Experiments on quantum heat transport through a superconducting qubit and a single-electron transistor

Jukka Pekola, Aalto University, Helsinki, Finland

- 1. Heat in circuits: measurement and control
- 2. Thermometry
- 3. Single-electron transistor: heat transport and thermopower
- 4. Circuit quantum thermodynamics (cQTD): quantum of heat conductance, quantum heat valve, local and global picture, rectification of heat current
- 5. Fast thermometry, calorimetry

Measuring heat currents

 $<\Delta T >= < Q > /G_{th}$

absorber

readout

electronics

V(t)

TIME

photon source

"artificial atom"

TIME

Energy resolution:

TEMPERATURE

NIS-thermometry

$$I = \frac{1}{2eR_T} \int n_S(E) [f_N(E - eV) - f_N(E + eV)] dE$$

Probes electron temperature of N electrode (and not of S!)

Phys. Rev. Appl. 4, 034001 (2015).

Single-electron transistor

•

Master equation:

3/15/2019

- Probabilities: P(n)
- Sequential Tunneling: $\Gamma^+(n)$, $\Gamma^-(n)$

$$\frac{\partial P(n)}{\partial t} = -P(n) \left[\Gamma^+(n) + \Gamma^-(n)\right] + P(n-1) \Gamma^+(n-1) + P(n+1) \Gamma^-(n+1).$$

$$I = e \sum P(n) [\Gamma_L^+(n) - \Gamma_L^-(n)]$$

+ $e \sum P(n) [\Gamma_{LR}^{cot}(n) - \Gamma_{RL}^{cot}(n)].$

– Co-tunneling:
$$\Gamma^{cot}(n)$$

Thermoelectricity in Single Electron Systems

4

Heat through a single-electron transistor – deviation from Wiedemann-Franz law

B. Dutta, J. Peltonen et al., PRL **119**, 077701 (2017)

Thermopower in a singleelectron transistor

No free parameters in model: red sawtooth – 2-state sequential, black – includes cotunneling

 n_g

1 µm $V_{\rm th}$ 0.05 V⁰[mV] Q_{tun} $T_{\rm L}$, $V_{\rm L}$ *T*_I, n $T_{\rm R}$, $V_{\rm R}$ -0.05 $\dot{Q}_{\rm el-ph}$ (b)

P. Erdman et al, arXiv:1812.06514

Qubit as an open quantum system

Superconducting qubits

$$H_{\rm Q} = -E_0(\Delta\sigma_x + q\sigma_z)$$

 $H = H_{O} + V + H_{F}$

Refrigerator and heat engine

Quantum Otto refrigerator

Niskanen, Nakamura, Pekola, PRB 76, 174523 (2007); B. Karimi and JP, Phys. Rev. B **94**, 184503 (2016).

Heat transported between two resistors

For small temperature difference $\Delta T = T_1 - T_2$:

$$P = rG_{\rm Q}\Delta T$$
$$G_{\rm Q} = \frac{\pi k_{\rm B}^2}{6\hbar}T$$

Johnson, Nyquist 1928

Photons

Schmidt et al., PRL 93, 045901 (2004) Meschke et al., Nature 444, 187 (2006) Timofeev et al., PRL 102, 200801 (2009) Partanen et al., Nature Physics 12, 460 (2016)

Phonons

K. Schwab et al., Nature 404, 974 (2000)

Electrons

Jezouin et al., Science 342, 601 (2013) Banerjee et al., Nature 545, 75 (2017)

Experimental realization of photonic heat transport

Classical or quantum heat transport?

"Classical" high T, macroscopic circuit 300 K, centimetres $G_{
u} \sim r k_B \omega_C$

(MMM)

"Quantum" low *T*, small circuit 50 mK, micrometres

 $G_{\nu} = rG_Q$

Measurements of quantum of heat conductance by photons

Timofeev et al., PRL 102, 200801 (2009)

...via a 1 m long transmission line а 250 µm RA, TA 20 cm or 1 m 150 100 1 50 5 µm 5 µm

Partanen et al., Nature Phys. 12, 460 (2016)

Quantum heat valve

A. Ronzani, B. Karimi, J. Senior, Y.-C. Chang, J. Peltonen, C. D. Chen, and JP, Nature Physics 14, 991 (2018).

B. Karimi, J. Pekola, M. Campisi, and R. Fazio, Quantum Science and Technology **2**, 044007 (2017).

Temperature of a qubit?

Couple the qubit to a true thermal bath

Alternative approach to initialize a qubit to a given "temperature": Y. Masuyama et al., Nature Comm. 9, 1291 (2018)

Idea of the experiment

Power to each bath (in steady-state):

$$P_i = \hbar \omega_0 (\rho_e \Gamma_{\downarrow}^{(i)} - \rho_g \Gamma_{\uparrow}^{(i)})$$

Experimental realization of the heat valve

QUBIT WITHOUT ABSORBERS

λ / 4 resonators terminated by heat bath *R*

R≈2Ω

0.8

$$Q = \pi Z_0 / 4R$$

Yu-Cheng Chang et al., in preparation

See also: M. Partanen et al., Nat. Phys. **12**, 160 (2016); arXiv:1712.10256

Intermediate-Q regime

Current experiment: asymmetric device

T_bath=140 mK 2,0 1,6 1,2 Estimated ΔT (mK) 0,8 100 aW $T_{\rm S}\approx 200~{\rm mK}$ 0,4 — *T*_S ≈ 100 mK 0,0 -0,4 -0,8 -200 200 400 -400 0 I_{coil} (μA)

3 GHz 7 GHz

Forward and reverse powers

Rectification ratio from measurement

Theory: Rectification of heat in spin-boson model, D. Segal and A. Nitzan, PRL 2005

Rectification of photonic heat current by a qubit

$$\Gamma_{\uparrow}^{(1)} = g_1 \frac{\omega_0}{e^{\beta_1 \hbar \omega_0} - 1}, \quad \Gamma_{\uparrow}^{(2)} = g_2 \frac{\omega_0}{e^{\beta_2 \hbar \omega_0} - 1}$$

$$\Gamma_{\downarrow}^{(1)} = g_1 \frac{\omega_0}{1 - e^{-\beta_1 \hbar \omega_0}}, \quad \Gamma_{\downarrow}^{(2)} = g_2 \frac{\omega_0}{1 - e^{-\beta_2 \hbar \omega_0}}$$

$$\rho_e = \frac{\Gamma_{\uparrow}}{\Gamma_{\uparrow} + \Gamma_{\downarrow}} \qquad \Gamma_{\uparrow,\downarrow} = \Gamma_{\uparrow,\downarrow}^{(1)} + \Gamma_{\uparrow,\downarrow}^{(2)}$$

$$\Gamma_{\uparrow,\downarrow} = \Gamma_{\uparrow,\downarrow}^{(1)} + \Gamma_{\uparrow,\downarrow}^{(2)}$$

$$P_i = \hbar \omega_0 (\rho_e \Gamma_\downarrow^{(i)} - \rho_g \Gamma_\uparrow^{(i)})$$

$$\mathcal{R} = \left| \frac{P_i^+}{P_i^-} \right| \qquad \mathcal{R} = \frac{g_2 \coth(\frac{\beta \hbar \omega_0}{2}) + g_1}{g_1 \coth(\frac{\beta \hbar \omega_0}{2}) + g_2}$$
For small asymmetry: $\gamma = 1 - g_1/g_2$

$$\mathcal{R} - 1 = e^{-\beta \hbar \omega_0} \gamma$$

$$1 \qquad \beta_1 \hbar \omega_0 = 0.8 \text{ and } \beta_2 \hbar \omega_0 = 4.8$$

$$0.01 \qquad 0.1 \qquad \gamma \qquad 1$$

n-level system

Equidistant levels

Rectification vanishes in a linear system (harmonic oscillator) even when couplings are unequal.

What next?

Quantum Otto refrigerator

Time-domain measurements of temperature: temperature fluctuations, single microwave photon detection

Quantum Otto refrigerator

a)

Expect about 1 fW cooling power at 1 GHz driving frequency

Fast NIS thermometry on electrons

ZBA based thermometry

non-invasive, operates at low temperature

B. Karimi and JP, Phys. Rev. Applied 10, 054048 (2018)

See also, O.-P. Saira et al., Phys. Rev. Appl. 6, 024005 (2016); J. Govenius et al., PRL 117, 030802 (2016)

Time-resolved measurements by fast thermometer

Noise of heat current and equilibrium temperature fluctuations

Noise of electrical current $S_I(0) = 2k_BTG$, i.e. Johnson-Nyquist noise $\langle \delta I^2 \rangle = 4k_BTG\Delta f$

Fluctuation-dissipation theorem for heat current

Low frequency noise:

 $\dot{Q} \downarrow \overset{\mathsf{C}, \mathcal{T}_{bath} + \Delta \mathcal{T}}{\overset{\mathsf{C}, \mathcal{T}_{bath}}{\overset{\mathsf{C}, \mathcal{T}, \mathcal{T}_{bath}}{\overset{\mathsf{C}, \mathcal{T}, \mathcal{T}_{bath}}{\overset{\mathsf{C}, \mathcal{T}, \mathcal{T}_{bath}}{\overset{\mathsf{C}, \mathcal{T}, \mathcal$

$$S_{\dot{Q}}(0) = 2k_B T^2 G_{\rm th}$$
$$\delta \dot{Q} = G_{\rm th} \delta T$$
$$S_T(0) = 2k_B T^2 / G_{\rm th}$$

Finite frequencies (classical):

$$S_T(\omega) = \frac{S_T(0)}{1 + (\omega/\omega_c)^2} \qquad \omega_c = G_{\rm th}/C$$
$$\langle \delta T^2 \rangle = \int \frac{d\omega}{2\pi} S_T(\omega) = k_B T^2/C$$

Preliminary results on temperature fluctuations

Non-equilirium temperature noise

Input power

B. Karimi et al., in preparation

Theory: F. Brange, P. Samuelsson, B. Karimi, J. P., PRB 98, 205414 (2018).

Requirements for single microwave photon detection

Detector noise bounded from below by effective temperature fluctuations of the absorber coupled to the bath.

Noise-equivalent temperature, NET

NET
$$\equiv S_T(0)^{1/2} = (2k_B T^2/G_{\rm th})^{1/2}$$

Required NET = $E/(G_{\rm th}C)^{1/2}$

Lines:

Green dashed one: current amplifier limited noise **Black**: fundamental temperature fluctuations **Blue**: threshold for detecting a single E = 1 K microwave photon **Red**: threshold for detecting a single E = 2.5 K quantum

Standard copper absorber 10000 $\mathcal{V} = 0.0005 \ \mu m^3$ NET (µK/√Hz) 1000 100 (b)10 20 40 80100 60 10 $T(\mathbf{mK})$

Summary

Discussed:

measurement of heat in circuits, thermometry Heat transport and thermo-electricity of a single-electron transistor open quantum systems based on superconducting qubits photonic heat transport, quantum of heat conductance quantum heat valve, local and global picture, rectification of heat current calorimetry, temperature fluctuations

Main collaborators

Bayan Karimi, Alberto Ronzani, Jorden Senior, Azat Gubaydullin, Yu-Cheng Chang, Joonas Peltonen

Bivas Dutta, Clemens Winkelmannn, Herve Courtois (CNRS Grenoble) Paolo Erdman, Fabio Taddei (Pisa), Rosario Fazio (ICTP Trieste) Hans He, Samuel Lara Avila, Sergey Kubatkin (Chalmers, graphene calorimeter)

