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Quantum Thermodynamics
Any theory Should be consistent with Thermodynamics

- _ - 6. Ube?' einen

die -Erzeugung und Verwandlung des Lichtes

| betreffenden heuristischen Gesichtspunkt;
von A. Einstein.

' Zwischen den theoretischen Vorstellungen, welche sich die
Physiker iiber die Gase und andere ponderable Korper ge-
hildet hahen. und der ‘Maxwellschen Theorie der elektro-

ON A HEURISTIC POINT OF VIEN CONCERNING THE PR(]DUC’I‘IUN Einstein 1905
5 AND TRANSFORMATION OF LIGHT :
by A. Einstein

[Aunalen der Physik 17 (1905): 132-148] E:hv

If we restrict ourselves to investigating the dependence of the entropy on th
volume occupied by the radiation and denote the entropy of radiation by S,
when the latter occupies the volume 1v,, we obtain

This equation shows that the entropy of a monochromatic radiation of
sufficiently low density varies with the volume according to the same law as
the entropy of an ideal gas or that of a dilute solution. The equation just
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If monochromatic radiation of frequency » and energy F is enclosed
(by reflecting walls) in the volume wv,, the probability that at a randomly
chosen instant the entire radiation energy will be contained in the portion v

of the volume v, is

N E
V= [-”—”E

_vo

From this we further conclude:

Monochromatic radiation of low density (within the range of validity of
Wien's radiation formula) behaves thermodynamically as if it consisted of
mutually independent energy quanta of magnitude Rfv/N.

-

The paper is wrongly interpreted as the photoelectric effect
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Millikan, R. (1914). "A Direct Determination of "h."". Physical Review. 4 (1): 73-75
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Quantum Thermodynamics
Any theory should be consistent with Thermodynamics

- 6. Uber einen
die Erzeugung und Verwandlung des Lichtes
| betreffenden heuristischen Gesichtspunkt;
von A. Einstein.

- Zwischen den theoretischen Vorstellung’en,-WelChe'si(}l__l _die
Physiker iiber die Gase und andere ponderable Korper ge-
hildet haben. und der ‘Maxwellschen Theorie -der -elektro-

Finding quantum analogies to: Einstein 1905

0) System bath partition: E=hv
Approach to equilibrium.

1) The first law:
Energy change.

2) The second law:
Entropy change.

3) The third law:

Approaching the absolute zero.
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Carnot efficiency of a 3-level amplifier
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Laser Cooling reversing the 3—level amplifier
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D. J. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975); T. W. Hansch and A. L. — Th
Schawlow, "Cooling of Gases by Laser Radiation,” Opt. Commun. 13, 68 (1975).
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The von Neumann mathematical formalism of Open systems

i) quantum observables are represented by self-adjoint (hermitian) operators
(denoted by A B...) acting on the Hilbert space H,

ii) quantum events are the particular yes-no observables described by projectors
(P - PQ)a

iii) the state of the system is represented by density matrices, i.e. positive
operators with trace one (denoted by p,d,..),

iv) probability of the event P for the state p is given by

P = Tr(pP), (1)
v) an averaged value of the observable A at the state p is equal to
(A), = Tr(pA). (2)
The dynamics of a closed quantum system is described by a unitary map U;:
x " % JB gy
p(t) =U:p(0) = U(1)p(0)U (1) (3)
where U is a unitary operator generated by the Hamiltonian operator I:I(f)
d -~ oo oo
—U(t) =—-—=-H(@@)U(¢ 4
C0(t) = — A@0() (4)

with U(0) = I. For time independent Hamiltonians U(t) = exp{—%ﬂt}. An
equivalent differential form of the dynamics is described by the von Neumann
evolution equation with the time-dependent Hamiltonian H(t)

(1) = —FL(t). (1), ©)
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Quantum entropy

Quantum entropy was also introduced by von Neumann called now von Neu-
mann entropy and defined by

Son(p) = —kpTr(plnp) = —kp Y _A;jlnX; >0 (6)
J

where p =3, A; 17)(j] is a spectral decomposition of the density operator. The
von Neumann entropy is an invariant of the state p and is the lower bound
for all possible diagonal entropies S4(p) > Syn(p) where S4 = —kp > i pjInp;
is the Shannon entropy defined by the probability distribution obtained by a
complete measurement of the operator A.

The quantum counterpart of the canonical (Gibbs) ensemble, corresponding
to the thermodynamic equilibrium state at the temperature 7', for the system
with the Hamiltonian H, is described by the density matrix of the form

1 : 1 i
ﬁ,ﬁ = Ee_ﬁH, 3 = m, = TI'E_'E}H. (7)

The Gibbs state maximizes entropy under the condition of a fixed mean energy
(internal energy in thermodynamic language) £ = Tr(pH) or minimizes E for
a fixed entropy S,,. In this case S, = Sg.
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The Markovian Master Equation and isothermal partition

Figure 1: System embedded in a bath.

scenario the global Hamiltonian can be decomposed into::

)

H = Hs+ Hp + Hsp | (8)

where I:IS is the system’s Hamiltonian H g the bath Hamiltonian and I:ISB
the system-bath interaction. Formally, the state of the system can be ob-
tained from a partial trace over the combined system: pg(t) = Trp{psp(t)} =

TrB{fTﬁSB (O)I’_\TT}j where U is generated by the total Hamiltonian: U = e—#HL,
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Reduceed dynamics

system and bath are uncorrelated:

psp(0) = ps(0) ® pp(0) (9)

This assumption can be moved to t - —oco and will be scrutinized later.

Assuming unitary dynamics generated by the total Hamiltonian (8), starting
from an uncorrelated initial system-bath state Eq. (9), the reduced map Ag(t)
has the structure:

ps(t) = ZK K(t) | (10)

where K are system operators and Zj KJK; — 1. This general result has
been derived by Kraus [55] and is termed completely positive trace preserving
map(CPTP).

The CPPT map is contracting meaning that the distance between two states
diminishes. This distance between p; and p, can be defined by the conditional
entropy: S(pq|ps) = Tr{p;Inp; — p;Inp,}. Aplying the map A leads to a
quantum version of the H-theorem [56]:

S(Ap4s|App) < S(palpp) (11)

If the map has a unique fixed point Ap,, = p.; then using Eq. (11) it becomes
clear that repeated applications of the map will lead monotonically to this fixed
point, a mathematical property associated with thermal equilibrium [57].
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Markovian quantum Master equation LGKLS

A differential form of the CPTP map can be obtained by imposing a Mako-
vian property: Ag(t + s) = Ag(t)As(s). The differential generator of the dy-
namics can be defined by Ag(t) = e~ leading to the quantum Master equation:

d . x
atPs = Lps (12)

An important milestone was the derivation of the most general form of the

generator of Markovian dynamics by Gorini-Kossakowski-Lindblas-Sudarshan
(GKLS) [4, 5]. The differential generator £ of the map becomes:

=]

.Ps = (LH + Lp) ps = —7[Hs, ps| + ¥, (LjﬁsL
where L are system operators and Hg is a renormalized system Hamiltonian.

The dynamics generated by the GKLS form (13) based on Kraus mapping
Eq. (10), implies a tensor product form between system and bath at all times
Psp(t) = pg(t) ® pp(t). This structure is equivalent to a partition between
system and bath. All system observables are defined by the system state pg:
<A> — TT{AﬁS}a

The GKLS equation describes irreversible dynamics with positive entropy
production leading to a fixed point [58, 59]

B st " " 5 5
7S5(P(1)|pg) = —Tr [Lp(1) (Inp(t) —Inp,,)] 2 0 for Lpse =0,  (14)

where the fixed point for the dynamics is g,.
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The Born-Markov weak coupling approximation

A constructive approach to derive the GKLS Master equation from first princi-
ples is desirable allowing to address directly physical reality. The method known
as Davis construction [60] is based on a second order expansion where the small
parameter \ scales the system-bath interaction:

fl— A 8, @ B, (15)
k

where S are system operators and B bath operators. The rigorous derivation of

TR T F e T T PR |
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A basic step in the derivation is to transform to the interaction representation

generated by the free evolution ﬁ(t) — e~ #Hst @ o—#HBt At this point the
system coupling operators Si in Eq. (15) are expanded by eigen-operators of
the free system propagator:

7y ~ _l 7y _ -~
HStAwe rHst _ e zthw (16)

e

Us(t)A, =
({w}- denotes the set of Bohr frequencies of Hg). Then:

e%ﬁstéke_%ﬁst = Z-S‘;g(w)i&wff_iwta (17)
{w}

Adding to the WCL method a renormalization procedure which allows to
use the physical Hamiltonian Hg of the system, containing lowest order Lamb
corrections, one obtains the following structure of Markovian Master equation

which is in the GKLS form:

d . puse R R
Ps = —i|Hg,ps) 4+ Lpps, Lpps = ; {z;ﬁuﬁs (18)
where
P
s = s Ralw)si()sn(w) {[Auds, ALl +[Au, sAL)} . (19)

The rate matrix Rjy;(w) is the Fourier transform of the bath correlation
function (B;g(t)f?,g)bam computed in the thermodynamic limit

- +OO " ~ ~
ng(w) _/ ewt<Bk(t)Bl>bathdt- (20)

— 00
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The derivation of (18),(19) imposes additional thermodynamical properties of
the Master equation:

1) the Hamiltonian part [HASj e] commutes with the dissipative part Lp,

2) the diagonal (in Hg-basis) matrix elements of pg evolve (independently of
the off-diagonal ones) according to the Pauli Master Equation with transition
rates given by the Fermi Golden Rule |66, 67].

If additionally the bath is a heat bath [68, 69] then:

3) Gibbs state pg = 7 le=PHs ig a stationary solution of (18),

4) Any initial state relaxes asymptotically to the Gibbs state: The 0-Law of
Thermodynamics [57].
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The derivation of (18),(19) can be extended to describe driven systems with
a time dependent system Hamiltonian HS( ). The jump operators A, become
eigen-operators of the free time dependent propagator Ug(t). The adiabatic case
of a slowly varying time-dependent Hamiltonian is the most simple case. The
Jump operators become the eigen-operators of the instantaneous propagator or
[Fis(t), Au) = —iw(t)A, [70).

A quantum dynamical version of the first law of thermodynamics is obtained
by examining the energy conservation law in the adiabatic case [6, 61]:

B(t) = Tr(ps(t)Hs (1)) (21)

Taking the time derivative of Eq. (21) results in the change in energy partitioned
to power and heat currents:

d

ZE() = J(t) - P(t). (22)

where the power provided by the system becomes:

P(t) = —Tr (ﬁs(t) dff;(t) )

(23)
The heat current becomes:

T(t) = Te(Bs(t) < () = S0, (0 = Te(Bs)Lu(05(0)
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The repeated Collision model

and j gas particle are initially uncorrelated p; = pg, ® pp,. The individual

collision event is then described by a unitary scattering matrix S.
pr=5SpS . (43)

Assuming independent random collisions with identical bath particles a reduced
map is obtained:

ps, = Agps, = Trp {ﬁf} (44)

To generalize to many repeated encounters at rate ~, the collision duration has
to be much faster than the average waiting time between collisions ~ 1/~. The
differential description leads to a GKLS Master equation [80, 81]:

d . B, , vm oo ST
EIOS = *E[qups] 3 (TI"B {SPS ® ppS } i PS) (45)

The repeated collision GKLS equation Eq. (45) depends on the bath state. A
natural choice is a bath in thermal equilibrium pp = % exp{—FHpg}.
As any CPTP map, the collision dynamics leads to a fixed point Lp,, = 0.
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For modeling it would be desirable that this fixed point 1s a thermal equi-
librium state of the system pg = % exp(—fSHg). To study this possibility, the

unitary scattering matrix S can be described by a generator \7, then § = e~ # V¢
where ¢ is a phase shift.
The Master equation Eq. (45) can be expanded to second order in ¢ leading
to [82]:
d . S S B o .
atPs —E[HSE ps] — ¥ Trp {[V:' V. ps® PBH} (46)

DL DO oy ey & e e
7_7252 all ey 5_{_’}/?1 I'B .

To obtain a thermalizing model we can choose V as follows 183, 84, 85, 86]:

VZZQ&(AL@@ﬁkJrAk@BL) (47)
k

where A, and By are eigen-operators of the commutators of the free Hamilto-
nians with the same eigenvalue:

Hg, A;] = —wirAg (48)

[Ap,Bi] = —wiBy

As a result the operator V commutes with [I:IS - ﬂB,V} = 0. Using these
properties Eq. (46) reduces to a thermalizing GKLS:

& e o v g P
—ps=—[Hs,ps] — > _ (v £r (8s) + 77 £} (5,)) (49)
L
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e N e T T
where: £,7(p,) = [AkPs, Ayl +[Ag, psAy] and L7 (p,) = [A}fs, Ax]+H[A,, PsAk].

The rate coefficients obay:

~ .
Yo =7 9% (BxBy) (50)

5, T
v =7 g¢(BrBk)

When the bath is in thermal equilibrium the ratio of rate coefficients obeys

detailed balance: .
Tb _ o=Bun (51)
A}/k

This concludes the derivation of a thermalizing GLKS collision model.
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The Gaussian semi-group: the singular bath limit

H=Hs+ Vi) (52)

where the random force typically (f(t)) = 0 and (f(¢) f(t')) = vd(t —t'). Such a
process leads to a GLKS equation when averaging over the random noise [90]:

4 pg = 185, s - LIV.[V. ] (53
dfpS_ h ) ' Ps

de phenomena most associated with Gaussian noise 1s dephasing. If we
choose V = g(HS) where g(x) is any analytic function then Eq. (53) conserves
energy and the dissipation causes dephasing. In the language of magnetic reso-
nance a pure T process [93].

Pure dephasing will also occur if the S matrix in the scattering event Eq.
(45) commutes with Hg: [Hg,S] = 0. The Poisson dephasing due to repeated
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The laws of quantum thermodynamics
6.1 The zero law

The zero law of thermodynamics is typically stated as: If A and C are each in
thermal equilibrium with B, A is also in equilibrium with C. A thermodynamical
description is based on idealised partitions between subsystems. An isothermal
partition, for example, allows heat to flow from system to bath maintaining the
integrity of the subsystems. Consistency with quantum mechanics due to the
global structure of the theory is therefore a non-trivial statement.

6.2 System bath partition

Quantum thermodynamics idealises that the system can be fully described by
local operators, which is equivalent to the condition:

p=ps®Pp (54)

In Eq. (54) there is no system-bath entanglement, which is also true for Marko-
vian dynamics. Thermodynamically the local description of the system is equiv-
alent to the extensivity of its observables. We conclude that the dynamics repre-
sented by the LGKS generator Eq. (13) is closely linked to a thermodynamical
framework.

6.3 Thermal equilibrium

An equilibrium state in general is defined as stationary and stable. This as-
sumption is used to derive the Kubo-Martin-Schwinger stability criterion for
thermal equilibrium [68, 69]. This criterion will imply that in equilibrium there
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6.4 The I-law

The I-law addresses the issue of conserved quantities. The primary quantity is
the total energy. An additional variable important in transport is the number
of particles.
To obtain the conservation laws in a differential form we can write the equa-
tions of motion in Heisenberg form:
d & 8 -

where X is a system operator which can be explicitly time dependent. Choosing
for X the Hamiltonian Hg using the fact the H commutes with itself, and taking
expectation values we obtain :

d A~ O ~

& = (Lp(Hs)) + (5 Hs) (57)

which leads to the interpretation J = Q = (ﬁE(ﬂs)) as heat current and

P = (%I:IS) as power. This version derived using the Heisenberg equation of
This dynamical version of the I-law Eq. (57) is equivalent to Eq. (25) obtained
in the Schrodinger frame and is limited to the adiabatic regime [61].
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6.6 The II-law

The Clausius statement for the II-law is that heat should flow through the
system from a hot to a cold bath [96]. An alternative version due to Kelvin can
be stated as the universal tendency in nature to dissipate mechanical energy
197]. Both these criteria can be employed directly to asses open system models.
The Clausius version of he II-law can be put in a test for the quantum heat
transport problem of two connected quantum systems coupled to a hot and cold

bath. The dynamics can be described by
d i

A

—p=——[Hy + Hpe, p| + Lr(p) + Lo(p 62
7P = —=[Ho + Hue, o] + L1(P) + Le(P) (62)

where the wire Hamiltonian is I:I(} = I’-\I,tl + I:Ic, I:Ihc is the link Hamiltonian and
L}, /. are the dissipative connections to the hot and cold baths. In constructing
such model it is tempting to assign a local thermalizing GKLS generator to
each subsystem and then to introduce a weak coupling term connecting the two
subsystems. In this case the jump operators in £}, are the eigenoperators of H,
and for £, are the eigenoperators of H..

The global alternative is to use the full power of the Davis construction and
fine the eigenoperators of H, to construct both generators L and L. [98].

At steady state the heat flow from the hot (cold) bath is given by,
Thiey = Tr[(LnceyPs)(Ho +Hap)], (63)

where S, is the steady state density operator.
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6.7 The III-law

Two independent formulations of the IlI-law of thermodynamics exist, both
originally stated by Nernst [102, 103, 104]. The first is a purely static (equilib-
rium) one, also known as the ”"Nernst heat theorem”: phrased:

e The entropy of any pure substance in thermodynamic equilibrium ap-
proaches zero as the temperature approaches zero.

The second formulation is dynamical, known as the unattainability principle:

e It is impossible by any procedure, no matter how idealised, to reduce any
assembly to absolute zero temperature in a finite number of operations

The entrof)y production at the cold bath when 7. — 0 scales as

Bwi—T% . p20 . (67)

the characteristic exponent (:

dle(t) TS, -3 . (68)
dt
Solving Eq. (68), leads to;
T.) ¢ =T(0)01¢ —ct , for(<1 , (69)

where ¢ is a positive constant. From Eq. (69) the cold bath is cooled to zero
temperature at finite time for ( < 1. The IIl-law requires therefore ( > 1. In
order to evaluate Eq.(68) the heat current can be related to the temperature
change:

dT.(t)

Je(Te(t)) = —cv (Te(1)) dt

(70)
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Inserting Dynamics into Thermodynamics
Open quantum system System Bath

P Radtatton
0= —i[H ,p]+ L D(p) o TR > Te
R
X = +i[H,X]+L"I§(X)+%<J Bath System Bath
Heisenberg equation of motion Q
| > Te
LD is the generator of the

quantum dynamical semigroup

(Quantum Master Equation)

L, Lindblad’s form

Lyx)= 2 ngVjJ’—l/z{YiVth}




Imserting Dynamics imto Thermodynamics
System Bath

0) The zeroth law of thermodynamics: 1's — T’ S
(Q: Isothermal partition = weak coupling limit TS
Pse = Ps®Py | At all times. Y

1) Time derivative of first law of thermodynamics: energy balance

Q: Quantum definition of work and heat current

E (L (H)>+< > System (}}%

Radiation
P

E = Q = P .-f...:;c.:::;l::::::::;i::::::...'1ii'---"i"-i3':i:'1i?':i:f}}fgj};}i;f}lj;:::'iiir"-'-'-"'r'-iI:ifffifffiffflf:li""'f"'"?3?'::35535333'" 4

2) Second law of thermodynamics: irreversibility: work — heat

%Ss+g—tSBZO S=-te{pnp}




(The quest to cool to the absolute zero temperature)

Walter Nernst stated the third law of thermodynamics:

"it is impossible by any procedure, no matter how idealized, to reduce
any system to the absolute zero of temperature in a finite number
of operations"

1) Unattainability principle

Entropic view of the third law of thermodynamics: |

"The entropy change of any process becomes zero
when the absolute zero temperature is approached",

2) Nerst heat theorem isoentropic
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