
General open quantum dynamics

Dariusz Chruściński
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1 Introduction: closed systems vs. open systems

1.1 Closed systems

Consider a quantum system S and let H be the corresponding system’s Hilbert space. The
evolution of the closed system is fully governed by the system Hamiltonian H via the Schrödinger
equation

iψ̇t = Hψt , (~ = 1), (1)

and hence
ψ −→ ψt = Utψ, (2)

where the unitary operator Ut is defined by

Ut = e−iHt , (3)

and ψ ∈ H is an initial (t = 0) state. Mixed states represented by density operators evolve
according to von Neumann equation

ρ̇t = −i[H, ρt] . (4)

1. pure state evolves into pure state

2. mixed state ρ evolves

ρ −→ ρt = Ut(ρ) := UtρU
†
t , (5)

3. entropy S(ρ) = −Tr(ρ log ρ) satisfies

S(ρt) = S(ρ), (6)

4. purity Trρ2
t is constant,

5. the evolution Ut is reversible, that is, U−1
t = U−t.
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1.2 Open systems

Consider now a quantum system S interacting with another system E – environment – and let

H = HS ⊗HE
be the corresponding ‘S+E’ Hilbert space. The Hamiltonian of the total closed ‘S+E’ system
reads

H = H0 +Hint = HS ⊗ 1lE + 1lS ⊗HE +Hint. (7)

Note, that the splitting is not unique.
Let the initial state of ‘E + S’ be as follows

ρSE = ρ⊗ ρE , (8)

that is, initially (at t = 0) S and E are not correlated. Since ‘S + E’ is a closed system its
evolution reads as follows

ρSE −→ ρSE(t) := USEt ρ⊗ ρEUSE†t , (9)

where USEt = e−iHt.
Question: what is the evolution of the system S itself? The state of the system S evolves
according to

ρt := TrEρSE(t) (10)

and it is called reduced evolution of the system S.
The map

ρ→ Λt(ρ) := TrE

(
USEt ρ⊗ ρEUSE†t

)
(11)

enjoys the following properties:

• completely positive (CP)

• trace-preserving (TP)

• Λt=0 = id.

Λt is called a dynamical map.

1.3 Positive and completely positive maps

Let L(H) be a space of linear operators in H (in this notes I assume that dimH = d <∞).
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Definition 1 A linear map (super-operator) Φ : L(H)→ L(H) is called

• positive iff

X ≥ 0 =⇒ Φ(X) ≥ 0.

• n-positive if

idn ⊗ Φ : Mn(C)⊗ L(H)→Mn(C)⊗ L(H)

is positive

• completely positive if it is n-positive for n = 1, 2, 3, . . ..

A linear map Φ : L(H)→ L(H) is

• trace-preserving if TrΦ(X) = TrX for all X ∈ L(H)

• unital if Φ(1l) = 1l.

Note, that fixing an othonormal basis |k〉 in H one may define a matrix

Tij := Tr(PiΦ(Pj)) (12)

If Φ is positive and trace-preserving, then Tij is stochastic.
Frobenius-Perron theorem — some remarks (classical vs. quantum).
Let Eij be a matrix unit in Mn(C). Any operator X ∈Mn(C)⊗ L(H) has a following form

X =
n∑

i,j=1

Eij ⊗Xij , Xij ∈ L(H).

One has

(idn ⊗ Φ)(X) :=
n∑

i,j=1

Eij ⊗ Φ(Xij). (13)

Proposition 1 Φ is CP iff it is d-positive.

Corollary 1 One has
CP = Pd ⊂ Pd−1 ⊂ . . . ⊂ P1 = Positive. (14)
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Theorem 1 (Stinespring, 1955) Φ : A → L(H) is CP (A is a C∗-algebra) iff there
exist

• a Hilbert space K

• a ∗-homomorphism π : A → B(K)

• a linear operator V : K → H

such that

Φ(a) = V π(a)V †. (15)

for all a ∈ A.

Theorem 2 Φ is CP iff the Choi matrix

CΦ :=
d∑

i,j=1

Eij ⊗ Φ(Eij) ≥ 0. (16)

Theorem 3 (Stinespring,Sudarshan,Kraus) A map Φ is CP if and only if

Φ(X) =
∑
i

KiXK
†
i (17)

where Ki ∈ L(H) are called Kraus operators.

The map Φ represented in (17) is

• trace-preserving if ∑
i

K†iKi = 1l. (18)

• unital if ∑
i

KiK
†
i = 1l. (19)

Example 1 Some examples of positive but not CP maps – they are important in entanglement
theory!

Basic properties of quantum channels: E : L(H)→ L(H)

• ‖E(X)‖1 ≤ ‖X‖1

• S(E(ρ)||E(σ)) ≤ S(ρ||σ)

• F (E(ρ), E(σ)) ≥ F (ρ, σ)
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D(ρ||σ) =

{
Tr[ρ(log ρ− log σ]) , if supp ρ ⊆ suppσ
+∞ , otherwise

. (20)

and

F (ρ, σ) =
(

Tr
√√

ρ σ
√
ρ
)2
. (21)

Example 2 (Pure decoherence) Consider d-level system S coupled to the environment

H = HS ⊗ 1lE + 1lS ⊗HE +
∑
k

Pk ⊗Bk (22)

where

HS =
∑
k

EkPk. (23)

One has

H =
∑
k

Pk ⊗ Zk ; Zk = Ek1lS +HE +Bk. (24)

One finds

Ut = e−iHt =
∑
k

Pk ⊗ e−iZkt, (25)

and hence

Λt(ρ) =
∑
k,l

Ckl(t)PkρPl (26)

with

Ckl(t) = Tr
(
e−iZktρEe

iZlt
)
. (27)

The evolution of the density operator is very simple:

ρkl −→ Ckl(t) ρkl,

that is, it is defined by the Hadamard product of C(t) and ρ. Recall, that

(A ◦B)kl := AklBkl. (28)

The map

ΦC(X) := C ◦X (29)

is CP if and only if C ≥ 0.
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2 Markovian semigroup

The simplest evolution is provided by the following master equation

ρ̇t = L(ρt), (30)

which generalizes von Neumann equation

ρ̇t = −i[H, ρt] =: LH(ρt), (31)

that is, the super-operator LH : L(H)→ L(H) is defined by

LH(ρ) := −i[H, ρ]. (32)

The solution to (30) has the following form

Λt = etL. (33)

Theorem 4 (Gorini,Kossakowski,Sudarshan,Lindblad) A linear map L : L(H)→
L(H) generates legitimate dynamical map if and only if

L(ρ) = −i[H, ρ] +
∑
k

γk

(
VkρV

†
k −

1

2
{V †k Vk, ρ}

)
(34)

where {A,B} = AB +BA, and γk > 0.

2.1 Examples of Markovian semigroups

Example 3 (Qubit decoherence)

L(ρ) =
γ

2
(σzρσz − ρ); γ > 0. (35)

Note that

L(E11) = 0

L(E22) = 0

L(E12) = −γE12

L(E21) = −γE21

and hence

Λt(E11) = E11

Λt(E22) = E22

Λt(E12) = e−γtE12

Λt(E21) = e−γtE21
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Now finds the following Kraus representation

Λt(ρ) =
1 + e−γt

2
ρ+

1− e−γt

2
σzρσz. (36)

Another way is a direct computation of eLt.

Example 4 (Qubit dissipation) Let us consider

Φ(ρ) =
1

2

(
γ+L+ + γ−L−

)
(37)

where where

L1(ρ) = [σ+, ρσ−] + [σ+ρ, σ−] ,

L2(ρ) = [σ−, ρσ+] + [σ−ρ, σ+] , (38)

L+ corresponds to pumping (heating) process, L− corresponds to relaxation (cooling). To solve
the master equation ρ̇t = Lρt let us parameterize ρt as follows

ρt = p1(t)P1 + p2(t)P2 + α(t)σ+ + α(t)σ− , (39)

with Pk = |k〉〈k|. Using the following relations

L(P1) = −γ+ σ3 ,

L(P2) = γ− σ3 ,

L(σ+) = γ σ+ ,

L(σ−) = γ σ− ,

where

γ =
γ+ + γ−

2
.

one finds the following Pauli master equations for the probability distribution (p1(t), p2(t))

ṗ1(t) = −γ+ p1(t) + γ− p2(t) , (40)

ṗ2(t) = γ+ p1(t)− γ− p2(t) , (41)

together with α(t) = e−γtα(0). The corresponding solution reads

p1(t) = p1(0) e−(γ++γ−)t + p∗1

[
1− e−(γ++γ−)t

]
, (42)

p2(t) = p2(0) e−(γ++γ−)t + p∗2

[
1− e−(γ++γ−)t

]
, (43)

where we introduced
p∗1 =

γ+

γ+ + γ−
, p∗2 =

γ+

γ+ + γ−
. (44)

Hence, we have purely classical evolution of probability vector (p1(t), p2(t)) on the diagonal of
ρt and very simple evolution of the off-diagonal element α(t). Note, that asymptotically one
obtains completely decohered density operator

ρt −→
(
p∗1 0
0 p∗2

)
.

In particular if γ+ = γ− a state ρt relaxes to maximally mixed state (a state becomes completely
depolarized).
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3 Beyond Markovian semigroup – non-Markovian evolution

Consider now

Λ̇t = LtΛt , Λ0 = id, (45)

with time dependent generator Lt. The formal solution reads

Λt = T exp

(∫ t

0
Ludu

)
= id +

∫ t

0
Ludu+

∫ t

0
dt2

∫ t2

0
dt1Lt2Lt1 + . . . . (46)

If [Lt,Lu] = 0, then

Λt = exp

(∫ t

0
Ludu

)
= id +

∫ t

0
Ludu+

1

2

(∫ t

0
Ludu

)2

+ . . . . (47)

Evolution Λt is called divisible if

Λt = Vt,sΛs ; t ≥ s. (48)

It is called

• P-divisible if Vt,s is PTP

• CP-divisible if Vt,s is CPTP

Theorem 5 If Λt is P-divisible, then

d

dt
‖Λt(X)‖1 ≤ 0, (49)

for all X ∈ L(H). If Λt is CP-divisible, then

d

dt
‖[id⊗ Λt](X)‖1 ≤ 0, (50)

for all X ∈ L(H)⊗ L(H).

For invertible the converse is also true.

The evolution Λt is Markovian iff it is CP-divisible.

We stress, that there are many other approaches. For example the one based on distin-
guishability of states:

D(ρ, σ) :=
1

2
‖ρ− σ‖1 (51)
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According to Breuer-Laine-Piilo (BLP) the evolution Λt is Markovian if

d

dt
‖Λt(ρ)− Λt(σ)‖1 ≤ 0, (52)

for all states ρ and σ.

Example 5 Consider

Lt(ρ) =
1

2

3∑
k=1

γk(t)(σkρσk − ρ), (53)

with time dependent rates γk(t). The corresponding map Λt = exp(
∫ t

0 Lτdτ) has the following
form

Λt(ρ) =

3∑
α=0

pα(t)σαρσα, (54)

where σ0 = 1l, and time-dependent probability distribution pα(t) read:

p0(t) =
1

4

(
1 + λ1(t) + λ2(t) + λ3(t)

)
,

p1(t) =
1

4

(
1 + λ1(t)− λ2(t)− λ3(t)

)
,

p2(t) =
1

4

(
1− λ1(t) + λ2(t)− λ3(t)

)
,

p3(t) =
1

4

(
1− λ1(t)− λ2(t) + λ3(t)

)
,

with λk(t) being eigenvalues of the map Λt: Λt(σk) = λk(t)σk defined by

λi(t) = e−Γj(t)−Γk(t), (55)

where {i, j, k} is a permutation of {1, 2, 3}, and Γk(t) =
∫ t

0 γk(τ)dτ .

Proposition 2 Time-local generator (53) gives rise to a legitimate dynamical map iff pα(t) ≥ 0
for t ≥ 0, that is,

λi(t) + λj(t) ≤ 1 + λk(t), (56)

where {i, j, k} is a permutation of {1, 2, 3}.

Note, that (56) provides highly nontrivial condition for the rates γi(t).

Proposition 3 Λt is P-divisible iff

γ1(t) + γ2(t) ≥ 0 , γ2(t) + γ3(t) ≥ 0 , γ3(t) + γ1(t) ≥ 0 , (57)

for all t ≥ 0.
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Proof: note that conditions (56) are necessary. Indeed, P-divisibility requires d
dt‖Λt(σk)‖1 ≤

0. One has

d

dt
‖Λt(σk)‖1 =

d

dt
|λk(t)|‖σk‖1 = −2[γi(t) + γj(t)],

where again {i, j, k} is a permutation of {1, 2, 3} and we used the formula λk(t) = exp(−Γi(t)−
Γj(t)). Now, the corresponding propagator Vt,s is given by Vt,s = e

∫ t
s Lτdτ , and hence Vt,s is PTP

iff Lt is a generator of a family of positive trace-preserving maps, that is, for any ψ and φ such
that 〈ψ|φ〉 = 0 one has

〈ψ|Lt(|φ〉〈φ|)|ψ〉 ≥ 0,

for all t ≥ 0. Introducing the corresponding rank-1 projectors Pψ = |ψ〉〈ψ| and Pφ = |φ〉〈φ| let
us observe that Pφ = 1l− Pψ (due to orthogonality of ψ and φ) and hence

〈ψ|Lt(|φ〉〈φ|)|ψ〉 = Tr(PψLt(1l− Pψ)) = −Tr(PψLt(Pψ))

= −1

2

∑
k

γk(t)Tr(PψσkPψσk) =
1

2

∑
k

γk(t)(1− |〈ψ|σk|ψ〉|2),

due to Lt(1l) = 0. Observe that at any t at most one γk(t) may be negative. Indeed, suppose that
γ1(t) < 0 and γ2(t) < 0. Taking |ψ〉 = |0〉 one finds

|〈ψ|σ1|ψ〉|2 = |〈ψ|σ2|ψ〉|2 = 0 , |〈ψ|σ3|ψ〉|2 = 1,

and hence

〈ψ|Lt(|φ〉〈φ|)|ψ〉 = γ1(t) + γ2(t) < 0.

Now, let γ1(t) < 0. One finds

〈ψ|Lt(|φ〉〈φ|)|ψ〉 ≥ min{γ1(t) + γ2(t), γ1(t) + γ3(t)}

which implies (57). 2

Proposition 4 Let ρ be an arbitrary initial state. One has

d

dt
S(Λt(ρ)) ≥ 0, (58)

iff Λt is P-divisible, that is, conditions (57) are satisfied.

Proof: clearly P-divisibility implies (58). Now, suppose that (58) is satisfied for any ρ.
Taking the Bloch representation ρ = 1

2(1l +
∑

k xkσk), one finds ρt = 1
2(1l +

∑
k xk(t)σk), with

x1(t) = e−Γ2(t)−Γ3(t)x1 , x2(t) = e−Γ1(t)−Γ3(t)x2 , x3(t) = e−Γ1(t)−Γ2(t)x3,

that is, the Bloch vector evolves as follows x(t) = (λ1(t)x1, λ2(t)x2, λ3(t)x3). The corresponding
eigenvalues x±(t) of ρt read
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x±(t) =
1

2
(1± |x(t)|).

Now, one has for the entropy

S(t) = −x+(t) log x+(t)− x−(t) log x−(t),

and hence

d

dt
S(t) = −ẋ+(t) log

x+(t)

x−(t)
. (59)

Note that log x+(t)
x−(t) ≥ 0. Finally

ẋ+(t) =
1

|x(t)|

3∑
k=1

λ̇k(t)λk(t)xk,

and hence since xk are arbitrary condition ẋ+(t) ≤ 0 reproduces (57). 2

4 Memory kernel master equation

4.1 Quantum jump representation of Markovian semigroup

Consider Markovian semigroup Λt governed by

Λ̇t = LΛt. (60)

Note taht
L = B − Z, (61)

where the operators B,Z : L(H)→ L(H) are defined as follows:

B(ρ) =
∑
k

VkρV
†
k (62)

and
Z(ρ) = i(Cρ− ρC), (63)

with C ∈ L(H) given by

C = H +
i

2

∑
k

V †k Vk. (64)

Evidently, B is a CP map. Moreover, its dual B∗ : L(H) → L(H) reads B∗(X) =
∑

k V
†
kXVk

and hence B∗(I) =
∑

k V
†
k Vk. Now, let us denote by Nt a solution of the following equation

Ṅt = −ZNt , Nt=0 = id. (65)

One immediately finds

Nt(ρ) = e−Ztρ = e−iCtρeiC
†t . (66)
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Proposition 5 If [B,Z] = 0, then the solution to (60) reads

Λt = Nt

∞∑
k=0

tk

k !
Bk. (67)

Proof: one has

Λt = etL = et(B−Z) = e−tZetB = Nt

∞∑
k=0

tk

k !
Bk, (68)

where we used eX+Y = eXeY for commuting X and Y . 2

Now, since Nt and etB are CP, the map Λt is CP as well.

Proposition 6 The map Nt is trace non-increasing.

Proof: one has for arbitrary density operator ρ

d

dt
Tr[Nt(ρ)] = Tr[(−iC + iC†)ρ] = −Tr[B∗(I)ρ] ≤ 0, (69)

due to B∗(I) ≥ 0. 2

Theorem 6 The solution to (30) may be represented as follows

Λt = Nt ∗
∞∑
k=0

Q∗nt , (70)

where Xt ∗ Yt :=
∫ t

0 Xt−τYτdτ denotes convolution, Qt := BNt, and Q∗nt := Qt ∗ . . . ∗ Qt (n
factors).

Proof: passing to the Laplace transform (LT) of (30) and (65) one finds

Λ̃s =
1

s−B + Z
, Ñs =

1

s+ Z
(71)

and hence

Λ̃s = Ñs
1

id−BÑs

, (72)

where f̃s :=
∫∞

0 fte
−tsdt. Now, introducing Q̃s := BÑs one obtains

Λ̃s = Ñs

∞∑
k=0

Q̃ns , (73)

which implies (70) in the time domain. 2

Representation (70) is often called a quantum jump representation of the dynamical map Λt
and the CP map B is interpreted as quantum jump

Λt = etL = 1l + Lt+
(Lt)2

2
+ . . . , (74)

Λt = Nt +Nt ∗BNt +Nt ∗BNt ∗BNt + . . . . (75)

12



4.2 Beyond Markovian semigroup

Consider now

Λ̇t =

∫ t

0
Kt−τΛτdτ, Λ0 = id. (76)

Any memory kernel Kt has the following general structure

Kt = Bt − Zt, (77)

where maps Bt, Zt : L(H) → L(H) are Hermitian and satisfy Tr[Bt(ρ)] = Tr[Zt(ρ)]. This
condition guarantees that Kt annihilates the trace, that is, Tr[Kt(ρ)] = 0 for any ρ, and hence
Λt is trace-preserving. Now, let

Ṅt =

∫ t

0
Zt−τNτdτ, N0 = id. (78)

and
Qt = Bt ∗Nt. (79)

Theorem 7 Let {Nt, Qt} be a pair of CP maps such that

1. Nt=0 = id,

2. Tr[Qt(ρ)] + d
dtTr[Nt(ρ)] = 0 for any ρ ∈ L(H),

3. ||Q̃s||1 < 1.

Then the following map

Λt = Nt +Nt ∗Qt +Nt ∗Q ∗Qt + . . . (80)

defines a legitimate dynamical map.

Proof: condition 3) guarantees that the series

Λ̃s = Ñs

∞∑
k=0

Q̃ns = Ñs
1

id− Q̃s
,

is convergent and hence (80) defines a CP map. Condition 1) implies that Λt=0 = Nt=0 = id.
Finally, condition 2) implies that the map Λt is trace-preserving. Indeed, passing the Laplace
transform domain one finds

Tr[Q̃s(ρ)] + Tr[sÑs(ρ)− ρ] = 0. (81)

Now,
Λ̃s(id− Q̃s) = Ñs, (82)
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and hence
1

s
Tr([id− Q̃s](ρ)) = Tr[Ñs(ρ)), (83)

due to

Tr[Λ̃s(X)] =
1

s
TrX. (84)

This proves that (81) is equivalent to the trace-preservation condition (83). 2

Semigroup

Λt = Nt +Nt ∗BNt +Nt ∗BNt ∗BNt + . . . . (85)

and beyond

Λt = Nt +Nt ∗Bt ∗Nt +Nt ∗Bt ∗Nt ∗Bt ∗Nt + . . . . (86)

Example 6 Let

Nt =

(
1−

∫ t

0
f(τ)dτ

)
id, (87)

where the function f : R+ → R satisfies:

f(t) ≥ 0 ,

∫ ∞
0

f(τ)dτ ≤ 1.

Moreover, let Qt = f(t)E, where E is an arbitrary quantum channel. Then one finds the following
formula for the memory kernel

Kt = κ(t)(E − id), (88)

where the function κ(t) is defined in terms of f(t) as follows

κ̃(s) =
sf̃(s)

1− f̃(s)
. (89)

In particular taking f(t) = γe−γt one finds Kt = δ(t)L, with

L = γ(E − id), (90)

being the GKSL generator.
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