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One of the features that distinguish quantum from classical theory is the
strength of correlations that can exist between the results of measurement
carried out on different subsystems. This was first pointed out by Einstein,
Podolsky and Rosen [1] and further described by Schrödinger [2, 3] who
introduced the notion of entanglement. In 1964, Bell proved that the degree
of correlation allowed by entanglement is inconsistent with any local hidden
variable theory [4]. An experimental demonstration of the violation of Bell’s
inequality was achieved by Aspect in 1981 [5].

While these (thought) experiments have focused on two entangled par-
ticles, the experimental, theoretical and computational tools developed over
the last decades have allowed to tackle many-body quantum systems. As the
number of constituents increases, so does the complexity of the states avail-
able to the system. Correlations are essential to characterize these states and
to understand under which conditions large quantum systems can behave ac-
cording to the predictions of classical thermodynamics.

In this lecture, we will introduce the basic tools for the characterization
of correlations between parts of a quantum system, discuss the formalism
which describes systems of identical particles and point out difficulties raised
by the indistinguishability of the constituents.

1 Correlations of distinguishable particles

Classical random variables are said to be correlated if the expectation E(XY )
does not factorize into E(X)E(Y ) (note that absence of correlation does not
guarantee independence, defined by P (X =x, Y = y) = P (X =x)P (Y = y)).
Analogously, a quantum mechanical state is correlated if the expectation
values of products of observables associated with different parts of the system
do not factorize. We will see that such correlations can be of classical or
quantum mechanical origin.

1.1 Entanglement

We consider two subsystems with Hilbert spaces HA and HB, whose common
state |ψ〉 is therefore described by a vector in the tensor product space HA⊗
HB. Take an observable A acting on HA and an observable B acting on HB,
if the state of the system can be written

|ψ〉 = |ψA〉 ⊗ |ψB〉 , (1)

then it is clear that the expectation value of A⊗B factorizes:

〈ψ|AB|ψ〉 = 〈ψA|A|ψA〉 〈ψB|B|ψB〉 . (2)
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States of the form (1) are called separable pure states. A pure state that is
not separable is said to be entangled.

Remark: This definition depends on the separation of the system into
two subsystems or parties and requires the overall system to be in a pure
state.

Example: Two spin-1
2

particles with Hilbert spaces HA = HB =
span {|↑〉 , |↓〉} such that HA ⊗HB = span {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}.
• 1√

2
(|↑↑〉+ |↓↓〉) is entangled.

• 1
2

(|↑↑〉+ |↑↓〉+ |↓↑〉+ |↓↓〉) = 1√
2
(|↑〉+ |↓〉)⊗ 1√

2
(|↑〉+ |↓〉) is separable.

A useful mathematical result when dealing with pure bipartite states is
the Schmidt decomposition: any state |ψ〉 ∈ HA ⊗ HB can be decomposed
as

|ψ〉 =
∑
k

√
λk |ψkA〉 ⊗ |ψkB〉 , (3)

where the λk are positive real numbers obeying
∑

k λk = 1 and the |ψkA(B)〉
are orthonormal states in HA(B). This follows from the singular value de-
composition of a (not necessarily square) matrix. The number of non-zero
λk coefficients is known as the Schmidt rank and is smaller than both dimHA

and dimHB.

Remark: The decomposition is not unique but the Schmidt coefficients
are.

The reduced density matrices obtained by tracing out one of the subsys-
tems are then easily expressed as:

ρA = TrB (|ψ〉 〈ψ|) =
∑
k

λk |ψkA〉 〈ψkA| , (4)

ρB = TrA (|ψ〉 〈ψ|) =
∑
k

λk |ψkB〉 〈ψkB| , (5)

where the coefficient λk appear as the weight of |ψkA(B)〉 in the mixed states.

One can show (as an exercise) that the following propositions are equivalent:
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1. The pure state |ψ〉 is separable.

2. One λk is equal one, all others vanish, i.e. the Schmidt rank is one.

3. The reduced state ρA is pure, i.e. ∃ |ψA〉 ∈ HA, ρA = |ψA〉 〈ψA|, or
equivalently ρ2A = ρA, or equivalently Tr(ρ2A) =

∑
k λ

2
k = 1.

4. Same thing with A↔ B.

The quantity Tr(ρ2A) = Tr(ρ2B) =
∑

k λ
2
k is the purity of the reduced states

and can be used to quantify the entanglement between A and B: if it is equal
to one, the state is separable and there is no entanglement whereas it reaches
its minimum value min(dimHA, dimHB)−1 if all Schmidt coefficients are
equal; the state is then said to be maximally entangled. Another important
measure of entanglement is the entropy of entanglement, which is given by the
von Neuman entropy of the reduced density matrices and therefore vanishes
for separable states:

S = −Tr (ρA log ρA) = −Tr (ρB log ρB) = −
∑
k

λk log λk. (6)

1.2 Quantum and classical correlations

The most general state of a quantum system is a mixed state represented by
a density matrix ρ. This description allows for both classical and quantum
correlations. We define product states on HA⊗HB as those states which can
be written

ρ = ρA ⊗ ρB. (7)

They carry no correlations, quantum or classical. Indeed, for any choice of
observables A and B acting on the respective subsystems, the expectation
value of A⊗ B factorizes: Tr(ρA⊗ B) = Tr(ρAA)Tr(ρBB). Separable states
are those which can be written as mixtures of product states:

ρ =
∑
i

pi ρ
(i)
A ⊗ ρ

(i)
B . (8)

States which are not separable are called entangled.
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Example: Consider the (pure) entangled state of two spin-1
2

particles

|ψ〉 =
1√
2

(|↑↑〉+ |↓↓〉) (9)

and the separable mixed state

ρ =
1

2
|↑↑〉 〈↑↑|+ 1

2
|↓↓〉 〈↓↓| . (10)

In both cases, measurements of the z-component of the two spins are
perfectly correlated (either both up or both down). The fact that the
quantum correlations of state (9) are stronger than the classical ones of
state (10) can be seen by considering measurements in an other basis. For
measurements of the x-components of the spins, one finds (as an exercise)
that state (9) still gives perfectly correlated results while state (10) gives
completely uncorrelated results.

Contrary to the case of pure states, determining whether a mixed state ρ
is separable is a difficult problem in general. Although any mixed state can
be put into the form

ρ =
∑
i

qi |ψ(i)〉 〈ψ(i)| (11)

by diagonalization, this decomposition is not unique. Entanglement measures
must therefore be defined as optima over all decompositions. For example,
entanglement of formation is the average entanglement entropy, minimized
over all decompositions of ρ:

SF (ρ) = min
{qi,|ψ(i)〉}

∑
i

qiS(|ψ(i)〉). (12)

This minimization procedure is difficult in practice, which led to the introduc-
tion of the following criterion by Peres and Horodecki [6, 7]. If ρ is expanded
in an orthonormal basis of HA ⊗HB as

ρ =
∑
i,j,k,l

pklij |i〉 〈j|⊗ |k〉 〈l| , (13)

then its partial transpose with respect to subsystem A is defined by

ρTA =
∑
i,j,k,l

pklij |j〉 〈i|⊗ |k〉 〈l| . (14)
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For separable states, ρ and ρTA have the same spectrum and, in particular,
they only have positive eigenvalues. Therefore if ρTA has a negative eigen-
value, then ρ is entangled. The negativity is defined as the sum over negative
eigenvalues of ρTA ,

N =
∑

µ∈sp(ρTA )

|µ| − µ
2

, (15)

and non-zero negativity is therefore a sufficient condition for entanglement.

1.3 Other types of quantum correlations

One can easily generalize the definition of entanglement to partitions into
more than two subsystems. However the characterization of such multipartite
entanglement can be extremely complex (see [8] for a comprehensive review
on quantum entanglement). Moreover, apart from entanglement, there exists
a whole hierarchy of quantum correlations. Quantum discord describes cor-
relations found in separable mixed states that nevertheless go beyond what
is classically possible [9, 10]. On the other hand, one can define quantum
correlations that are stronger than simple entanglement: EPR steering refers
to the ability to affect the results of measurements in a system A by acting
locally on a system B, while Bell nonlocality describes correlations that can-
not be explained by any local hidden variable theory, as witnessed by the
violation of a Bell inequality [11, 12].

2 Systems of identical particles

Identical quantum particles are fundamentally indistinguishable from one an-
other. However, the definition of entanglement relies on the existence of well
identified parties that can be addressed individually. We briefly introduce
the quantum mechanical formalism appropriate to describe systems of iden-
tical particles before we discuss the difficulties that it poses for the definition
of entanglement.

2.1 Fock space

We consider a quantum system composed of N identical particles, each de-
scribed by a single-particle Hilbert space H. The N -particle Hilbert space
is constructed by taking the tensor product of N copies of H: H⊗N =
H ⊗ H ⊗ . . .H. However, most states in H⊗N do not respect the indis-
tinguishability of the constituents because each particle is implicitly given a
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label corresponding to its position in the tensor product. For example, in
state

|ψ〉 = |ψ1〉1 ⊗ |ψ2〉2 ⊗ . . . |ψN〉N , (16)

the state |ψi〉 is associated with the particle carrying the label i. Acceptable
physical states must be invariant under all permutations of these unphysical
labels. For σ a permutation in SN , we define the operator Pσ which reorders
the tensor product according to σ:

Pσ |ψ1〉1 ⊗ |ψ2〉2 ⊗ . . . |ψN〉N = |ψσ−1(1)〉1 ⊗ |ψσ−1(2)〉2 ⊗ . . . |ψσ−1(N)〉N . (17)

We then require that all physical states |ψ〉 be invariant such operations, i.e.

∀σ ∈ SN , | 〈ψ|Pσ|ψ〉 |2 = 1. (18)

In other words, |ψ〉 must belong to a one-dimensional irreducible representa-
tion of SN on H⊗N . There are two possibilities:

Pσ |ψ〉 = |ψ〉 or Pσ |ψ〉 = sign(σ) |ψ〉 (19)

and the projectors on the corresponding subspaces of H⊗N respectively read

S =
∑
σ∈SN

Pσ and A =
∑
σ∈SN

sign(σ)Pσ. (20)

Particles whose state transforms according to the completely symmetric rep-
resentation are called bosons and we denote the N -boson Hilbert space by
H∨N = SH⊗N . Particles whose state transforms according to the sign repre-
sentation are called fermions and we denote the N -fermion Hilbert space by
H∧N = AH⊗N .

Example: Two indistinguishable two-level systems with single-particle
Hilbert space H = span {|↑〉 , |↓〉}.

Bosonic Hilbert space H∨2 = span
{
|↑↑〉 , 1√

2
(|↑↓〉+ |↓↑〉) , |↓↓〉

}
Fermionic Hilbert space H∧2 = span

{
1√
2

(|↑↓〉 − |↓↑〉)
}

If the number of particles is not conserved, it is convenient to take the
direct sum over the particle number N of the (bosonic or fermionic) N -
particle Hilbert spaces, leading to the Fock space

ΓB,F (H) = C⊕H⊕H∨∧2 ⊕ · · · ⊕ H∨∧N ⊕ . . . , (21)

where the first term corresponds to N = 0 and is spanned by the vacuum
state |∅〉.
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2.2 Second quantization

Since the unphysical labeling of particles has been erased by symmetrization,
one can build a basis of the Fock space ΓB,F (H) by considering states with a
given number of particles Nm in each state |m〉 (or mode) of an orthonormal
basis of the single-particle Hilbert space H. Therefore, rather than working
with cumbersome symmetrized states, we use the Fock notation: for bosons,

|N1, N2, . . . , Nm, . . .〉B ∝ S |1〉 ⊗ . . . |1〉︸ ︷︷ ︸
N1

⊗ |2〉 . . . |2〉︸ ︷︷ ︸
N2

. . . |m〉 . . . |m〉︸ ︷︷ ︸
Nm

. . . , (22)

while for fermions antisymmetrization imposes Nm = 0 or 1, such that

|N1, N2, . . . , Nm, . . .〉F ∝ A
⊗

{m|Nm 6=0}

|m〉 . (23)

We can now define creation and annihilation operators which act on the
Fock states by adding or removing a particle from mode m. For bosons these
are analogous to the ladder operators of the harmonic oscillator:

a†m |N1, N2, . . . , Nm, . . .〉B =
√
Nm + 1 |N1, N2, . . . , Nm + 1, . . .〉

am |N1, N2, . . . , Nm, . . .〉B =
√
Nm |N1, N2, . . . , Nm − 1, . . .〉

a†mam |N1, N2, . . . , Nm, . . .〉B = Nm |N1, N2, . . . , Nm, . . .〉 (24)

and they obey the same commutation relations

[am, an] = [a†m, a
†
n] = 0, [am, a

†
n] = δmn. (25)

For fermions we have

a†m |N1, N2, . . . , Nm, . . .〉F =

{
(−1)

∑m−1
i=1 Ni |N1, N2, . . . , Nm + 1, . . .〉 if Nm = 0

0 if Nm = 1

am |N1, N2, . . . , Nm, . . .〉F =

{
0 if Nm = 0

(−1)
∑m−1

i=1 Ni |N1, N2, . . . , Nm − 1, . . .〉 if Nm = 1

a†mam |N1, N2, . . . , Nm, . . .〉B = Nm |N1, N2, . . . , Nm, . . .〉 (26)

with the anticommutation relations

{am, an} = {a†m, a†n} = 0, {am, a†n} = δmn. (27)

Fock states can then be obtained by acting on the vacuum state |∅〉 with the
appropriate number of creation operators (and normalizing):

|N1, N2, . . . , Nm, . . .〉B,F =
∏
m

(a†m)Nm

√
Nm!

|∅〉 . (28)
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Example: The previously encountered states of two two-level bosons read
|2↑, 0↓〉B = 1√

2
(a†↑)

2 |∅〉, |1↑, 1↓〉B = a†↑a
†
↓ |∅〉 and |0↑, 2↓〉B = 1√

2
(a†↓)

2 |∅〉.

2.3 Hong-Ou-Mandel interference

In order to illustrate the physical consequences of the indistinguishability
of particles, we discuss the 1987 experiment of Hong, Ou and Mandel [13]
which demonstrated the ability of identical particles to interfere. We consider
a beam splitter with input modes |a〉 and |b〉 and output modes |c〉 and |d〉,
as represented in figure 1. The beam splitter realizes the following unitary
transformation of the single-particle states:

|a〉 → 1√
2

(|c〉+ |d〉) , |b〉 → 1√
2

(|c〉 − |d〉) . (29)

|a〉

|b〉

|c〉

|d〉

Figure 1: A beam splitter.

For two distinguishable particles arriving in a and b,

|a〉 ⊗ |b〉 → 1

2
(|c〉 ⊗ |c〉 − |c〉 ⊗ |d〉+ |d〉 ⊗ |c〉 − |d〉 ⊗ |d〉) , (30)

the distribution of results is as one would expect classically: the probability
of observing both particles in the output c is 1

4
, the probability of observing

both particles in d is also 1
4

and the probability of observing one particle in
c and one in d is 1

2
. However, if one considers the symmetrized state of two

indistinguishable bosons, we find that both particles always exit through the
same port:

1√
2

(|a〉 ⊗ |b〉+ |b〉 ⊗ |a〉)→ 1√
2

(|c〉 ⊗ |c〉 − |d〉 ⊗ |d〉) , (31)

while for two indistinguishable fermions, they always leave in opposite ports:

1√
2

(|a〉 ⊗ |b〉 − |b〉 ⊗ |a〉)→ 1√
2

(|d〉 ⊗ |c〉 − |c〉 ⊗ |d〉) . (32)

9



Equivalently, in the second quantized formulation, we start from the state
a†aa

†
b |∅〉, apply the transformation

a†a →
1√
2

(
a†c + a†d

)
, a†b →

1√
2

(
a†c − a

†
d

)
. (33)

Using the (anti)commutation relations, we obtain the output states 1
2

(
(a†c)

2 − (a†d)
2
)
|∅〉

for bosons and a†da
†
c |∅〉 for fermions. This “bunching” of bosons and “anti-

bunching” of fermions is the result of destructive or constructive interference
between the many-body transition amplitudes corresponding to both photons
being reflected at the beam splitter and both being transmitted.

2.4 N-particle interference

The Hong-Ou-Mandel scenario can be extended to N particles in an N -
port interferometer which performs the unitary transformation U ∈ U(N).
The corresponding relation between the creation operators of the input and
output modes reads

a†m →
∑
n

Umnb
†
n, (34)

such that an initial Fock state

|1, 1, . . . , 1〉B,F =

(∏
m

a†m

)
|∅〉 goes to

∏
m

(∑
n

Umnb
†
n

)
|∅〉 . (35)

The probability of observing exactly one particle in each output mode is
given by the overlap with the corresponding Fock state and reads

PB =

∣∣∣∣∣∑
σ∈SN

N∏
m=1

Um,σ(m)

∣∣∣∣∣
2

= |perm(U)|2 for bosons, (36)

PF =

∣∣∣∣∣∑
σ∈SN

sign(σ)
N∏
m=1

Um,σ(m)

∣∣∣∣∣
2

= |det(U)|2 = 1 for fermions. (37)

These results can be interpreted as a sum over the amplitudes of many-
particle paths where the particle in input i is sent to output σ(i). For
fermions, the interference is constructive since the Pauli principle forbids
any other output. For bosons, the permanent of the unitary appears, a
mathematical object which becomes increasingly difficult to compute as N
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increases. The complexity of bosonic intereference is behind the idea of “bo-
son sampling” as a means to demonstrate the superiority of quantum devices
over classical ones [14]. The result for distinguishable particles is obtained
by summing the probabilities – rather than the probability amplitudes – of

the many-particle paths: PD =
∑

σ∈SN

∣∣∣∏N
m=1 Um,σ(m)

∣∣∣2. Contrary to the

bosonic transition probability, this quantity can be computed efficiently.

3 Correlations in many-body systems

The study of correlations has played a major role our understanding of many-
body quantum system [15–17]. For example, the scaling of the entanglement
between a subsystem and the rest of the system with the size of the subsystem
can be used to characterize quantum phases and determines the possibility
to represent the state efficiently with a classical computer. Entanglement be-
tween subsystems has also been put forward to explain the ability of closed
systems to thermalize, with entanglement and thermodynamic entropies be-
ing put in relation. While many results have been obtained with spin chains,
where the individual spins are distinguishable through their fixed position,
difficulties arise when considering correlations in systems of indistinguish-
able bosons or fermions. Although one can formally divide the particles into
parties thanks to the tensor product structure between copies of the single-
particle Hilbert spaces, this might not be physically meaningful given that
the particles cannot always be addressed individually. We show under which
conditions identical particles can meaningfully be divided into parties, intro-
duce the notion of entanglement between modes and point out the relation
between distinguishability and entanglement.

3.1 Particle entanglement

A first (naive?) approach to entanglement in a system of N identical parti-
cles is to embed the N -boson or N -fermion Hilbert space in H⊗N (i.e. use the
first quantization formalism) and use the tensor product between copies of
the single-particle Hilbert space to define parties. With this approach, sym-
metrization automatically creates entanglement between identical particles
in different states and in particular, two fermions are always in an entangled
state.
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Example: Within this approach, the bosonic states |↑↑〉 and |↓↓〉 are sepa-
rable but 1√

2
(|↑↓〉+ |↓↑〉) is maximally entangled, and so is the fermionic

state 1√
2

(|↑↓〉 − |↓↑〉).

Although this correlation can hardly be considered to be physical, one can
nevertheless ask what one learns from the reduced density matrices obtained
by tracing out one or several particles in a many-particle state. For a N -
particle state ρ(N), the reduced density matrix obtained by tracing out one
factor ofH⊗N is known as the (N−1)-particle reduced density matrix ρ(N−1).
Because of the symmetrization, it is a mixture of all states that can be
obtained from ρ(N) by removing one particle:

ρ(N−1) =
∑
m

N〈m|ρ(N)|m〉N =
1

N

∑
m

amρ
(N)a†m. (38)

Repeating this procedure, one arrives at the single-particle reduced density
matrix

ρ(1) =
1

N !

∑
m1,...mN−1

amN−1
. . . am1ρ

(N)a†m1
. . . a†mN−1

. (39)

One can show that the matrix elements of ρ(1) can be expressed as

〈n|ρ(1)|m〉 =
1

N
Tr
(
a†manρ

(N)
)
, (40)

such that knowledge of the single-particle reduced density matrix suffices to
calculate expectation values of single-particle observablesO =

∑
m,n omna

†
man.

In general, knowledge of the n-particle reduced density matrix allows to com-
pute expectation values of n-particle observables, i.e. observables which can
be expressed in terms of products of n creation and n annihilation operators.

3.2 Effectively distinguishable particles

We now explain how we recover the usual definition of entanglement when
two identical particles can be unambiguously distinguished. Suppose that
the single-particle Hilbert space is written a direct sum of two orthogonal
subspaces H = HA⊕HB, such that any single-particle state can be uniquely
decomposed into the sum of a vector ofHA and a vector ofHB. The following
isomorphism then holds for the Hilbert spaces of N bosons or fermions:

(HA ⊕HB)∨∧N '
⊕

NA+NB=N

H∨∧NA
A ⊗H∨∧NB

B . (41)
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This simply means that the state of N identical particles can be written
as a superposition of states with NA particles in HA and NB = N − NA

in HB, with NA running from 0 to N . Note that the exchange symmetry
between particles populating orthogonal subspaces is no longer explicit in
this formulation. In particular, if two particles are and remain in orthogonal
states (one in HA, the other in HB), then their exchange symmetry has no
physical consequence: for all practical purposes their state can be written
in HA ⊗ HB and the usual definition of entanglement applies. This is in
particular true for spatially separated particles: a particle on Earth is not
affected by the presence of an identical particle on the Moon.

Example: The state of two bosons, one on Earth and one on the Moon,
reads 1√

2
(|ψ1,Earth〉 ⊗ |ψ2,Moon〉+ |ψ2,Moon〉 ⊗ |ψ1,Earth〉), but as

long as the particles remain spatially separated one can equally well write
|ψ1〉Earth ⊗ |ψ2〉Moon.

Note that by considering only one term in the right-hand side of Eq. (41),
we have made the assumption that the number of particles in HA and HB is
fixed. Relaxing this assumption leads to the notion of mode entanglement.

3.3 Mode entanglement

Summing Eq. (41) over N , one can convince oneself that

ΓB,F (H) ' ΓB,F (HA)⊗ ΓB,F (HB), (42)

i.e. the direct sum structure at the single-particle level leads to a tensor
product structure at the many-particle level. Actually, we have already used
this property without mentioning it when we introduced Fock states. Indeed
the decomposition of the single-particle Hilbert space H =

⊕
m span{|m〉}

allows us to decompose the Fock space as

ΓB,F (H) '
⊗
m

ΓB,F (span{|m〉}). (43)

Since each subspace span{|m〉} has dimension one, the bosonic space span{|m〉}∨Nm

is spanned by only one state |m〉⊗Nm , which we denote |Nm〉. The fermionic
space span{|m〉}∧Nm only exists if Nm = 0 or 1 and it is also spanned by a
single state which we denote |Nm〉. This then justifies writing Fock states as
|N1, N2, . . . , Nm, . . .〉 = |N1〉 ⊗ |N2〉 ⊗ . . . |Nm〉 ⊗ . . . . By dividing the modes
into two groups, one thus obtains an acceptable bipartition for the definition
of entanglement.
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Example: The output state of the Hong-Ou-Mandel experiment with
indistinguishable bosons, 1√

2
(|2c, 0d〉 − |0c, 2d〉), is mode entangled with

respect to the partition defined by modes c and d. The reduced density
matrix for mode c reads ρc = 1

2
(|2c〉 〈2c|+ |0c〉 〈0c|) and mixes states with

different numbers of particles.

Remark: Simple coupling between two modes is sufficient for mode en-
tanglement to form, interactions between particles are not required. For
example a single photon impinging in input a of a beam splitter yields
the mode entangled state 1√

2
(|1c, 0d〉+ |0c, 1d〉).

3.4 Partial distinguishability

We now return to the Hong-Ou-Mandel experiment and consider two identi-
cal particles that can be made distinguishable through an additional degree
of freedom. In a photonic Hong-Ou-Mandel experiment, this could be the
polarization or the temporal overlap of the incoming wavepackets. We as-
sume that the beam splitter does not affect this “label”. The initial state
reads

1√
2

(|a, α〉 ⊗ |b, β〉 ± |b, β〉 ⊗ |a, α〉) , (44)

where |α〉 and |β〉 are the label states of the particles entering in input a and
b, respectively.

One can easily show (as an exercise) that the probability of a coincidence
event (both detectors c and d click) is given by P = 1

2
(1 ∓ | 〈α|β〉 |2). If

| 〈α|β〉 |2 = 0, the two particles are in orthogonal label states and are there-
fore perfectly distinguishable from one another and we recover the classical
probability of 1

2
. If | 〈α|β〉 |2 = 1, the particles are perfectly indistinguishable

and we recover the bosonic (P = 0) or fermionic (P = 1) result. For interme-
diate values of | 〈α|β〉 |2, the particles are said to be partially distinguishable.

If we now formally calculate the reduced density matrix for the position
degree of freedom of the initial state, tracing out the label, we find, in the
(non-symmetrized) basis {|a〉 ⊗ |b〉 , |b〉 ⊗ |a〉},

ρ =
1

2

(
1 ±| 〈α|β〉 |2

±| 〈α|β〉 |2 1

)
. (45)
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The purity of this reduced density matrix is 1
2
(1 + | 〈α|β〉 |4). For indistin-

guishable labels | 〈α|β〉 |2 = 1, we have a pure state, while for orthogonal
labels | 〈α|β〉 |2 = 0, it is maximally mixed. The degree of entanglement of
the position and label degrees of freedom thus reflects the distinguishability
of the particles. For partially distinguishable particles, the coherences (off-
diagonal elements) of the reduced density matrix correspond to the contrast
of Hong-Ou-Mandel dip or peak.
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