðhÞtr;x ¼ jðeÞtr;x ¼ jðeÞtr;y ¼ 0; see Fig. 25. This so-called Nernst-
Ettingshausen (or Nernst) effect10 is well pronounced in
semiconductors but is usually small in good metals. It is
characterized by the NE coefficient which can be expressed by
means of the conductivity and thermoelectric tensors11:

ν ¼
Ey

ð−∇xTÞH
¼ 1

H
βxyσxx − βxxσxy
ðσxxÞ2 þ ðσxyÞ2

: ð74Þ

Usually, when the Hall component of conductivity σxy ≪ σxx,
while both βxx and βxy are of the same order, Eq. (74) directly
relates the NE coefficient to the off-diagonal component of the
thermoelectric tensor

νðT;HÞ ¼ R
□

βxyðT;HÞ=H; ð75Þ

where R
□

¼ ðσxxÞ−1 is the sheet resistance of the film. In the
case under consideration, the validity of approximation (75) is
even more justified, considering the excess of the off-diagonal
thermoelectricity compared to the diagonal one.

2. Onsager relations and magnetization currents

It is well known that the absence of free-electron magnetism
in the classical theory is explained by the compensation of the
total current created by the electrons moving along closed
trajectories in the bulk of the sample by the current of the
electrons moving along the open “hopping” trajectories close
to its surface. In quantum theory such a compensation does
not occur (Teller, 1931) and Landau diamagnetism (Landau,
1930) takes place. In the middle of the 20th century a lively
debate concerning the fulfillment of reciprocal Onsager
relations in metals and semiconductors subjected to a mag-
netic field and gradient of temperature was taking place [see
Obraztsov (1964) and references therein]. Obraztsov demon-
strated the fact that microscopic surface currents inducing
electron magnetization can contribute considerably to the
density of the macroscopic current when a temperature
gradient is applied to the sample. Taking corresponding
contributions to the heat and electric currents flowing in
the system into account restores the fulfillment of the
reciprocal Onsager relations and validity of the third law of
thermodynamics.
The contribution to the electric current can be easily

expressed using Ampere’s law as

jmag ¼ c
4π

∇ × B;

where B ¼ Hþ 4πM, H is the spatially homogeneous
external magnetic field, and M is the local value of magneti-
zation. In the presence of a temperature gradient ∇xT one
can express the magnetization current as (Obraztsov, 1964;
Ussishkin, Sondhi, and Huse, 2002)

FIG. 25. Schematic representation of the FCP motion in a
superconducting film subjected to a temperature gradient along
its x axis. The concentration and size of FCPs vary with
temperature. The local magnetization parallel to the external
magnetic field varies along the x axis as well. The spatial
inhomogeneity of the magnetization leads to a transformation
of the FCP trajectories from circular to trochoidal, which is why
the magnetization currents appear. To compensate for these
currents a voltage is induced in the y direction that provides a
sizable contribution to the fluctuation NE coefficient.

10The Nernst-Ettingshausen effect is closely related to the Etting-
shausen effect, which is just the opposite: it consists of the
appearance of a temperature gradient in a conductor placed in
a magnetic field, when an electric current is applied.

11The Nernst signal is related to the NE coefficient through the
simple relation N ¼ νH.
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the heat flow (Mahan, 2000) results in the violation of the
third law of thermodynamics which can be rectified only by
taking into account the fluctuating Meissner magnetization
above Hc2ð0Þ.

1. Definition of the NE coefficient

Let us review the definition of transport coefficients and
consider a conductor placed in a magnetic field H, subjected
to an applied temperature gradient ∇T. The electric and heat
transport currents in it are related to the applied weak-enough
electric field and temperature gradient by means of the
relations

jðeÞtr;α ¼ σαδðHÞEδ þ βαδðHÞ∇δT; ð72Þ

jðhÞtr;α ¼ γαδðHÞEδ − καδðHÞ∇δT; ð73Þ

where βαβðHÞ; γαβðHÞ and καβðHÞ are thermoelectricity and
heat conductivity tensors (here we use two superscripts for
tensors and subscripts for vector components). Thermoelectric
tensors βαβ and γαβ are connected by the Onsager relation
γαβðHÞ ¼ −Tβαβð−HÞ. Let us mention that the validity of the
Onsager relation follows from the principle of the symmetry
of transport coefficients, which is based on the invariance
of the quantum mechanical equations with respect to time
reversal.
The off-diagonal components of the tensor βαβ in the

absence of a magnetic field are equal to zero. If besides a
temperature gradient ∇T also a magnetic field H is applied to
the sample, a potential difference VðNEÞ appears along the y
axis. The circuit in this direction is supposed to be broken.
The corresponding open-circuit conditions are ∇xT ≠ 0,
jðhÞtr;x ¼ jðeÞtr;x ¼ jðeÞtr;y ¼ 0; see Fig. 25. This so-called Nernst-
Ettingshausen (or Nernst) effect10 is well pronounced in
semiconductors but is usually small in good metals. It is
characterized by the NE coefficient which can be expressed by
means of the conductivity and thermoelectric tensors11:

ν ¼
Ey

ð−∇xTÞH
¼ 1

H
βxyσxx − βxxσxy
ðσxxÞ2 þ ðσxyÞ2

: ð74Þ

Usually, when the Hall component of conductivity σxy ≪ σxx,
while both βxx and βxy are of the same order, Eq. (74) directly
relates the NE coefficient to the off-diagonal component of the
thermoelectric tensor

νðT;HÞ ¼ R
□

βxyðT;HÞ=H; ð75Þ

where R
□

¼ ðσxxÞ−1 is the sheet resistance of the film. In the
case under consideration, the validity of approximation (75) is
even more justified, considering the excess of the off-diagonal
thermoelectricity compared to the diagonal one.

2. Onsager relations and magnetization currents

It is well known that the absence of free-electron magnetism
in the classical theory is explained by the compensation of the
total current created by the electrons moving along closed
trajectories in the bulk of the sample by the current of the
electrons moving along the open “hopping” trajectories close
to its surface. In quantum theory such a compensation does
not occur (Teller, 1931) and Landau diamagnetism (Landau,
1930) takes place. In the middle of the 20th century a lively
debate concerning the fulfillment of reciprocal Onsager
relations in metals and semiconductors subjected to a mag-
netic field and gradient of temperature was taking place [see
Obraztsov (1964) and references therein]. Obraztsov demon-
strated the fact that microscopic surface currents inducing
electron magnetization can contribute considerably to the
density of the macroscopic current when a temperature
gradient is applied to the sample. Taking corresponding
contributions to the heat and electric currents flowing in
the system into account restores the fulfillment of the
reciprocal Onsager relations and validity of the third law of
thermodynamics.
The contribution to the electric current can be easily

expressed using Ampere’s law as

jmag ¼ c
4π

∇ × B;

where B ¼ Hþ 4πM, H is the spatially homogeneous
external magnetic field, and M is the local value of magneti-
zation. In the presence of a temperature gradient ∇xT one
can express the magnetization current as (Obraztsov, 1964;
Ussishkin, Sondhi, and Huse, 2002)

FIG. 25. Schematic representation of the FCP motion in a
superconducting film subjected to a temperature gradient along
its x axis. The concentration and size of FCPs vary with
temperature. The local magnetization parallel to the external
magnetic field varies along the x axis as well. The spatial
inhomogeneity of the magnetization leads to a transformation
of the FCP trajectories from circular to trochoidal, which is why
the magnetization currents appear. To compensate for these
currents a voltage is induced in the y direction that provides a
sizable contribution to the fluctuation NE coefficient.

10The Nernst-Ettingshausen effect is closely related to the Etting-
shausen effect, which is just the opposite: it consists of the
appearance of a temperature gradient in a conductor placed in
a magnetic field, when an electric current is applied.

11The Nernst signal is related to the NE coefficient through the
simple relation N ¼ νH.
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with B=H+4pM and T-gradient follows:

jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:

ð78Þ

Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form

νðflÞ ¼ β0R□
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where η ¼ 4h=ðπ2 tÞ and β0 ¼ kBe=πℏ ¼ 6.68 nA=K is the quantum of thermoelectric conductance.
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and we can write

jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:

ð78Þ

Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form
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for the open circuit (no y-transport current) this is compensated by 

jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:

ð78Þ

Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form
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the transport heat current is also affected by M:

jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:

ð78Þ

Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form

νðflÞ ¼ β0R□
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jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:

ð78Þ

Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form

νðflÞ ¼ β0R□
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(reciprocal) Onsager relations fulfilled

jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:

ð78Þ

Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form

νðflÞ ¼ β0R□
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It turns out to be more straightforward to calculate:

jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:

ð78Þ

Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form
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And the magnetization current free tensor follows from Kubo formalism:

jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
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Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form
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The electric-heat-current correlator                
is calculated at Bosonic Matsubara 
frequencies wk=2pk T and then 
analytically continued to real 
frequencies.
Diagrams are the same as for 
current, but with heat and electric 
vertices: MT contribution vanishes

jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
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:
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Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form
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jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:
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Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form
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jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ
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¼ −T
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Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form

νðflÞ ¼ β0R□

8H

!
η
XMt

m ¼0

ðm þ 1Þ
X∞

k¼0

#$
3

Em
þ 1

Em þ1

%
ðE0

m − E0
m þ1Þ þ ½ηð2m þ 1Þ þ k&E

00
m

Em
þ ½ηð2m þ 3Þ þ k&

E00
m þ1

Em þ1

&

þ 4π2
XMt

m ¼0

ðm þ 1Þ
Z

∞

−∞

dx
sinh2πx

#
ηImEm ImðEm þ Em þ1Þ þ ½ηðm þ 1=2ÞImEm þ xReEm &ImðEm þ1 þ ηE0

m − Em Þ
jEm j2

þ
ηImEm þ1ImðEm þ Em þ1Þ þ ½ηðm þ 3=2ÞImEm þ1 þ xReEm þ1&ImðEm þ1 þ ηE0

m þ1 − Em Þ
jEm þ1j2

þ 4xIm ln
Em

Em þ1

− 2
ImðEm þ Em þ1ÞðImEm ImEm þ1 þ ReEm ReEm þ1Þ

jEm þ1j2jEm j2

!
η

$
m þ 3

2

%
ImEm þ1 − η

$
m þ 1

2

%
ImEm þ xReðEm þ1 − Em Þ

"&"
;

ð80Þ
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jmag
y ¼ −cðdMz=dTÞ∇xT;

and the thermoelectric tensor βαδðHÞ in Eq. (72) acquires
besides its kinetic part ~βαδðHÞ also a magnetization contri-
bution βαδM ¼ ϵαβζcdMζ=dT:

βαδðHÞ ¼ ~βαδðHÞ þ ϵαβζc
dMζ

dT
ð76Þ

with ϵαβζ being the Levi-Cività symbol. In the case of
NE geometry the open-circuit condition holds jðeÞtr;y ¼ 0 and
in full analogy to the classical Hall effect, the magneti-
zation current in the y direction is compensated for by the
current induced through the Nernst-Ettingshausen voltage
ENE
y ¼ R

□

jmag
y .

The transport heat current (73) is also affected by mag-
netization currents. In the presence of a magnetic field, the
measurable transport heat current jðhÞtr differs from the micro-
scopic heat current jðhÞ by the circular magnetization current
jðhÞM ¼ cM × E (Larkin and Varlamov, 2009). As a result, the
thermoelectric tensor γαδ relating jðhÞtr with the applied electric
field can be found as the sum of the kinetic ~γαδ and
thermodynamic γαδM ¼ ϵαδζcMζ=T contributions

γαδ ¼ ~γαδ þ ϵαδζcMζ=T: ð77Þ

The reciprocal Onsager relations in this interpretation acquire
the form

~γαδðH Þ þ ϵαδζ
cMζðH Þ

T
¼ −T

!
~βαδð−HÞ þ ϵαδζc

dMζð−HÞ
dT

"
:

ð78Þ

Hence, in order to find the NE coefficient [see Eq. (75)] one
can calculate ~γαδð−H Þ instead of ~βαδðHÞ and obtain

νðT; H Þ ¼ −R
□

~γxyðH Þ þ cMzðH Þ=T
TH

: ð79Þ

This way turns out to be much more straightforward using the
microscopic approach.

3. Microscopic expression for fluctuation NE coefficient

Here we review the microscopic calculation of the NE
coefficient. In the spirit of the Kubo formalism one can
relate the electron heat current jðhÞtr to the value of the heat
current operator averaged over quantum and thermal states
applied to the one-electron Green’s function. Expansion of
the latter in the electric field relates the tensor γαδðHÞ to
the loop of two-electron Green’s functions separated by the
heat and electromagnetic field vertexes (analogously to the
loop for the electromagnetic field operator for the conduc-
tivity tensor):

~γαδ ¼ −lim
ω→0

Im ~QR
αδð−iωþ 0Þ

ω
:

The electric-heat-current correlation function ~QαδðωkÞ is
calculated first at bosonic Matsubara frequencies ωk ¼
2πTk and then analytically continued to real frequencies.
The fluctuation part of the electric-heat-current correla-

tion function ~QðflÞ
αδ ðωkÞ is graphically represented by the

same ten diagrams of Fig. 14, but taken with vertices as in
Fig. 26. These were analyzed in detail by Serbyn et al.
(2009). They found that in the case of the NE effect,
the Maki-Thompson contribution becomes exactly zero.
The contribution of the DOS diagrams turns out to be less
singular than the contribution corresponding to the dia-
grams containing three Cooperons (DCR, see Fig. 26). The
positive AL term dominates in the GL region and competes
with the negative DCR contribution everywhere else.
The fluctuation magnetization was discussed in Sec. IV.
Finally, the general expression for the NE coefficient of
2D superconductors valid beyond the line H c2ðTÞ takes
the form

νðflÞ ¼ β0R□

8H

!
η
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&

þ 4π2
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∞
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dx
sinh2πx

#
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þ
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þ 4xIm ln
Em
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− 2
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jEm þ1j2jEm j2

!
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$
m þ 3

2

%
ImEm þ1 − η

$
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2

%
ImEm þ xReðEm þ1 − Em Þ

"&"
;

ð80Þ

where η ¼ 4h=ðπ2 tÞ and β0 ¼ kBe=πℏ ¼ 6.68 nA=K is the quantum of thermoelectric conductance.
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size Li=2 ∼ 50 nm extracted from STS data at 300 mK and at
4.2 K for sample X0 (Tc0 ¼ 3.8 K). This means that it is the
length Li=2 ∼ lsg instead of the real grain size dg ≪ lsg that
sets the scale for the 0D fluctuating domains. Such situation
remains until the temperature approaches Tc0 so close that the
coherence length ξGLðϵÞ becomes larger than Li and the 2D
behavior is recovered.
This scenario leads to a “temporary confinement” of SFs,

which allows one to explain the paradoxical simultaneous
presence of a pseudogap and 0D amplitude fluctuations of the
order parameter (if the pseudogap indicates a simple localization
of bosonic pairs, only phase fluctuations would be expected).

XI. NUMERICAL FLUCTUATION SPECTROSCOPY

In order to utilize the complete expressions for fluctuation
corrections of conductivity σðflÞxx ðt; hÞ [Eq. (55)], NMR relax-
ation rate WðflÞ [Eq. (103)], Nernst coefficient νðflÞ [Eq. (80)],
or tunneling current IðflÞ [Eq. (91)] to analyze experimental
data, an efficient and accurate method to evaluate those

expressions numerically is needed. Here we review the
numerical methods used for their evaluation with examples;
we avoid discussing the actual implementation or technical
programming issues, such as parallelization (which is straight-
forward for the problem discussed here). As supplementary
information we provide a C++ implementation for the
evaluation of all the fluctuation corrections mentioned [242].
The first important ingredient for all expressions is an

efficient and accurate algorithm for the evaluation of the real
and complex polygamma functions ψ ðnÞðzÞ. The former is
readily available in standard numerical toolkits such as the
GNU Scientific Library (Galassi, 2009), but a complex
version is a bit more difficult to find and we refer the
interested reader to Jin and Zhang (1996). Another compli-
cation of most evaluations is that the summation cutoff
parameter Mt can reach extremely large values at low temper-
atures [experimental values ðTc0τÞ−1exp for materials near the
superconductor-insulator transition can be on the order of
106], which slows the numerical procedure down significantly.
The latter difficulty can be partially overcome by evaluation of
the slowly divergent tails of the m sums, in Eq. (55), as
integrals. Here we also note that for fitting purposes one does
not need to choose actual, often extremely small, exper-
imental values ðTc0τÞexp. To save CPU time, one can assume
the value ðTc0τÞnum of this parameter to be much larger than
ðTc0τÞexp (but still much less than Tc0τϕ). After the evaluation
of the complete expression, the result can then be shifted by
ln ln ðTc0τÞnum=ðTc0τÞexp, which approximates the sum-
mands not explicitly evaluated. Nevertheless, the numerical
task remains challenging: e.g., for the surface plot in Fig. 15
we evaluated 106 values for δσ with the modest assumption
ðTc0τÞnum ¼ 0.01, yet it still took three months of single core
CPU time (in 2011) for its calculation.
The (convergent) integral contributions (typically z integra-

tions) are least difficult to calculate and can be straightfor-
wardly evaluated using a suitable quadrature scheme. It was
found that the Gauss-Legendre five-point method was effi-
cient and accurate, allowing also the integration of integrable
poles or principle values. In practice, due to the presence of the
sinh−2ðπzÞ term in the integrand, we can restrict the integra-
tion support to z ∈½−5; 5%. Outside this interval the integrand
is smaller than the numerical accuracy of double precision
floating point numbers. Sums over Landau levels are calcu-
lated up to the cutoff Mt ¼ ðtTc0τÞ−1 explicitly.
In contrast, summations over k are more involved and only

slowly converging or not converging at all as in the case for the
susceptibility χðflÞ [Eq. (38), where the cutoff for Matsubara
frequencies has to be taken into account]. For the numerical
summation of the k sum we separate the k ¼ 0 term and sum
from k ¼ 1 to kmax (with coefficient 2, due to symmetry) which
is determined by the arguments of the ψ ðnÞ functions being
equal toΩ ¼ 1000. For k ≥kmax we transform the sum into an
integral and use only the asymptotic expressions for the
polygamma functions as the difference to the exact expression
is again below the floating point accuracy. Then the integration
variable is inverted and we have a finite integral for the
remaining part of the sum. In the case when the k sum is
not converging, this integral was two nonzero finite limits.
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FIG. 45. (a) Extracted square paraconductance for three differ-
ent, relatively thick samples B2 (Tc0 ¼ 7.1 K, pluses), C1

(Tc0 ¼ 9.4 K, crosses), and F0 (Tc0 ¼ 9.0 K, asterisks) as a
function of the reduced temperature ϵ ¼ lnðT=Tc0Þ. The agree-
ment with the Aslamasov-Larkin prediction for a 2D system
(cyan solid line) is excellent, without any adjustable parameter.
(b) Extracted square paraconductance for the thinner samples Y0

(Tc0 ¼ 4.3 K, open circles), X0 (Tc0 ¼ 3.8 K, open squares), A2

(Tc0 ¼ 4.5 K, open diamonds), and A4 (Tc0 ¼ 2.4 K, open
triangles). The pink solid line corresponds to σ ¼ 0.03e2=ðϵ2Þ.
The expected AL 2D square paraconductance is also shown
[thick cyan (light gray) solid line]. (c) Map displaying the
superconducting gap inhomogeneities at 300 mK. Adapted from
Carbillet et al., 2016.
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Calculation of all diagrams yields

with

quantum of thermoelectric conductance

λnðε1; ε2Þ ¼
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form

L−1
n ðΩkÞ ¼ −ρe

!
ln

T
Tc0

þ ψ

"
1

2
þ jΩkjþ ΩHðnþ 1=2Þ

4πT

#

− ψ

"
1

2

#$
: ð32Þ

An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
~Hc2ð0Þ

¼ π2

8γE

H
Hc2ð0Þ

¼ 0.69
H

Hc2ð0Þ
:

In these dimensionless units, the fluctuation propagator (32)
acquires the form

L−1
n ðΩkÞ ¼ −ρeEnðt; h; jkjÞ:

The function

Enðt;h;xÞ≡ ln tþψ

!
xþ1

2
þ 4h
π2 t

"
nþ1

2

#$
−ψ

"
1

2

#
ð33Þ

and its derivatives with respect to the argument x,

EðnÞ
n ðt; h; xÞ≡ ∂n

∂xn Enðt; h; xÞ

¼ 2−nψ ðnÞ
!
1þ x
2

þ 4h
π2 t

"
nþ 1

2

#$
; ð34Þ

play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:

"∂En

∂h
#

¼ 8

π2 t

"
nþ 1

2

#
E0
n;

"∂2En

∂h2
#

¼
!

8

π2 t

"
nþ 1

2

#$
2

E00
n: ð35Þ

Throughout this review we present asymptotic expressions
of fluctuation contributions in nine different domains of the
phase diagram, shown and described in Fig. 9. Domains I–III
encompass the region of temperatures close to Tc0 and fields
h ≪ 1, corresponding to the regime of classical thermal
fluctuations accessible in the GL approach (with some restric-
tions for fluctuation diamagnetism). The vicinity of the
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FIG. 9. Left: Schematic representation of the regions of different behavior of superconducting fluctuations in the h-t diagram. From
Glatz, Varlamov, and Vinokur, 2011a. Right: Classification of domains in terms of different limits for t and h. Here ϵ≡ ln t,
~h ¼ ½H −Hc2ðTÞ&=Hc2ðTÞ;H > Hc2ðTÞ.
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jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
; ð30Þ

where n is the quantum number of the Landau state of Cooper
pairs, θðxÞ is the Heaviside step function, ε1 and ε2 are the
fermionic frequencies, and τφ is the phase-breaking time of
electron scattering. In the process of impurity averaging, one
also encounters the corresponding four-leg vertex, which
differs from Eq. (30) only by the factor hU2i:

Cnðε1; ε2Þ ¼
1

2πρeτ
τ−1θð−ε1ε2Þ

jε1 − ε2jþ ΩHðnþ 1=2Þ þ τ−1φ
: ð31Þ

Finally, the expression for the fluctuation propagator in this
representation takes the form

L−1
n ðΩkÞ ¼ −ρe
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ln
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An important characteristic property of Eqs. (30)–(32)
is that they are valid in a large region of the phase
diagram of a superconductor above the line Hc2ðTÞ for
magnetic fields H=Hc2ð0Þ ≪ min fðTc0τÞ−1; εFτg, tempera-
tures T ≪ minfτ−1;ωDg, frequencies jΩkj≪ τ−1, and Landau
levels with n ≪ ðTc0τÞ−1.
In the following, it is convenient to use the dimensionless

temperature and magnetic field

t ¼ T
Tc0

; h ¼ H
~Hc2ð0Þ

;

with the latter normalized by the value of the second critical
field obtained by linear extrapolation of its temperature
dependence near Tc0:

~Hc2ð0Þ ¼
Φ0

2πξ2
;

where Φ0 ¼ π=e is the magnetic flux quantum. The magnetic
field ~Hc2ð0Þ is 8γE=π2 ¼ 1.45 times larger than the true
second critical field Hc2ð0Þ:

h ¼ H
~Hc2ð0Þ

¼ π2

8γE

H
Hc2ð0Þ

¼ 0.69
H

Hc2ð0Þ
:

In these dimensionless units, the fluctuation propagator (32)
acquires the form

L−1
n ðΩkÞ ¼ −ρeEnðt; h; jkjÞ:

The function
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and its derivatives with respect to the argument x,
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play an important role for the fluctuation contributions
discussed in the following sections, as well as its derivatives
with respect to the magnetic field:
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Throughout this review we present asymptotic expressions
of fluctuation contributions in nine different domains of the
phase diagram, shown and described in Fig. 9. Domains I–III
encompass the region of temperatures close to Tc0 and fields
h ≪ 1, corresponding to the regime of classical thermal
fluctuations accessible in the GL approach (with some restric-
tions for fluctuation diamagnetism). The vicinity of the
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FIG. 9. Left: Schematic representation of the regions of different behavior of superconducting fluctuations in the h-t diagram. From
Glatz, Varlamov, and Vinokur, 2011a. Right: Classification of domains in terms of different limits for t and h. Here ϵ≡ ln t,
~h ¼ ½H −Hc2ðTÞ&=Hc2ðTÞ;H > Hc2ðTÞ.
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study the full classical region just above the transition line,
which covers a wide range of temperatures and magnetic
fields ( ~h ≪ 1, domain VII). Close to Tc0, the expression
obtained matches the expression valid in domain III [here
~hðtÞ ¼ ϵþ h], while in the limit T → 0 it matches the
asymptotic expression, provided that ~h ≪ t2= lnð1=tÞ.
Finally, we address the “nonsingular” domains VIII and IX

far from the transition line. In these limits, the Kubo con-
tribution ~γxy diverges as ½ln lnð1=Tc0τÞ−ln ln maxðh; tÞ&,
with 1=ðTc0τÞ playing the role of an ultraviolet cutoff of
the Cooperon modes. Remarkably, the same divergence with
opposite sign occurs in the magnetization contribution γxyM .
Hence, the total expression for νðflÞ remains finite (see
Table IV). We see that even far from the transition, the
fluctuation Nernst signal can be comparable or even para-
metrically larger than the Fermi-liquid terms. In fact, it is
conceivable that in some materials the Cooper channel
contribution to thermal transport dominates even in the
absence of any superconducting transition (e.g., if it is
“hidden” by another order).

C. Fluctuation spectroscopy: Analysis of Nernst signal
measurements

As mentioned, numerous experimental studies of the last
two decades have revealed an anomalously strong thermo-
magnetic signal, in the normal state of both high-temperature
superconductors (Xu et al., 2000; Wang et al., 2001, 2002;
Capan et al., 2002; Wen et al., 2003; Xu et al., 2005; Wang,
Li, and Ong, 2006; Li and Greene, 2007; Tafti et al., 2014) and
conventional superconducting films (Pourret, Aubin et al.,
2006; Pourret et al., 2007); see Fig. 28. In experiments on
La2−xSrxCuO4 HTS compounds, the NE signal N exceeded
the background value by 100 times close to the superconduct-
ing transition and a sizable effect remained even up to 130 K,
well above the transition temperature Tc0. Surprisingly, in
experiments on the conventional superconductor Nb0.15Si0.85
(Pourret, Aubin et al., 2006; Pourret et al., 2007) the value of
the excess signal transcended the expected magnitude

according to the classical Sondheimer theory (Sondheimer,
1948) not by 100 but by a few thousand times. Such observa-
tions were especially striking in view of the previously recorded
data on the magnitude of the Seebeck coefficient in the normal
state of superconductors, undergoing a weak singular decrease
close to Tc0 but remaining on the same order of magnitude as in
the normal phase (Howson et al., 1990; Lowe, Regan, and
Howson, 1993; Ri et al., 1994). These and further similar
experiments have sparked the interest in thermomagnetic
phenomena beyond the superconducting state.
One of the reasons for this interest is that the measured

fluctuation effects exceed Sondheimer’s evaluation of the
normal phase quasiparticle contribution by orders of magni-
tude. Close to the critical temperature and in sufficiently
weak magnetic fields the experimental findings are in good
agreement (Behnia and Aubin, 2016) with results obtained
in the simple GL approximation (Ullah and Dorsey, 1991;
Ussishkin, Sondhi, and Huse, 2002). Moreover, since the
fluctuation Nernst signal can be observed in a wide temper-
ature range, one can compare experimental data with the
predictions of the microscopic theory (Michaeli and
Finkel’stein, 2009a; Serbyn et al., 2009) in detail.

1. Giant Nernst signal in NbSi

In Fig. 29 a comparison between the theory of Serbyn et al.
(2009) and the magnitude of the experimentally measured
Nernst coefficient (Pourret, Aubin et al., 2006) in weak fields
is plotted for a Nb0.15Si0.85 film of thickness d ¼ 12.5 nm in a
wide range of temperatures up to 30Tc0. The dashed line
corresponds to the theoretically calculated Nernst coefficient
(Serbyn et al., 2009). A diffusion coefficient of 0.087 cm2=s,
which is 60% of that reported by Pourret, Aubin et al. (2006),
is used for the fitting. Far from the transition temperature
(ϵ > 2), the superconducting coherence length ξðTÞ becomes
shorter than d and the 3D nature of the diffusion manifests

TABLE IV. Asymptotic expressions for fluctuation corrections to
the NE coefficient in different domains of the phase diagram.
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β0R□

νðflÞ

I 2eHξ2GLðTÞ
3c ¼ 2eHξ2
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FIG. 28. Nernst signal (labeled N in the figure, N in the text)
measured in a Nb0.15Si0.85 film as a function of the magnetic field
for temperatures ranging from 0.19 to 5.8 K, for a sample with
Tc0 ¼ 0.165 K. A finite Nernst signal is present for T > Tc0.
With increasing temperature, this signal decreases in magnitude
and becomes more linear in field. From Pourret, Aubin
et al., 2006.
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• Domains I-III: Thermal fluctuations: Only the AL contributions is essential 
taking magnetization currents into account

• For small fields, h<<e, (domain I) the numerical prefactor differs between GL 
and microscopic theory – origin still unclear

• In domains II (h>>e ) & III [near Hc2(T)], the NE signal diverges



NEAR HC2(0)
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In domains IV-VI, magnetization term becomes crucial:
• Its 1/T divergence ensures the validity of the third law of thermodynamics
• The total NE coefficient remains finite for Tà0

• In the quantum domain IV, n(fl) is negative!
à The DCR contribution wins over AL

• In domain V, n(fl) become positive and less singular: ln(t/h)
• Moving further along Hc2(T), n(fl) grows as t2 in domain VI when fixing 

distance to Hc2(T)

study the full classical region just above the transition line,
which covers a wide range of temperatures and magnetic
fields ( ~h ≪ 1, domain VII). Close to Tc0, the expression
obtained matches the expression valid in domain III [here
~hðtÞ ¼ ϵþ h], while in the limit T → 0 it matches the
asymptotic expression, provided that ~h ≪ t2= lnð1=tÞ.
Finally, we address the “nonsingular” domains VIII and IX

far from the transition line. In these limits, the Kubo con-
tribution ~γxy diverges as ½ln lnð1=Tc0τÞ−ln ln maxðh; tÞ&,
with 1=ðTc0τÞ playing the role of an ultraviolet cutoff of
the Cooperon modes. Remarkably, the same divergence with
opposite sign occurs in the magnetization contribution γxyM .
Hence, the total expression for νðflÞ remains finite (see
Table IV). We see that even far from the transition, the
fluctuation Nernst signal can be comparable or even para-
metrically larger than the Fermi-liquid terms. In fact, it is
conceivable that in some materials the Cooper channel
contribution to thermal transport dominates even in the
absence of any superconducting transition (e.g., if it is
“hidden” by another order).

C. Fluctuation spectroscopy: Analysis of Nernst signal
measurements

As mentioned, numerous experimental studies of the last
two decades have revealed an anomalously strong thermo-
magnetic signal, in the normal state of both high-temperature
superconductors (Xu et al., 2000; Wang et al., 2001, 2002;
Capan et al., 2002; Wen et al., 2003; Xu et al., 2005; Wang,
Li, and Ong, 2006; Li and Greene, 2007; Tafti et al., 2014) and
conventional superconducting films (Pourret, Aubin et al.,
2006; Pourret et al., 2007); see Fig. 28. In experiments on
La2−xSrxCuO4 HTS compounds, the NE signal N exceeded
the background value by 100 times close to the superconduct-
ing transition and a sizable effect remained even up to 130 K,
well above the transition temperature Tc0. Surprisingly, in
experiments on the conventional superconductor Nb0.15Si0.85
(Pourret, Aubin et al., 2006; Pourret et al., 2007) the value of
the excess signal transcended the expected magnitude

according to the classical Sondheimer theory (Sondheimer,
1948) not by 100 but by a few thousand times. Such observa-
tions were especially striking in view of the previously recorded
data on the magnitude of the Seebeck coefficient in the normal
state of superconductors, undergoing a weak singular decrease
close to Tc0 but remaining on the same order of magnitude as in
the normal phase (Howson et al., 1990; Lowe, Regan, and
Howson, 1993; Ri et al., 1994). These and further similar
experiments have sparked the interest in thermomagnetic
phenomena beyond the superconducting state.
One of the reasons for this interest is that the measured

fluctuation effects exceed Sondheimer’s evaluation of the
normal phase quasiparticle contribution by orders of magni-
tude. Close to the critical temperature and in sufficiently
weak magnetic fields the experimental findings are in good
agreement (Behnia and Aubin, 2016) with results obtained
in the simple GL approximation (Ullah and Dorsey, 1991;
Ussishkin, Sondhi, and Huse, 2002). Moreover, since the
fluctuation Nernst signal can be observed in a wide temper-
ature range, one can compare experimental data with the
predictions of the microscopic theory (Michaeli and
Finkel’stein, 2009a; Serbyn et al., 2009) in detail.

1. Giant Nernst signal in NbSi

In Fig. 29 a comparison between the theory of Serbyn et al.
(2009) and the magnitude of the experimentally measured
Nernst coefficient (Pourret, Aubin et al., 2006) in weak fields
is plotted for a Nb0.15Si0.85 film of thickness d ¼ 12.5 nm in a
wide range of temperatures up to 30Tc0. The dashed line
corresponds to the theoretically calculated Nernst coefficient
(Serbyn et al., 2009). A diffusion coefficient of 0.087 cm2=s,
which is 60% of that reported by Pourret, Aubin et al. (2006),
is used for the fitting. Far from the transition temperature
(ϵ > 2), the superconducting coherence length ξðTÞ becomes
shorter than d and the 3D nature of the diffusion manifests

TABLE IV. Asymptotic expressions for fluctuation corrections to
the NE coefficient in different domains of the phase diagram.

Domain H
β0R□

νðflÞ

I 2eHξ2GLðTÞ
3c ¼ 2eHξ2

3c
1
ϵ

II 1−ðln 2Þ=2
III 1

ϵþh

IV −2γE
9

t
~h

V ln t
~h

VI 8γ2E
3

t2
~hðtÞ

VII
1
~hðtÞ

!
1þ 2hc2ðtÞ

π2 t

ψ 00ð12þ
2hc2 ðtÞ
π2 t

Þ

ψ 0ð12þ
2hc2 ðtÞ
π2 t

Þ

"

VIII 4eξ2 H
3π2 c

1
t ln t

IX π2
48

t
h ln h

B (T)
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FIG. 28. Nernst signal (labeled N in the figure, N in the text)
measured in a Nb0.15Si0.85 film as a function of the magnetic field
for temperatures ranging from 0.19 to 5.8 K, for a sample with
Tc0 ¼ 0.165 K. A finite Nernst signal is present for T > Tc0.
With increasing temperature, this signal decreases in magnitude
and becomes more linear in field. From Pourret, Aubin
et al., 2006.
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agrees with qualitative 
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FLUCTUOSCOPY OF THE FLUCTUATION 
NERNST EFFECT 



WHAT IS FLUCTUATION SPECTROSCOPY 

(FLUCTUOSCOPY)?

37

àTc is assigned, 
not determined

A: Extraction of (microscopic) material parameters by fitting to fluctuation 

corrections.

Example: Tc from resistance measurements

In the 

past:



FLUCTUOSCOPY OF THIN TiN FILMS

38

Traditional definition of Tc

The determination of Tc as the temperature where R(T) drops to 0.9, 0.5 RN
significantly overestimates Tc.

S03: Tc=1.260K
S04: Tc=2.538K

T. I. Baturina, S. V. Postolova, A. Yu. Mironov, A. Glatz, M. R. Baklanov, V. M. Vinokur, EuroPhys. Lett. 97, 17012 (2012). 



NUMERICAL FLUCTUOSCOPY

39

Similar complete expressions were derived for fluctuation corrections to 
conductivity sxx(t,h), NMR relaxation rate, and tunnel currents. 
Its evaluation can only be done numerically:
• Needs precise evaluation of sums and integrals, but essential to analyze 

experimental results (requires fitting to microscopic parameters)
• Numerically challenging due to slow convergence, large number of Landau 

levels at low temperatures, and polygamma functions

• Calculation of a single t-h surface plot (106 values) takes ~3 months single-
core CPU hours (in 2011) ~ 1 month today

à No numerical cutoff for infinite Matsubara sums & integrals can be used, 
need to transform ”tails” to inverse parameter integrals

à Summations need to be done carefully due to oscillations to avoid 
numerical cancellations 



NUMERICAL FLUCTUOSCOPY, EXAMPLE

40

Transformation of k-sum (MT contribution to NMR relaxation rate):

As an example, we show the transformation of the k sum
appearing in the NMR contribution, Eq. (103), to a suitable
form for numerical evaluation (Glatz, Galda, and Varlamov,
2015):

SðMTÞ
m ≡

X∞

k¼−∞

E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

and write

SðMTÞ
m ≗

!Xkmax−1

k¼0

ð2 − δ0;kÞ þ 2

Z
∞

kmax

dk
"
E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

≡ SðMTÞðsÞ
m þ SðMTÞðiÞ

m

with

kmax ¼ max
#
2Ω −

$
4h
π2 t

ð2m þ 1Þ
%
; 1
&
:

Here we use ≗ to indicate “equal” in floating point precision.
The sum part SðMTÞðsÞ

m is calculated straightforwardly, which
leaves the calculation of the “rest integral” SMTðiÞ

m :

SðMTÞðiÞ
m ¼ 1

2

Z
∞

kmax

dk
ψ 00½ð1þkÞ=2þxm &

ln t−ψð1=2Þþψ ½ð1þkÞ=2þxm &

≗−
1

2

Z
∞

kmax

dk
½ð1þkÞ=2þxm &−2

ln t−ψð1=2Þ− lnð2Þþ lnð1þkþ2xm Þ
;

where we used the asymptotic behavior of the polygamma
functions with

xm ≡ 2h
t
ð2m þ 1Þ

π2
.

A convenient substitution is

1

z
¼ 8

π2
þ ð1þ kÞt
hðm þ 1=2Þ

¼ 8

π2xm

!
xm þ 1þ k

2

"
;

dz
z2

¼ −
t

hðm þ 1=2Þ
dk ¼ −

4

π2
dk
xm

;

zmax ¼
π2

4

'
2þ 1þ kmax

xm

(−1
:

Therefore,

SðMTÞðiÞ
m ¼ π2

8

Z
0

zmax

dz
z2

xm ð8z=π2xm Þ2

ln ðtπ2xm =4Þ − ψð1=2Þ − lnð2Þ − lnðzÞ

¼ −
8

π2xm

Z
zmax

0
dz

1

Am − ln z

¼ −
2t

hðm þ 1=2Þ

Z
zmax

0
dz

1

Am − ln z

with Am ≡ ln ½hðm þ 1=2Þ&− ψð1=2Þ − lnð2Þ. This integral is
integrable and calculated by the Gauss-Legendre five-point
method (which avoids the singular point at z ¼ 0) with only a

few support points in the small interval 0 to zmax (125 support
points are sufficient to reach floating point precision).
Overall this yields a highly accurate numerical value of

the k sums.
In the quasi-two-dimensional case the additional finite

q integral is calculated by the Gauss-Legendre five-point
method using 25 support points, which is sufficient to obtain
high accuracy.
The k summations for all other fluctuation corrections can

be treated in a similar fashion.

LIST OF SYMBOLS AND ABBREVIATIONS

c speed of light (mostly set to 1)
CðflÞ fluctuation heat capacity
Cnðε1; ε2Þ four-leg Cooperon, Eq. (31)
d effective dimension of the FCP motion
de effective dimension of the electron

motion
D electron diffusion coefficient
Dg intragrain diffusion coefficient
DT intergrain diffusion coefficient
e electron unit charge
EF Fermi energy
ETh Thouless energy
Em ðx; t; hÞ auxiliary function inversely proportional

to the fluctuation propagator, Eq. (33)
FðflÞ fluctuation correction to free energy,

Eq. (37)
Gðp; εÞ one-electron Green’s function
geff effective BCS interaction
GiðdÞ Ginzburg-Levanyuk number, Eq. (28)
h dimensionless magnetic field H= ~Hc2ð0Þ
ℏ Planck constant (mostly set to 1)
~h reduced magnetic field

½H −Hc2ð0Þ&=Hc2ð0Þ
Hc2ð0Þ second critical field at zero temperature
~Hc2ð0Þ second critical field extrapolated to zero

temperature from the GL region
IðflÞ fluctuation correction to quasiparticle

tunneling current
jα electric current density
jmag density of persistent electric current

induced by magnetization gradient
kB Boltzmann constant (mostly set to 1)
l electron mean free path
lH electron magnetic length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=ðeHÞ

p

lϕ phase relaxation length vFτϕ
lT thermal length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=kBT

p

Lðq;ΩkÞ fluctuation propagator, Eq. (24)
Lðp; p0; qÞ two-particle Green’s function, Eq. (23)
m ' effective mass of FCPs
m e electron mass
m ðqpÞ mass of quasiparticles
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write as

As an example, we show the transformation of the k sum
appearing in the NMR contribution, Eq. (103), to a suitable
form for numerical evaluation (Glatz, Galda, and Varlamov,
2015):

SðMTÞ
m ≡

X∞

k¼−∞

E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

and write

SðMTÞ
m ≗

!Xkmax−1

k¼0

ð2 − δ0;kÞ þ 2

Z
∞

kmax

dk
"
E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

≡ SðMTÞðsÞ
m þ SðMTÞðiÞ

m

with

kmax ¼ max
#
2Ω −

$
4h
π2 t

ð2m þ 1Þ
%
; 1
&
:

Here we use ≗ to indicate “equal” in floating point precision.
The sum part SðMTÞðsÞ

m is calculated straightforwardly, which
leaves the calculation of the “rest integral” SMTðiÞ

m :

SðMTÞðiÞ
m ¼ 1

2

Z
∞

kmax

dk
ψ 00½ð1þkÞ=2þxm &

ln t−ψð1=2Þþψ ½ð1þkÞ=2þxm &

≗−
1

2

Z
∞

kmax

dk
½ð1þkÞ=2þxm &−2

ln t−ψð1=2Þ− lnð2Þþ lnð1þkþ2xm Þ
;

where we used the asymptotic behavior of the polygamma
functions with

xm ≡ 2h
t
ð2m þ 1Þ

π2
.

A convenient substitution is

1

z
¼ 8

π2
þ ð1þ kÞt
hðm þ 1=2Þ

¼ 8

π2xm

!
xm þ 1þ k

2

"
;

dz
z2

¼ −
t

hðm þ 1=2Þ
dk ¼ −

4

π2
dk
xm

;

zmax ¼
π2

4

'
2þ 1þ kmax

xm

(−1
:

Therefore,

SðMTÞðiÞ
m ¼ π2

8

Z
0

zmax

dz
z2

xm ð8z=π2xm Þ2

ln ðtπ2xm =4Þ − ψð1=2Þ − lnð2Þ − lnðzÞ

¼ −
8

π2xm

Z
zmax

0
dz

1

Am − ln z

¼ −
2t

hðm þ 1=2Þ

Z
zmax

0
dz

1

Am − ln z

with Am ≡ ln ½hðm þ 1=2Þ&− ψð1=2Þ − lnð2Þ. This integral is
integrable and calculated by the Gauss-Legendre five-point
method (which avoids the singular point at z ¼ 0) with only a

few support points in the small interval 0 to zmax (125 support
points are sufficient to reach floating point precision).
Overall this yields a highly accurate numerical value of

the k sums.
In the quasi-two-dimensional case the additional finite

q integral is calculated by the Gauss-Legendre five-point
method using 25 support points, which is sufficient to obtain
high accuracy.
The k summations for all other fluctuation corrections can

be treated in a similar fashion.

LIST OF SYMBOLS AND ABBREVIATIONS

c speed of light (mostly set to 1)
CðflÞ fluctuation heat capacity
Cnðε1; ε2Þ four-leg Cooperon, Eq. (31)
d effective dimension of the FCP motion
de effective dimension of the electron

motion
D electron diffusion coefficient
Dg intragrain diffusion coefficient
DT intergrain diffusion coefficient
e electron unit charge
EF Fermi energy
ETh Thouless energy
Em ðx; t; hÞ auxiliary function inversely proportional

to the fluctuation propagator, Eq. (33)
FðflÞ fluctuation correction to free energy,

Eq. (37)
Gðp; εÞ one-electron Green’s function
geff effective BCS interaction
GiðdÞ Ginzburg-Levanyuk number, Eq. (28)
h dimensionless magnetic field H= ~Hc2ð0Þ
ℏ Planck constant (mostly set to 1)
~h reduced magnetic field

½H −Hc2ð0Þ&=Hc2ð0Þ
Hc2ð0Þ second critical field at zero temperature
~Hc2ð0Þ second critical field extrapolated to zero

temperature from the GL region
IðflÞ fluctuation correction to quasiparticle

tunneling current
jα electric current density
jmag density of persistent electric current

induced by magnetization gradient
kB Boltzmann constant (mostly set to 1)
l electron mean free path
lH electron magnetic length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=ðeHÞ

p

lϕ phase relaxation length vFτϕ
lT thermal length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=kBT

p

Lðq;ΩkÞ fluctuation propagator, Eq. (24)
Lðp; p0; qÞ two-particle Green’s function, Eq. (23)
m ' effective mass of FCPs
m e electron mass
m ðqpÞ mass of quasiparticles
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with

As an example, we show the transformation of the k sum
appearing in the NMR contribution, Eq. (103), to a suitable
form for numerical evaluation (Glatz, Galda, and Varlamov,
2015):

SðMTÞ
m ≡

X∞

k¼−∞

E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

and write

SðMTÞ
m ≗

!Xkmax−1

k¼0

ð2 − δ0;kÞ þ 2

Z
∞

kmax

dk
"
E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

≡ SðMTÞðsÞ
m þ SðMTÞðiÞ

m

with

kmax ¼ max
#
2Ω −

$
4h
π2 t

ð2m þ 1Þ
%
; 1
&
:

Here we use ≗ to indicate “equal” in floating point precision.
The sum part SðMTÞðsÞ

m is calculated straightforwardly, which
leaves the calculation of the “rest integral” SMTðiÞ

m :

SðMTÞðiÞ
m ¼ 1

2

Z
∞

kmax

dk
ψ 00½ð1þkÞ=2þxm &

ln t−ψð1=2Þþψ ½ð1þkÞ=2þxm &

≗−
1

2

Z
∞

kmax

dk
½ð1þkÞ=2þxm &−2

ln t−ψð1=2Þ− lnð2Þþ lnð1þkþ2xm Þ
;

where we used the asymptotic behavior of the polygamma
functions with

xm ≡ 2h
t
ð2m þ 1Þ

π2
.

A convenient substitution is

1

z
¼ 8

π2
þ ð1þ kÞt
hðm þ 1=2Þ

¼ 8

π2xm

!
xm þ 1þ k

2

"
;

dz
z2

¼ −
t

hðm þ 1=2Þ
dk ¼ −

4

π2
dk
xm

;

zmax ¼
π2

4

'
2þ 1þ kmax

xm

(−1
:

Therefore,

SðMTÞðiÞ
m ¼ π2

8

Z
0

zmax

dz
z2

xm ð8z=π2xm Þ2

ln ðtπ2xm =4Þ − ψð1=2Þ − lnð2Þ − lnðzÞ

¼ −
8

π2xm

Z
zmax

0
dz

1

Am − ln z

¼ −
2t

hðm þ 1=2Þ

Z
zmax

0
dz

1

Am − ln z

with Am ≡ ln ½hðm þ 1=2Þ&− ψð1=2Þ − lnð2Þ. This integral is
integrable and calculated by the Gauss-Legendre five-point
method (which avoids the singular point at z ¼ 0) with only a

few support points in the small interval 0 to zmax (125 support
points are sufficient to reach floating point precision).
Overall this yields a highly accurate numerical value of

the k sums.
In the quasi-two-dimensional case the additional finite

q integral is calculated by the Gauss-Legendre five-point
method using 25 support points, which is sufficient to obtain
high accuracy.
The k summations for all other fluctuation corrections can

be treated in a similar fashion.

LIST OF SYMBOLS AND ABBREVIATIONS

c speed of light (mostly set to 1)
CðflÞ fluctuation heat capacity
Cnðε1; ε2Þ four-leg Cooperon, Eq. (31)
d effective dimension of the FCP motion
de effective dimension of the electron

motion
D electron diffusion coefficient
Dg intragrain diffusion coefficient
DT intergrain diffusion coefficient
e electron unit charge
EF Fermi energy
ETh Thouless energy
Em ðx; t; hÞ auxiliary function inversely proportional

to the fluctuation propagator, Eq. (33)
FðflÞ fluctuation correction to free energy,

Eq. (37)
Gðp; εÞ one-electron Green’s function
geff effective BCS interaction
GiðdÞ Ginzburg-Levanyuk number, Eq. (28)
h dimensionless magnetic field H= ~Hc2ð0Þ
ℏ Planck constant (mostly set to 1)
~h reduced magnetic field

½H −Hc2ð0Þ&=Hc2ð0Þ
Hc2ð0Þ second critical field at zero temperature
~Hc2ð0Þ second critical field extrapolated to zero

temperature from the GL region
IðflÞ fluctuation correction to quasiparticle

tunneling current
jα electric current density
jmag density of persistent electric current

induced by magnetization gradient
kB Boltzmann constant (mostly set to 1)
l electron mean free path
lH electron magnetic length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=ðeHÞ

p

lϕ phase relaxation length vFτϕ
lT thermal length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=kBT

p

Lðq;ΩkÞ fluctuation propagator, Eq. (24)
Lðp; p0; qÞ two-particle Green’s function, Eq. (23)
m ' effective mass of FCPs
m e electron mass
m ðqpÞ mass of quasiparticles
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As an example, we show the transformation of the k sum
appearing in the NMR contribution, Eq. (103), to a suitable
form for numerical evaluation (Glatz, Galda, and Varlamov,
2015):

SðMTÞ
m ≡

X∞

k¼−∞

E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

and write

SðMTÞ
m ≗

!Xkmax−1

k¼0

ð2 − δ0;kÞ þ 2

Z
∞

kmax

dk
"
E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

≡ SðMTÞðsÞ
m þ SðMTÞðiÞ

m

with

kmax ¼ max
#
2Ω −

$
4h
π2 t

ð2m þ 1Þ
%
; 1
&
:

Here we use ≗ to indicate “equal” in floating point precision.
The sum part SðMTÞðsÞ

m is calculated straightforwardly, which
leaves the calculation of the “rest integral” SMTðiÞ

m :

SðMTÞðiÞ
m ¼ 1

2

Z
∞

kmax

dk
ψ 00½ð1þkÞ=2þxm &

ln t−ψð1=2Þþψ ½ð1þkÞ=2þxm &

≗−
1

2

Z
∞

kmax

dk
½ð1þkÞ=2þxm &−2

ln t−ψð1=2Þ− lnð2Þþ lnð1þkþ2xm Þ
;

where we used the asymptotic behavior of the polygamma
functions with

xm ≡ 2h
t
ð2m þ 1Þ

π2
.

A convenient substitution is

1

z
¼ 8

π2
þ ð1þ kÞt
hðm þ 1=2Þ

¼ 8

π2xm

!
xm þ 1þ k

2

"
;

dz
z2

¼ −
t

hðm þ 1=2Þ
dk ¼ −

4

π2
dk
xm

;

zmax ¼
π2

4

'
2þ 1þ kmax

xm

(−1
:

Therefore,

SðMTÞðiÞ
m ¼ π2

8

Z
0

zmax

dz
z2

xm ð8z=π2xm Þ2

ln ðtπ2xm =4Þ − ψð1=2Þ − lnð2Þ − lnðzÞ

¼ −
8

π2xm

Z
zmax

0
dz

1

Am − ln z

¼ −
2t

hðm þ 1=2Þ

Z
zmax

0
dz

1

Am − ln z

with Am ≡ ln ½hðm þ 1=2Þ&− ψð1=2Þ − lnð2Þ. This integral is
integrable and calculated by the Gauss-Legendre five-point
method (which avoids the singular point at z ¼ 0) with only a

few support points in the small interval 0 to zmax (125 support
points are sufficient to reach floating point precision).
Overall this yields a highly accurate numerical value of

the k sums.
In the quasi-two-dimensional case the additional finite

q integral is calculated by the Gauss-Legendre five-point
method using 25 support points, which is sufficient to obtain
high accuracy.
The k summations for all other fluctuation corrections can

be treated in a similar fashion.

LIST OF SYMBOLS AND ABBREVIATIONS

c speed of light (mostly set to 1)
CðflÞ fluctuation heat capacity
Cnðε1; ε2Þ four-leg Cooperon, Eq. (31)
d effective dimension of the FCP motion
de effective dimension of the electron

motion
D electron diffusion coefficient
Dg intragrain diffusion coefficient
DT intergrain diffusion coefficient
e electron unit charge
EF Fermi energy
ETh Thouless energy
Em ðx; t; hÞ auxiliary function inversely proportional

to the fluctuation propagator, Eq. (33)
FðflÞ fluctuation correction to free energy,

Eq. (37)
Gðp; εÞ one-electron Green’s function
geff effective BCS interaction
GiðdÞ Ginzburg-Levanyuk number, Eq. (28)
h dimensionless magnetic field H= ~Hc2ð0Þ
ℏ Planck constant (mostly set to 1)
~h reduced magnetic field

½H −Hc2ð0Þ&=Hc2ð0Þ
Hc2ð0Þ second critical field at zero temperature
~Hc2ð0Þ second critical field extrapolated to zero

temperature from the GL region
IðflÞ fluctuation correction to quasiparticle

tunneling current
jα electric current density
jmag density of persistent electric current

induced by magnetization gradient
kB Boltzmann constant (mostly set to 1)
l electron mean free path
lH electron magnetic length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=ðeHÞ

p

lϕ phase relaxation length vFτϕ
lT thermal length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=kBT

p

Lðq;ΩkÞ fluctuation propagator, Eq. (24)
Lðp; p0; qÞ two-particle Green’s function, Eq. (23)
m ' effective mass of FCPs
m e electron mass
m ðqpÞ mass of quasiparticles
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and transform 
integral to

As an example, we show the transformation of the k sum
appearing in the NMR contribution, Eq. (103), to a suitable
form for numerical evaluation (Glatz, Galda, and Varlamov,
2015):

SðMTÞ
m ≡

X∞

k¼−∞

E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

and write

SðMTÞ
m ≗

!Xkmax−1

k¼0

ð2 − δ0;kÞ þ 2

Z
∞

kmax

dk
"
E00
m ðt; h; jkjÞ

Em ðt; h; jkjÞ

≡ SðMTÞðsÞ
m þ SðMTÞðiÞ

m

with

kmax ¼ max
#
2Ω −

$
4h
π2 t

ð2m þ 1Þ
%
; 1
&
:

Here we use ≗ to indicate “equal” in floating point precision.
The sum part SðMTÞðsÞ

m is calculated straightforwardly, which
leaves the calculation of the “rest integral” SMTðiÞ

m :

SðMTÞðiÞ
m ¼ 1

2

Z
∞

kmax

dk
ψ 00½ð1þkÞ=2þxm &

ln t−ψð1=2Þþψ ½ð1þkÞ=2þxm &

≗−
1

2

Z
∞

kmax

dk
½ð1þkÞ=2þxm &−2

ln t−ψð1=2Þ− lnð2Þþ lnð1þkþ2xm Þ
;

where we used the asymptotic behavior of the polygamma
functions with

xm ≡ 2h
t
ð2m þ 1Þ

π2
.

A convenient substitution is

1

z
¼ 8

π2
þ ð1þ kÞt
hðm þ 1=2Þ

¼ 8

π2xm

!
xm þ 1þ k

2

"
;

dz
z2

¼ −
t

hðm þ 1=2Þ
dk ¼ −

4

π2
dk
xm

;

zmax ¼
π2

4

'
2þ 1þ kmax

xm

(−1
:

Therefore,

SðMTÞðiÞ
m ¼ π2

8

Z
0

zmax

dz
z2

xm ð8z=π2xm Þ2

ln ðtπ2xm =4Þ − ψð1=2Þ − lnð2Þ − lnðzÞ

¼ −
8

π2xm

Z
zmax

0
dz

1

Am − ln z

¼ −
2t

hðm þ 1=2Þ

Z
zmax

0
dz

1

Am − ln z

with Am ≡ ln ½hðm þ 1=2Þ&− ψð1=2Þ − lnð2Þ. This integral is
integrable and calculated by the Gauss-Legendre five-point
method (which avoids the singular point at z ¼ 0) with only a

few support points in the small interval 0 to zmax (125 support
points are sufficient to reach floating point precision).
Overall this yields a highly accurate numerical value of

the k sums.
In the quasi-two-dimensional case the additional finite

q integral is calculated by the Gauss-Legendre five-point
method using 25 support points, which is sufficient to obtain
high accuracy.
The k summations for all other fluctuation corrections can

be treated in a similar fashion.

LIST OF SYMBOLS AND ABBREVIATIONS

c speed of light (mostly set to 1)
CðflÞ fluctuation heat capacity
Cnðε1; ε2Þ four-leg Cooperon, Eq. (31)
d effective dimension of the FCP motion
de effective dimension of the electron

motion
D electron diffusion coefficient
Dg intragrain diffusion coefficient
DT intergrain diffusion coefficient
e electron unit charge
EF Fermi energy
ETh Thouless energy
Em ðx; t; hÞ auxiliary function inversely proportional

to the fluctuation propagator, Eq. (33)
FðflÞ fluctuation correction to free energy,

Eq. (37)
Gðp; εÞ one-electron Green’s function
geff effective BCS interaction
GiðdÞ Ginzburg-Levanyuk number, Eq. (28)
h dimensionless magnetic field H= ~Hc2ð0Þ
ℏ Planck constant (mostly set to 1)
~h reduced magnetic field

½H −Hc2ð0Þ&=Hc2ð0Þ
Hc2ð0Þ second critical field at zero temperature
~Hc2ð0Þ second critical field extrapolated to zero

temperature from the GL region
IðflÞ fluctuation correction to quasiparticle

tunneling current
jα electric current density
jmag density of persistent electric current

induced by magnetization gradient
kB Boltzmann constant (mostly set to 1)
l electron mean free path
lH electron magnetic length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=ðeHÞ

p

lϕ phase relaxation length vFτϕ
lT thermal length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=kBT

p

Lðq;ΩkÞ fluctuation propagator, Eq. (24)
Lðp; p0; qÞ two-particle Green’s function, Eq. (23)
m ' effective mass of FCPs
m e electron mass
m ðqpÞ mass of quasiparticles
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Figure 1 Nernst signal from sample 1. a,b, The Nernst signal (N ) as a function of
magnetic field for temperatures ranging from 0.19 K to 5.8 K, for sample 1 with
Tc = 0.165 K as detected by its resistive transition. A finite Nernst signal is present
for T > Tc. With increasing temperature, this signal decreases in magnitude and
becomes more field linear. c, The Nernst coefficient, ν = N/B, for the same sample
as a function of magnetic field in a log–log scale. Note that, except for the lowest
temperatures, the Nernst coefficient is constant at low magnetic field.

the Hall angle (tan θ = RH/ρxx , where RH is the Hall coefficient
and ρxx is the longitudinal resistivity). As seen in Fig. 2, in the
entire range of our measurements, the Nernst coefficient, ν, is three
orders of magnitude larger than Stan θ. In a multi-band metal, the
contribution of carriers with different signs to Stan θ cancel out and
its overall value could become smaller than ν (ref. 17), but such a

0 0.5 1.0 1.5

0.2 0.5 1.0 5.0

0.001

0.010

0.100

1.000

10.00

0 T

2 T

1 T

0.25 T
 (µ

V 
K–1

T–1
)

T (K)

T (K)

B (T)

S tan × 2,000

0.3 0.4 0.5 0.6
0

100

200

300

400

B = 0 T

Tc = 0.38 K

R sq
ua

re
 (Ω

)

0.0001

0.0010

0.0100

0.1000 Sample 2
0.25 K

0.29 K

0.33 K

0.36 K

0.40 K

0.415 K

0.560 K

0.850 K

ν
N

(µ
V 

K–1
)

a

b

c

θ

Figure 2 Nernst signal from sample 2. a,b, The temperature dependence of the
Nernst coefficient (a) and the resistivity (b). The Nernst coefficient, which exceeds
the measured value of S tan θ at 2 T multiplied by 2,000, cannot be attributed to the
normal-state quasi-particles. c, The evolution of the Nernst signal with temperature
in sample 2 on a semi-log plot. The thick grey curve marks the onset of
superconductivity. Note the evolution of the Nernst signal across the critical
temperature. The large Nernst signal below Tc is caused by vortex movement due to
the thermal gradient and the reduction of the signal at lower fields for T = 0.25 K is
due to vortex pinning in the low-temperature-low-field region of the (B,T ) plane.

possibility can be easily ruled out here. The hypothetical existence
of two very small Fermi surface pockets hosting carriers of opposite
sign with long mean-free-path seems implausible. The small value
of tan θ ≈ 2 × 10−5 simply reflects an extremely short electronic
mean-free-path (of the order of interatomic distance ∼0.25 nm)
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Finally, we address the regions VIII and IX far from the
transition line. In this limit, the Kubo contribution ~!xy di-
verges as ½ln lnð1=Tc"Þ $ ln ln max ðh; tÞ%, with 1=" play-
ing the role of the ultraviolet cutoff of the Cooperon
modes. Remarkably, the same divergence of the opposite
sign occurs in the magnetization contribution !xy

M . Hence,
!xy remains " independent:

!xy
VIII ¼ !0

eDH

6#cT lnðT=TcÞ
; ð1; hÞ ' t; (19)

!xy
IX ¼ !0

#cT

12eDH ln½H=Hc2ð0Þ%
; ð1; tÞ ' h: (20)

We see that even far from the transition the fluctuation
Nernst signal can be comparable or parametrically larger
than the Fermi liquid terms. In fact, it is conceivable that in
some materials the Cooper channel contribution to thermal
transport dominates even in the absence of any supercon-
ducting transition (e.g., if it is ‘‘hidden’’ by another order).

Plotted in Fig. 3 is a comparison between our theory and
the experimentally measured Nernst coefficient [9] for a
Nb0:15Si0:85 film of thickness d ¼ 12:5 nm. The dashed
line corresponds to the coefficient limH!0!

xy=H in a
wide range of temperatures up to 30Tc. We used the
diffusion coefficient D ¼ 0:087 cm2=s which is 60% of
that reported in Ref. [9] (with kFl(1, the precise deter-
mination of D is questionable). Note that far from the
transition point ($> 2), the SC coherence length %ðTÞ
becomes shorter than d and 3D nature of diffusion mani-
fests itself. It can be described by substituting &n ! &n þ
Dð#p=dÞ2 and performing an additional summation over
p ¼ 0; 1; . . . in Eqs. (5)–(7). The resulting curve is shown
in Fig. 3 by the solid line.

In summary, we have developed a complete microscopic
theory of the fluctuation Nernst effect in a 2D supercon-
ductor. Our results provide a natural explanation for a large

Nernst signal observed in SC films [9,10] and probably
should be relevant to the cuprates. Another interesting
theoretical predictions is a slow decay of the transverse
thermoelectric response away from the transition line,
which is expected to persist well into the metallic phase.
We are grateful to H. Aubin, M. Feigel’man, and A.

Kavokin for useful discussions. M.N. S. acknowledges
support from Dynasty Foundation and hospitality of the
University Paris-Sud. V. G. acknowledges BU visitors pro-
gram’s hospitality. The work of M.N. S. and M.A. S. was
partially supported by RFBR Grant No. 07-02-00310.
Note added in proof.—In a very recent preprint [27], the

fluctuation Nernst effect has been analyzed within the
Keldysh formalism. Results of Ref. [27] qualitatively co-
incide with our results, differing in some numerical factors
of order 1 in several asymptotic regions.
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FIG. 3 (color online). Comparison with experiment. Circles:
experimental data for limH!0!

xy=H vs $ ¼ lnT=Tc obtained for
the 12.5-nm-thick Nb0:15Si0:85 film [9]. Dashed line: theoretical
prediction for the strictly 2D geometry. Solid line: theoretical
prediction for the real sample [9].
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• Characteristic feature of Nernst signal: non-monotonous as function of field

• Size of FCPs determined by xGL(t) till

à Nernst signal reaches maximum at field H*(T) – first called “mirror field”, 
then ghost critical field

Tafti et al. used it to indirectly determine Hc2(0) in HTS, which is very high 
and often inaccessible directly, using

However, the complete expression does not allow to extract H*(T) 
analytically.
Its analytical structure suggests:
with some function j(x), j(0)=0
à Mainly linear T-dependence

itself. Taking this fact into account noticeably improves the
fitting (see the solid line in Fig. 29).
In Fig. 30 an excellent agreement between the theory of

Michaeli and Finkel’stein (2009a) and the measurements of
the Nernst signal (performed on the same Nb0.15Si0.85 film) as
a function of the magnetic field is demonstrated.

2. Analysis of the ghost critical field

The characteristic feature of the fluctuation Nernst signal is
its nonmonotonic behavior as a function of the magnetic field.
One can see from the first row of Table IV that close to Tc0,
the Nernst signal is proportional to the magnetic field and
quadratically dependent on the GL coherence length. As long
as the magnetic field is relatively small, the effective size of
FCPs remains to be determined by ξGLðϵÞ and is fixed by

temperature. However, when the magnetic field increases and
consequently the magnetic length lFCP

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=2eH

p
of the

FCPs becomes comparable to ξGLðϵÞ, the former gradually
takes on the role of the characteristic size of FCP. Such field-
induced shrinking of the fluctuations characteristic scale
is well known since the early studies of fluctuating diamag-
netism (Schmid, 1969; Prange, 1970; Gollub et al., 1973;
Skocpol and Tinkham, 1975; Behnia and Aubin, 2016). As a
result, the Nernst signal reaches its maximum at some field
H$ðTÞ and decreases when the magnetic field further
increases.
Pourret, Aubin et al. (2006) were the first who measured

such isothermal curves (see Fig. 31) and also determined
the temperature dependence H$ðTÞ for the temperatures
several times exceeding Tc0. They identified H$ðTÞ with
the field when lFCP

H$ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ð2eH$Þ

p
∼ ξGLðϵÞ and, following

Kapitulnik, Palevski, and Deutscher (1985), called the curve
H$ðϵÞ as the “mirror field” [others called it the “ghost critical
field”; in the vicinity of Tc0 it is indeed symmetrical to the line
Hc2ðϵÞ]. Moreover, recalling that ϵ in the microscopic theory
is the asymptotic expression of the lnT=Tc0, Pourret, Aubin
et al. (2006) extended their fitting also to temperatures beyond
the GL region.
The study of the temperature dependence of H$ðTÞ acquired

special significance for HTS compounds. Recently, Tafti et al.
(2014) and Yamashita et al. (2015) proposed using it for the
precise determination of the second critical field Hc2ð0Þ, often
unaccessible for direct measurements because of its large value.
The analysis of the experimental data obtained on the HTS
compound Pr2−xCexCuO4 led Tafti et al. (2014) to propose
for the temperature dependence of the ghost critical field a
phenomenological expression:
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FIG. 29. Comparison with experiment. Circles: experimental
data for the fluctuation part of the NE coefficient vs ϵ ¼ ln T=Tc0
obtained for the 12.5-nm-thick Nb0.15Si0.85 film (Pourret, Aubin
et al., 2006). Dashed line: theoretical prediction for the strictly
2D geometry. Solid line: theoretical prediction for the sample
with 2D-3D crossover taken into account. The only adjustable
parameter in this fit is the diffusion coefficient, here 0.087 cm2=s.
From Serbyn et al., 2009.

FIG. 30. Comparison with experiment. The Nernst signal
(labeled α, N in the text) as a function of the magnetic field
measured at T ¼ 410 mK. The black squares correspond to the
experimental data of Pourret, Aubin et al. (2006) while the
solid line describes the theoretical result of Michaeli and
Finkel’stein (2009a). The arrow on the phase diagram illustrates
the direction of the measurement. In the inset the low magnetic
field data are fitted with the theoretical curve. From Michaeli and
Finkel’stein, 2009a 0 1 2 3 4
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FIG. 31. Nernst signal (labeled N in the plots, N in the text)
(a) in the conventional superconductor Nb0.15Si0.85 and (c) in
the HTS Pr2−xCexCuO4 measured above critical temperature
(Pourret, Aubin et al., 2006; Tafti et al., 2014) and the related
temperature dependences of the corresponding maxima, labeled
H$ (the “ghost critical field”) in (b) and (d), respectively. From
Behnia and Aubin, 2016.
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H !ðTÞ ¼ H c2ð0Þ ln
T
Tc0

: ð81Þ

The prefactor H c2ð0Þ was chosen as a single empirical
parameter that characterizes the strength of the superconduc-
tivity. They stated that “the characteristic field scale encoded
in superconducting fluctuations above Tc0” is equal to the
field needed to kill superconductivity at T ¼ 0 K, i.e., a
straightforward empirical procedure for measuring of the
fundamental field scale for superconductivity from super-
conducting fluctuations above Tc0 was proposed.
The complete expression, Eq. (80), unfortunately does not

allow one to extract the temperature dependence of the
ghost field H !ðTÞ analytically. Nevertheless, due to its
specific scaling form, the temperature dependence of the
magnetic field corresponding to the maximum of the Nernst
signal can be expressed in a very generic way (Kavokin and
Varlamov, 2015)

H !ðTÞ ¼ H c2ð0Þ
!

T
Tc0

"
φ

!
ln

T
Tc0

"
; ð82Þ

where φðxÞ is some smooth function which satisfies the
condition φð0Þ ¼ 0.
Note that Eq. (82) coincides with Eq. (81) only in the

particular case of φðxÞ ¼ x expð−xÞ. In the case of any other
analytical function φðxÞ, the magnetic field corresponding to
the maximum of the NE signal H !ðTÞ would increase mainly
linearly with the growth of temperature.
Let us recall that the heuristic justification of Eq. (81) is

based on the statement that the maximum in the NE signal
magnetic field dependence occurs where the FCP size ξGLðTÞ
is of the order of its magnetic length lFCP

H! ¼ ðc=2eH !Þ1=2.
Close to the critical temperature this indeed yields

H ! ∼ H c2ð0ÞðT − Tc0Þ=Tc0 ≈ H c2ð0Þ ln
T
Tc0

.

Far from Tc0 Pourret, Aubin et al. (2006), Tafti et al. (2014),
and Yamashita et al. (2015) extended the GL expression as

ξGLðTÞ ¼ ξBCS

, ffiffiffiffiffiffiffiffiffiffiffi

ln
T
Tc0

s

;

which brings them to Eq. (81). We believe that this extension
misses some justification, and the microscopically obtained
Eq. (80) has to be investigated for its extrema.
However, it is possible to numerically extract the ghost field

from Eq. (80). The result is shown in Fig. 32. In addition to
this numerically extracted curve, scaled experimental data
from Chang et al. (2012) on Eu-LSCO and Tafti et al. (2014)
on doped PCCO are plotted. The latter is in fact better fitted by
the maximum of Eq. (80) than the phenomenological curve
(81) in its lower temperature range. The former data set also
shows a rather linear behavior at higher temperatures with a
slope of 0.35.

VIII. FLUCTUATION PSEUDOGAP AND LOW-BIAS
ANOMALY

A. Fluctuation depletion of the electron DOS

According to the microscopic BCS theory (Bardeen,
Cooper, and Schrieffer, 1957a, 1957b), the superconducting
state is characterized by a gap in the quasiparticle spectrum
centered around the Fermi level, which vanishes along the
transition line H c2ðTÞ. However, it was predicted as early as in
1970 (Abrahams, Redi, and Woo, 1970) that thermal fluctua-
tions result in a noticeable suppression of the DOS in a narrow
energy range around the Fermi level even in the normal state
of a superconductor [see Fig. 33(a)]. More specifically, in the
case of a disordered thin film, the fluctuation correction to the
DOS assumes the form (Abrahams, Redi, and Woo, 1970)

δρðflÞð2Þ ðE; TÞ
ρe

¼
4.6Gið2Þk2BT

2

½E − ð1=2Þτ−1GL&2

×
$
E − ð1=2Þτ−1GL
Eþ ð1=2Þτ−1GL

− ln
Eþ ð1=2Þτ−1GL

τ−1GL

%
; ð83Þ

where ρe is the electron density of states per one spin of a
normal metal at the Fermi level, Gið2Þ ¼ 1.3ℏ2=p2

Fls is the
Ginzburg-Levanyuk number for a 2D film of thickness s,
l is the electron mean free path, and τGL is the Ginzburg-
Landau time.
One can see that Eq. (83) is a sign-changing function and its

integral over the complete energy range must be equal to zero:

Z
∞

0
δρðflÞðE; TÞdE ¼ 0: ð84Þ

Equation (84) is merely the sum rule: the superconducting
interaction cannot create new states, it just redistributes the
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FIG. 32. Temperature dependence of the ghost field scaled to
H c2 from experiments (þ and ×), numerically obtained from
Eq. (80) [thick solid red (dark gray) line], and lnðtÞ (thin gray
line). The experimental data on Eu-LSCO (þ) are taken from
Chang et al. (2012) [Fig. 3(b)] and the data on PCCO at doping
level x ¼ 0.17 (×) from Tafti et al. (2014) (Fig. 10). The data on
Eu-LSCO are also fitted to a line through zero (slope 0.35) for
comparison (dashed line).
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Hc2(0) is used as fitting 
parameter

H !ðTÞ ¼ H c2ð0Þ ln
T
Tc0

: ð81Þ

The prefactor H c2ð0Þ was chosen as a single empirical
parameter that characterizes the strength of the superconduc-
tivity. They stated that “the characteristic field scale encoded
in superconducting fluctuations above Tc0” is equal to the
field needed to kill superconductivity at T ¼ 0 K, i.e., a
straightforward empirical procedure for measuring of the
fundamental field scale for superconductivity from super-
conducting fluctuations above Tc0 was proposed.
The complete expression, Eq. (80), unfortunately does not

allow one to extract the temperature dependence of the
ghost field H !ðTÞ analytically. Nevertheless, due to its
specific scaling form, the temperature dependence of the
magnetic field corresponding to the maximum of the Nernst
signal can be expressed in a very generic way (Kavokin and
Varlamov, 2015)

H !ðTÞ ¼ H c2ð0Þ
!

T
Tc0

"
φ

!
ln

T
Tc0

"
; ð82Þ

where φðxÞ is some smooth function which satisfies the
condition φð0Þ ¼ 0.
Note that Eq. (82) coincides with Eq. (81) only in the

particular case of φðxÞ ¼ x expð−xÞ. In the case of any other
analytical function φðxÞ, the magnetic field corresponding to
the maximum of the NE signal H !ðTÞ would increase mainly
linearly with the growth of temperature.
Let us recall that the heuristic justification of Eq. (81) is

based on the statement that the maximum in the NE signal
magnetic field dependence occurs where the FCP size ξGLðTÞ
is of the order of its magnetic length lFCP

H! ¼ ðc=2eH !Þ1=2.
Close to the critical temperature this indeed yields

H ! ∼ H c2ð0ÞðT − Tc0Þ=Tc0 ≈ H c2ð0Þ ln
T
Tc0

.

Far from Tc0 Pourret, Aubin et al. (2006), Tafti et al. (2014),
and Yamashita et al. (2015) extended the GL expression as

ξGLðTÞ ¼ ξBCS

, ffiffiffiffiffiffiffiffiffiffiffi

ln
T
Tc0

s

;

which brings them to Eq. (81). We believe that this extension
misses some justification, and the microscopically obtained
Eq. (80) has to be investigated for its extrema.
However, it is possible to numerically extract the ghost field

from Eq. (80). The result is shown in Fig. 32. In addition to
this numerically extracted curve, scaled experimental data
from Chang et al. (2012) on Eu-LSCO and Tafti et al. (2014)
on doped PCCO are plotted. The latter is in fact better fitted by
the maximum of Eq. (80) than the phenomenological curve
(81) in its lower temperature range. The former data set also
shows a rather linear behavior at higher temperatures with a
slope of 0.35.

VIII. FLUCTUATION PSEUDOGAP AND LOW-BIAS
ANOMALY

A. Fluctuation depletion of the electron DOS

According to the microscopic BCS theory (Bardeen,
Cooper, and Schrieffer, 1957a, 1957b), the superconducting
state is characterized by a gap in the quasiparticle spectrum
centered around the Fermi level, which vanishes along the
transition line H c2ðTÞ. However, it was predicted as early as in
1970 (Abrahams, Redi, and Woo, 1970) that thermal fluctua-
tions result in a noticeable suppression of the DOS in a narrow
energy range around the Fermi level even in the normal state
of a superconductor [see Fig. 33(a)]. More specifically, in the
case of a disordered thin film, the fluctuation correction to the
DOS assumes the form (Abrahams, Redi, and Woo, 1970)

δρðflÞð2Þ ðE; TÞ
ρe

¼
4.6Gið2Þk2BT

2

½E − ð1=2Þτ−1GL&2

×
$
E − ð1=2Þτ−1GL
Eþ ð1=2Þτ−1GL

− ln
Eþ ð1=2Þτ−1GL

τ−1GL

%
; ð83Þ

where ρe is the electron density of states per one spin of a
normal metal at the Fermi level, Gið2Þ ¼ 1.3ℏ2=p2

Fls is the
Ginzburg-Levanyuk number for a 2D film of thickness s,
l is the electron mean free path, and τGL is the Ginzburg-
Landau time.
One can see that Eq. (83) is a sign-changing function and its

integral over the complete energy range must be equal to zero:

Z
∞

0
δρðflÞðE; TÞdE ¼ 0: ð84Þ

Equation (84) is merely the sum rule: the superconducting
interaction cannot create new states, it just redistributes the
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FIG. 32. Temperature dependence of the ghost field scaled to
H c2 from experiments (þ and ×), numerically obtained from
Eq. (80) [thick solid red (dark gray) line], and lnðtÞ (thin gray
line). The experimental data on Eu-LSCO (þ) are taken from
Chang et al. (2012) [Fig. 3(b)] and the data on PCCO at doping
level x ¼ 0.17 (×) from Tafti et al. (2014) (Fig. 10). The data on
Eu-LSCO are also fitted to a line through zero (slope 0.35) for
comparison (dashed line).

A. A. Varlamov, A. Galda, and A. Glatz: Fluctuation spectroscopy: From Rayleigh-Jeans …

Rev. Mod. Phys., Vol. 90, No. 1, January–March 2018 015009-33



GHOST FIELD H*(T): LINE OF MAXIMUM n(fl)

44

H

t

Hc2

1

Hc1 H*
(t) Hm

ir c2
(t)

Hc2(t)

Hc1(t)



MAX NERNST SIGNAL

45

a

c

b

A. Pourret et al.J. Chang et al



H* IN CONVENTIONAL AND HTS

0 1 2 3 4
0.0

0.1

0.2

0.3
390 mK
410
430
450
560
650
720
775
850
1.2 K
1.6
1.9

H(T)
1

0

1

2

T(K) 

TC

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

H(T)
0 5 10 15 20 25 30 35

0

1

2

3

T(K)

Hc2Hvs Tc

VS

VL

Tc = 13.4 K T = 
13.6 K
14.4
14.7
16.1
18.3
23.9
31.3

(a)

(c)

(b)

(d)

Hc2 H * = Φ0/2πξ2

H * = Φ0/2πξ2

H *

T > Tc

T > Tc

Nb0.15Si0.85

Pr2-xCexCuO4

46

the heat flow (Mahan, 2000) results in the violation of the
third law of thermodynamics which can be rectified only by
taking into account the fluctuating Meissner magnetization
above Hc2ð0Þ.

1. Definition of the NE coefficient

Let us review the definition of transport coefficients and
consider a conductor placed in a magnetic field H, subjected
to an applied temperature gradient ∇T. The electric and heat
transport currents in it are related to the applied weak-enough
electric field and temperature gradient by means of the
relations

jðeÞtr;α ¼ σαδðHÞEδ þ βαδðHÞ∇δT; ð72Þ

jðhÞtr;α ¼ γαδðHÞEδ − καδðHÞ∇δT; ð73Þ

where βαβðHÞ; γαβðHÞ and καβðHÞ are thermoelectricity and
heat conductivity tensors (here we use two superscripts for
tensors and subscripts for vector components). Thermoelectric
tensors βαβ and γαβ are connected by the Onsager relation
γαβðHÞ ¼ −Tβαβð−HÞ. Let us mention that the validity of the
Onsager relation follows from the principle of the symmetry
of transport coefficients, which is based on the invariance
of the quantum mechanical equations with respect to time
reversal.
The off-diagonal components of the tensor βαβ in the

absence of a magnetic field are equal to zero. If besides a
temperature gradient ∇T also a magnetic field H is applied to
the sample, a potential difference VðNEÞ appears along the y
axis. The circuit in this direction is supposed to be broken.
The corresponding open-circuit conditions are ∇xT ≠ 0,
jðhÞtr;x ¼ jðeÞtr;x ¼ jðeÞtr;y ¼ 0; see Fig. 25. This so-called Nernst-
Ettingshausen (or Nernst) effect10 is well pronounced in
semiconductors but is usually small in good metals. It is
characterized by the NE coefficient which can be expressed by
means of the conductivity and thermoelectric tensors11:

ν ¼
Ey

ð−∇xTÞH
¼ 1

H
βxyσxx − βxxσxy
ðσxxÞ2 þ ðσxyÞ2

: ð74Þ

Usually, when the Hall component of conductivity σxy ≪ σxx,
while both βxx and βxy are of the same order, Eq. (74) directly
relates the NE coefficient to the off-diagonal component of the
thermoelectric tensor

νðT;HÞ ¼ R
□

βxyðT;HÞ=H; ð75Þ

where R
□

¼ ðσxxÞ−1 is the sheet resistance of the film. In the
case under consideration, the validity of approximation (75) is
even more justified, considering the excess of the off-diagonal
thermoelectricity compared to the diagonal one.

2. Onsager relations and magnetization currents

It is well known that the absence of free-electron magnetism
in the classical theory is explained by the compensation of the
total current created by the electrons moving along closed
trajectories in the bulk of the sample by the current of the
electrons moving along the open “hopping” trajectories close
to its surface. In quantum theory such a compensation does
not occur (Teller, 1931) and Landau diamagnetism (Landau,
1930) takes place. In the middle of the 20th century a lively
debate concerning the fulfillment of reciprocal Onsager
relations in metals and semiconductors subjected to a mag-
netic field and gradient of temperature was taking place [see
Obraztsov (1964) and references therein]. Obraztsov demon-
strated the fact that microscopic surface currents inducing
electron magnetization can contribute considerably to the
density of the macroscopic current when a temperature
gradient is applied to the sample. Taking corresponding
contributions to the heat and electric currents flowing in
the system into account restores the fulfillment of the
reciprocal Onsager relations and validity of the third law of
thermodynamics.
The contribution to the electric current can be easily

expressed using Ampere’s law as

jmag ¼ c
4π

∇ × B;

where B ¼ Hþ 4πM, H is the spatially homogeneous
external magnetic field, and M is the local value of magneti-
zation. In the presence of a temperature gradient ∇xT one
can express the magnetization current as (Obraztsov, 1964;
Ussishkin, Sondhi, and Huse, 2002)

FIG. 25. Schematic representation of the FCP motion in a
superconducting film subjected to a temperature gradient along
its x axis. The concentration and size of FCPs vary with
temperature. The local magnetization parallel to the external
magnetic field varies along the x axis as well. The spatial
inhomogeneity of the magnetization leads to a transformation
of the FCP trajectories from circular to trochoidal, which is why
the magnetization currents appear. To compensate for these
currents a voltage is induced in the y direction that provides a
sizable contribution to the fluctuation NE coefficient.

10The Nernst-Ettingshausen effect is closely related to the Etting-
shausen effect, which is just the opposite: it consists of the
appearance of a temperature gradient in a conductor placed in
a magnetic field, when an electric current is applied.

11The Nernst signal is related to the NE coefficient through the
simple relation N ¼ νH.
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Summary

• Microscopic approach allows to calculate Nernst 
coefficient in entire h-t domain

• Allows numerical evaluation of the 
ghost critical field H*(T)

• Analytical structure of H*(T) can be obtained

è Enables fluctuation spectroscopy to extract 
microscopic parameters


