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1 Introduction: closed systems vs. open systems

1.1 Closed systems

Consider a quantum system S and let H be the corresponding system’s Hilbert space. The
evolution of the closed system is fully governed by the system Hamiltonian H via the Schrodinger
equation
Z.Q/.Jt = Hwt ) (h = 1)7 (1)
and hence
Y — e =Unt), (2)
where the unitary operator U; is defined by

Ut — efth , (3)

and ¢ € H is an initial (¢ = 0) state. Mixed states represented by density operators evolve
according to von Neumann equation

pt = _i[H7 pt] . (4)

1. pure state evolves into pure state

2. mixed state p evolves
p — po=Uyp) = UppU}, (5)
3. entropy S(p) = —Tr(plog p) satisfies

S(pt) = S(p), (6)

4. purity Trp? is constant,

5. the evolution U, is reversible, that is, Ut_l =0U_,.




1.2 Open systems

Consider now a quantum system S interacting with another system E — environment — and let

H=HsXHE

be the corresponding ‘S + E’ Hilbert space. The Hamiltonian of the total closed ‘S + E’ system
reads

H=Hy+ Hit = Hs @ 1 + 15 ® Hg + Hint. (7)

Note, that the splitting is not unique.
Let the initial state of ‘E + S’ be as follows

pPSE = p® pE, (8)

that is, initially (at ¢ = 0) S and E are not correlated. Since ‘S + E’ is a closed system its
evolution reads as follows

psp — pse(t) =UEp@ ppU ", (9)

where UPF = et
Question: what is the evolution of the system S itself? The state of the system S evolves
according to

pt = Trepse(t) (10)
and it is called reduced evolution of the system S.
The map
p— Milp) = Trp(USEp ® putU ") (1)

enjoys the following properties:

e completely positive (CP)
e trace-preserving (TP)

o At:() = ld

Ay is called a dynamical map.

1.3 Positive and completely positive maps

Let L(H) be a space of linear operators in A (in this notes I assume that dimH = d < o0).



Definition 1 A linear map (super-operator) ® : L(H) — L(H) is called
e positive iff
X>0 = ®(X)>0.
e n-positive if
id, ® ® : M,(C) ® L(H) — M,(C) ® L(H)
18 positive

e completely positive if it is n-positive forn =1,2,3,....

A linear map ® : L(H) — L(H) is
e trace-preserving if Tr&(X) = TrX for all X € L(H)

e unital if (1) = 1.

Note, that fixing an othonormal basis |k) in H one may define a matrix

Tij = Tr(P®(F;))

If ® is positive and trace-preserving, then 7Tj; is stochastic.
Frobenius-Perron theorem — some remarks (classical vs. quantum).

(12)

Let E;; be a matrix unit in M,,(C). Any operator X € M,(C) ® L(H) has a following form

n
X = Z E@'j ®Xij, Xl'j € L(H)
ij=1
One has

(idy ® )(X) := > Ejj @ B(Xy).
ij=1
Proposition 1 & is CP iff it is d-positive.

Corollary 1 One has
CP =P; CPy_q1 C...C P =Positive.

(14)



Theorem 1 (Stinespring, 1955) ¢ : A — L(H) is CP (A is a C*-algebra) iff there
exist

e a Hilbert space K
e a x-homomorphism m : A — B(K)

e a linear operator V : K — H

such that

®(a) = Vr(a)VT. (15)
foralla € A.

\.

Theorem 2 ¢ is CP iff the Choi matrix

d
ij=1

Theorem 3 (Stinespring,Sudarshan,Kraus) A map ® is CP if and only if

(X)) =Y KXK] (17)

]

where K; € L(H) are called Kraus operators.
The map ® represented in (17) is

e trace-preserving if

Y KJK;=1. (18)

7

e unital if

Y KK =1. (19)

Example 1 Some examples of positive but not CP maps — they are important in entanglement
theory!

Basic properties of quantum channels: € : L(H) — L(H)
o [[E(X)Ih < [IX]h
o S(E(p)lIE(a)) < S(pllo)
* F(&(p),E(0)) = F(p,0)




_ | Tr[p(logp —logo]) , ifsuppp Csuppo
Diplle) = { 400 , otherwise (20)
and
2
F(p,o) = (Tr Vpo ﬁ) . (21)
Example 2 (Pure decoherence) Consider d-level system S coupled to the environment
H:HS®]1E+HS®HE+ZPk®Bk (22)
k
where
Hg = Z E.Py. (23)
k
One has
H=) P®Zy; Zy=FEls+Hp+ By (24)
k
One finds
Uy=e =) P e (25)
k
and hence
Ai(p) = Z Cri(t) PepP, (26)
k.l
with
Cru(t) = Tr(efiz’“tpEeith) (27)
The evolution of the density operator is very simple:
pri — Cri(t) pr,
that is, it is defined by the Hadamard product of C(t) and p. Recall, that
(Ao B)y = A By (28)
The map
Oo(X)=CoX (29)

is CP if and only if C > 0.



2 Markovian semigroup

The simplest evolution is provided by the following master equation
pr = L(pt),

which generalizes von Neumann equation

pr = —i[H, pi] =: Lu(pr),
that is, the super-operator Ly : L(H) — L(H) is defined by

La(p) = —ilH, .
The solution to (30) has the following form

At = etﬁ.

(33)

L(H) generates legitimate dynamical map if and only if

Theorem 4 (Gorini,Kossakowski,Sudarshan,Lindblad) A linear map £ : L(H) —

. 1
£(p) = =ilH, o)+ Y 2w (VeoVil = 5{ViVi, 0} (34)
k
where {A, B} = AB + BA, and ~y, > 0.
2.1 Examples of Markovian semigroups
Example 3 (Qubit decoherence)
g
L(p) = §(Uzp0z -p)i >0 (35)

Note that
L(En) = 0
ﬁ(Egg) =0
L(E12) = —Ep2
L(E21) = —vExn
and hence
AM(Ev) = En
A(Ey) = Eo
Ay(Erp) = e "B
A(En) = e En



Now finds the following Kraus representation

14e 0t 1—et
Ai(p) = 5 Pt

Another way is a direct computation of e“t.

Tp0. (36)

Example 4 (Qubit dissipation) Let us consider

P(p) = %(’Y+£+ + 'Y—ll—) (37)
where where
Li(p) = low,po-]+[o4p,0-],
Lo(p) = lo—,poi]+[o-p,04], (38)

L corresponds to pumping (heating) process, L_ corresponds to relaxation (cooling). To solve
the master equation py = Lpy let us parameterize p; as follows

pr = p1(t) P+ p2(t) P2 + at)oy + a(t)o— (39)
with Py = |k)(k|. Using the following relations
L(Pl) = —7+03,
E(PQ) = 77-03,
E(O-"F) = Y0+,
L(o-) = ~o_,
where vy oy
N = %
one finds the following Pauli master equations for the probability distribution (p1(t),p2(t))
pit) = —vep(t) +r-p2(t) (40)
p2(t) = () —v-p2(t), (41)
together with a(t) = e "«(0). The corresponding solution reads
pi(t) = pi(0) eIt L pr [1 _ e—(7++%)t} ’ (42)
po(t) = pa(0)e(H It 4 ps [1 _ e—(v++v-)t} 7 (43)
where we introduced o 5
* + * +
pi=—t . pp=t 44
e ST (44

Hence, we have purely classical evolution of probability vector (pi(t), pa2(t)) on the diagonal of
pt and very simple evolution of the off-diagonal element «(t). Note, that asymptotically one
obtains completely decohered density operator

pi O
e <0 p§>'

In particular if v+ = vy— a state p; relazes to mazimally mized state (a state becomes completely
depolarized).



3 Beyond Markovian semigroup — non-Markovian evolution

Consider now

Ay = LAy, Ag=id, (45)
with time dependent generator L£;. The formal solution reads
t t t to
Ay =T exp (/ Eudu> = id+/ ﬁudu—i—/ dtg/ At Lo, Lo, + . ... (46)
0 0 0 0
If [£4, £4] = 0, then
t t 1 t 2
At:exp(/ Ludu>:id+/£udu+</ Eudu> + ... (47)
0 0 2 \Jo
Evolution A; is called divisible if
A =Vishg; t>s. (48)
It is called
e P-divisible if V; ; is PTP
e CP-divisible if V; 5 is CPTP
Theorem 5 If A; is P-divisible, then
LX) <0 (49)
dt t 1>Y,
forall X € L(H). If A; is CP-divisible, then
d .
—Iid @ A(X) [ <0, (50)

dt
for all X € L(H) ® L(H).

For invertible the converse is also true.

[ The evolution A; is Markovian iff it is CP-divisible.

We stress, that there are many other approaches. For example the one based on distin-

guishability of states:

1
D(p,0) = 5llo = ol

(51)



According to Breuer-Laine-Piilo (BLP) the evolution A; is Markovian if

d

i 14(p) = Ae(0)]1 <0, (52)
for all states p and o.

Example 5 Consider
13
Li(p) = 5 > w(t)(orpor — p), (53)
k=1

with time dependent rates Vi (t). The corresponding map Ay = exp(f(;f L:dT) has the following
form

3
At(p) = Zpa(t)gapaom (54)
a=0

where oy = 1, and time-dependent probability distribution ps(t) read:

po) = (14 M)+ 2l +2(0).

) = (1420~ %) - 200),

) = (1= N0+ X))~ xs(0),
1

p3(t) = 1 (1 = A1(t) — Aa(t) + )\s(t))7

with A\, (t) being eigenvalues of the map Ay: Ai(oy) = Ap(t)oy defined by
Ai(t) = e Ti®=Tw(®) (55)
where {i, 7, k} is a permutation of {1,2,3}, and T'y(t) = fg Yi(T)dT.
Proposition 2 Time-local generator (53) gives rise to a legitimate dynamical map iff pa(t) > 0
fort >0, that s,
Xi(t) + X(t) <1+ Xg(2), (56)
where {i,j,k} is a permutation of {1,2,3}.

Note, that (56) provides highly nontrivial condition for the rates ~;(t).

Proposition 3 A; is P-divisible iff

Y1(t) + 72(t) >0, 7o (t) +3(t) >0, y3(t) +(t) >0, (57)
for allt > 0.




Proof: note that conditions (56) are necessary. Indeed, P-divisibility requires %HAt(Uk)”l <
0. One has

L 8onlh = SOloxlh = ~20:(0) + 30,

where again {i,7,k} is a permutation of {1,2,3} and we used the formula A (t) = exp(—T;(t) —
I'j(t)). Now, the corresponding propagator Vi s is given by Vi s = els Lrd7 and hence Vs is PTP
iff Lt is a generator of a family of positive trace-preserving maps, that is, for any ¥ and ¢ such
that (¢|¢) = 0 one has

(W[L:(|9) (D)) = 0,

for all t > 0. Introducing the corresponding rank-1 projectors Py = [1)(| and Py = |$)(¢| let
us observe that Py = 1 — Py, (due to orthogonality of 1 and ¢) and hence

(| Lo(|0) (@) 1) = Te(PyLy(1 — Pw»:—Tr(szt(Pw)
:—fzwc (t)Tr(PyorPyoy) = Z% )1 = |[(@low|) ),

due to L,(1) = 0. Observe that at any t at most one v, (t) may be negative. Indeed, suppose that
7 (t) <0 and vy2(t) < 0. Taking |3p) = |0) one finds

[(Wlorl)]* = [(Wloap)* =0, [(@losly)|* =

and hence

(WIL([8)(@D]Y) = 71(E) + 72(t) < 0.
Now, let v1(t) < 0. One finds

(W[Le(|9)(@D1) = min{y1(t) +72(t),11(2) +v3(t)}
which implies (57). O

7

Proposition 4 Let p be an arbitrary initial state. One has

d
S5(e(p) 2 0, (58)

iff Ay is P-divisible, that is, conditions (57) are satisfied.

Proof: clearly P-divisibility implies (58). Now, suppose that (58) is satisfied for any p.
Taking the Bloch representation p = (14 3", xx0k), one finds py = 2(1+ >, xx(t)oy), with

x1(t) = e—Fz(t)—F:s(t)xl , xa(t) = e—Fl(t)—Fg(t)wz , a3(t) = e—rl(t)_m(t)x?”

that is, the Bloch vector evolves as follows x(t) = (A1(t) x1, A2(t) 2, A3(t) z3). The corresponding
eigenvalues x4 (t) of p; read

10



ra(t) = 5 (1 [x(0)).

Now, one has for the entropy

S(t) = w4 (D) log 2+ (1) — 2 () log 2 (1),

and hence
d . z4(t)
aS(t) = —%,(t) log @)
Note that log ifgg > 0. Finally
3
1 )
ry(t) = Ak () A (t
40 = g S M OMD

k=1
and hence since xy, are arbitrary condition &4 (t) < 0 reproduces (57).

4 Memory kernel master equation

4.1 Quantum jump representation of Markovian semigroup

Consider Markovian semigroup A; governed by

Ay = LA,

Note taht
L=B—-7Z7,

where the operators B, Z : L(H) — L(H) are defined as follows:
B(p) =Y VipW
k

and
Z(p) =i(Cp— pC),
with C € L(H) given by .
i
C=H+ 2%:v,jvk.

(62)

(63)

(64)

Evidently, B is a CP map. Moreover, its dual B* : L(H) — L(H) reads B*(X) = >, VkTXVk
and hence B*(I) =", VJ V. Now, let us denote by N; a solution of the following equation

N, = —ZN,, N,_o=id.

One immediately finds

Ny(p) = e Ztp = e—iOtpeiCTt

11

(65)

(66)



Proposition 5 If [B,Z] = 0, then the solution to (60) reads

At = Nt p B .
k=0
Proof: one has
_ L _ H(B-Z) _ —tZ _tB _ 1
AN=e*=c¢ =e “e _Ntzk!B’
k=0

where we used eX1Y = eXeY for commuting X and Y.

Now, since N; and e'? are CP, the map A; is CP as well.
Proposition 6 The map N, is trace non-increasing.

Proof: one has for arbitrary density operator p

SN, (p)] = Tr{(~iC +iCh)p] = ~TH{B* (D] <0,
due to B*(I) > 0.

Theorem 6 The solution to (30) may be represented as follows

oo
A¢ = Ng = Z Q"
k=0

where X; x Yy = fot XY dr denotes convolution, Q¢+ = BNy, and Q" = Q¢ * ...

factors).

Proof: passing to the Laplace transform (LT) of (30) and (65) one finds

~ 1 ~ 1
A = N =
* s—B+7Z’ s+ 27
and hence 1
Ay =Ny ———,
id — BN
where fg = fooo fre~tdt. Now, introducing @S = BZVS one obtains
~ ~ > ~
As = N; Q?a
k=0

which implies (70) in the time domain.

(70)

* Q¢ (n

Representation (70) is often called a quantum jump representation of the dynamical map A,

and the CP map B is interpreted as quantum jump

(£v?

Ar=e* =1+ Lt+ 5

At:Nt+Nt*BNt+Nt*BNt*BNt+....

12



4.2 Beyond Markovian semigroup

Consider now

t
At = / Kt_TATdT, AO = ld
0
Any memory kernel K; has the following general structure

Ky =By — Z,

where maps By, Z; : L(H) — L(H) are Hermitian and satisfy Tr[B:(p)] = Tr[Z:i(p)].

(76)

(77)

This

condition guarantees that K; annihilates the trace, that is, Tr[K;(p)] = 0 for any p, and hence

A; is trace-preserving. Now, let

N; = /0 t Zi_+Nydr, Np=id. (78)
and
Qt = By x Ny. (79)
" Theorem 7 Let { Ny, Q:} be a pair of CP maps such that
1. Ny—g = id,
2. Tr[Qu(p)] + GTr[Ne(p)] = 0 for any p € L(H),
3. [|Qsll < 1.
Then the following map
A =Ne+NexQr + Nex QxQp + ... (80)
defines a legitimate dynamical map.

Proof: condition 3) guarantees that the series

~ - ~ 1
As:Ns Q?—Ns‘ ~
kgo ld_Qs

is convergent and hence (80) defines a CP map. Condition 1) implies that A=y = Ni—o = id.
Finally, condition 2) implies that the map A; is trace-preserving. Indeed, passing the Laplace

transform domain one finds

Tr[Qs(p)] + Tx[sNa(p) — p] = 0.

Now, B B N
As(ld - Qs) = NS7
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(81)

(82)



and hence

1 ~ -
S Te(fid = Qs](p)) = Tr[Ns(p)), (83)
due to .
Tr[Ay(X)] = =Tr X. (84)
s
This proves that (81) is equivalent to the trace-preservation condition (83). O
Semigroup
At:Nt+Nt*BNt+Nt*BNt*BNt+.... (85)
and beyond
At:Nt+Nt*Bt*Nt+Nt*Bt*Nt*Bt*Nt+---~ (86)
Example 6 Let
t
Ny = (1 —/ f(T)dT> id, (87)
0

where the function f: Ry — R satisfies:

ft)>0, /OOO f(r)dr < 1.

Moreover, let Qy = f(t)E, where € is an arbitrary quantum channel. Then one finds the following
formula for the memory kernel

Ky = w(t)(€ —id), (88)
where the function k(t) is defined in terms of f(t) as follows
R(s) = 1) (89)
1— f(s)
In particular taking f(t) = ye™ 7 one finds Ky = 6(t)L, with

L =~(€—id), (90)

being the GKSL generator.
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