General open quantum dynamics

Dariusz Chruściński

Institute of Physics, Faculty of Physics, Astronomy and Informatics Nicolaus Copernicus University Grudziadzka 5, 87–100 Torun, Poland

1 Introduction: closed systems vs. open systems

1.1 Closed systems

Consider a quantum system S and let \mathcal{H} be the corresponding system's Hilbert space. The evolution of the *closed system* is fully governed by the system Hamiltonian H via the Schrödinger equation

$$i\dot{\psi}_t = H\psi_t , \quad (\hbar = 1),$$
 (1)

and hence

$$\psi \longrightarrow \psi_t = U_t \psi, \tag{2}$$

where the unitary operator U_t is defined by

$$U_t = e^{-iHt} aga{3}$$

and $\psi \in \mathcal{H}$ is an initial (t = 0) state. Mixed states represented by density operators evolve according to von Neumann equation

$$\dot{\rho}_t = -i[H, \rho_t] \ . \tag{4}$$

- 1. pure state evolves into pure state
- 2. mixed state ρ evolves

$$\rho \longrightarrow \rho_t = \mathbb{U}_t(\rho) := U_t \rho U_t^{\dagger}, \tag{5}$$

3. entropy $S(\rho) = -\text{Tr}(\rho \log \rho)$ satisfies

$$S(\rho_t) = S(\rho),\tag{6}$$

4. purity $\text{Tr}\rho_t^2$ is constant,

5. the evolution \mathbb{U}_t is **reversible**, that is, $\mathbb{U}_t^{-1} = \mathbb{U}_{-t}$.

1.2 Open systems

Consider now a quantum system S interacting with another system E – environment – and let

 $\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_E$

be the corresponding 'S + E' Hilbert space. The Hamiltonian of the total closed 'S + E' system reads

$$H = H_0 + H_{\text{int}} = H_S \otimes \mathbb{1}_E + \mathbb{1}_S \otimes H_E + H_{\text{int}}.$$
(7)

Note, that the splitting is not unique.

Let the initial state of E + S' be as follows

$$\rho_{SE} = \rho \otimes \rho_E,\tag{8}$$

that is, initially (at t = 0) S and E are not correlated. Since 'S + E' is a closed system its evolution reads as follows

$$\rho_{SE} \longrightarrow \rho_{SE}(t) := U_t^{SE} \rho \otimes \rho_E U_t^{SE\dagger}, \qquad (9)$$

where $U_t^{SE} = e^{-iHt}$.

Question: what is the evolution of the system S itself? The state of the system S evolves according to

$$\rho_t := \operatorname{Tr}_E \rho_{SE}(t) \tag{10}$$

and it is called **reduced evolution** of the system S.

The map

$$\rho \to \Lambda_t(\rho) := \operatorname{Tr}_E \left(U_t^{SE} \rho \otimes \rho_E U_t^{SE\dagger} \right)$$
(11)

enjoys the following properties:

- completely positive (CP)
- trace-preserving (TP)
- $\Lambda_{t=0} = \mathrm{id}.$
- Λ_t is called a **dynamical map**.

1.3 Positive and completely positive maps

Let $L(\mathcal{H})$ be a space of linear operators in \mathcal{H} (in this notes I assume that dim $\mathcal{H} = d < \infty$).

Definition 1 A linear map (super-operator) $\Phi : L(\mathcal{H}) \to L(\mathcal{H})$ is called

• positive *iff*

$$X \ge 0 \implies \Phi(X) \ge 0.$$

• *n*-positive *if*

$$\operatorname{id}_n \otimes \Phi : M_n(\mathbb{C}) \otimes L(\mathcal{H}) \to M_n(\mathbb{C}) \otimes L(\mathcal{H})$$

is positive

• completely positive if it is n-positive for $n = 1, 2, 3, \ldots$

A linear map $\Phi: L(\mathcal{H}) \to L(\mathcal{H})$ is

- trace-preserving if $\operatorname{Tr}\Phi(X) = \operatorname{Tr}X$ for all $X \in L(\mathcal{H})$
- unital if $\Phi(1) = 1$.

Note, that fixing an othonormal basis $|k\rangle$ in \mathcal{H} one may define a matrix

$$T_{ij} := \operatorname{Tr}(P_i \Phi(P_j)) \tag{12}$$

If Φ is positive and trace-preserving, then T_{ij} is stochastic.

Frobenius-Perron theorem — some remarks (classical vs. quantum). Let E_{ij} be a matrix unit in $M_n(\mathbb{C})$. Any operator $X \in M_n(\mathbb{C}) \otimes L(\mathcal{H})$ has a following form

$$X = \sum_{i,j=1}^{n} E_{ij} \otimes X_{ij}, \quad X_{ij} \in L(\mathcal{H}).$$

One has

$$(\mathrm{id}_n \otimes \Phi)(X) := \sum_{i,j=1}^n E_{ij} \otimes \Phi(X_{ij}).$$
(13)

Proposition 1 Φ is CP iff it is d-positive.

Corollary 1 One has

$$CP = \mathcal{P}_d \subset \mathcal{P}_{d-1} \subset \ldots \subset \mathcal{P}_1 = Positive.$$
 (14)

Theorem 1 (Stinespring, 1955) $\Phi : \mathcal{A} \to L(\mathcal{H})$ is CP (\mathcal{A} is a C^{*}-algebra) iff there exist

- a Hilbert space \mathcal{K}
- $a *-homomorphism \pi : \mathcal{A} \to \mathcal{B}(\mathcal{K})$
- a linear operator $V : \mathcal{K} \to \mathcal{H}$

such that

$$\Phi(a) = V\pi(a)V^{\dagger}.$$
(15)

for all $a \in \mathcal{A}$.

Theorem 2 Φ is CP iff the Choi matrix

$$C_{\Phi} := \sum_{i,j=1}^{d} E_{ij} \otimes \Phi(E_{ij}) \ge 0.$$
(16)

Theorem 3 (Stinespring, Sudarshan, Kraus) A map Φ is CP if and only if

$$\Phi(X) = \sum_{i} K_i X K_i^{\dagger} \tag{17}$$

where $K_i \in L(\mathcal{H})$ are called Kraus operators.

The map Φ represented in (17) is

• trace-preserving if

$$\sum_{i} K_i^{\dagger} K_i = \mathbb{1}.$$
(18)

• unital if

$$\sum_{i} K_i K_i^{\dagger} = \mathbb{1}.$$
(19)

Example 1 Some examples of positive but not CP maps – they are important in entanglement theory!

Basic properties of quantum channels: $\mathcal{E}: L(\mathcal{H}) \to L(\mathcal{H})$

- $\|\mathcal{E}(X)\|_1 \le \|X\|_1$
- $S(\mathcal{E}(\rho)||\mathcal{E}(\sigma)) \leq S(\rho||\sigma)$
- $F(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \ge F(\rho, \sigma)$

$$D(\rho||\sigma) = \begin{cases} \operatorname{Tr}[\rho(\log \rho - \log \sigma]) , & \text{if supp } \rho \subseteq \operatorname{supp } \sigma \\ +\infty , & \text{otherwise} \end{cases}$$
(20)

and

$$F(\rho,\sigma) = \left(\operatorname{Tr}\sqrt{\sqrt{\rho}\,\sigma\,\sqrt{\rho}}\right)^2. \tag{21}$$

Example 2 (Pure decoherence) Consider d-level system S coupled to the environment

$$H = H_S \otimes \mathbb{1}_E + \mathbb{1}_S \otimes H_E + \sum_k P_k \otimes B_k$$
(22)

where

$$H_S = \sum_k E_k P_k. \tag{23}$$

One has

$$H = \sum_{k} P_k \otimes Z_k \; ; \quad Z_k = E_k \mathbb{1}_S + H_E + B_k. \tag{24}$$

One finds

$$U_t = e^{-iHt} = \sum_k P_k \otimes e^{-iZ_k t},$$
(25)

and hence

$$\Lambda_t(\rho) = \sum_{k,l} C_{kl}(t) P_k \rho P_l \tag{26}$$

with

$$C_{kl}(t) = \operatorname{Tr}\left(e^{-iZ_k t}\rho_E e^{iZ_l t}\right).$$
(27)

The evolution of the density operator is very simple:

$$\rho_{kl} \longrightarrow C_{kl}(t) \rho_{kl},$$

that is, it is defined by the Hadamard product of C(t) and ρ . Recall, that

$$(A \circ B)_{kl} := A_{kl} B_{kl}. \tag{28}$$

The map

$$\Phi_C(X) := C \circ X \tag{29}$$

is CP if and only if $C \ge 0$.

2 Markovian semigroup

The simplest evolution is provided by the following master equation

$$\dot{\rho}_t = \mathcal{L}(\rho_t),\tag{30}$$

which generalizes von Neumann equation

$$\dot{\rho}_t = -i[H, \rho_t] =: \mathcal{L}_H(\rho_t), \tag{31}$$

that is, the super-operator $\mathcal{L}_H : L(\mathcal{H}) \to L(\mathcal{H})$ is defined by

$$\mathcal{L}_H(\rho) := -i[H,\rho]. \tag{32}$$

The solution to (30) has the following form

$$\Lambda_t = e^{t\mathcal{L}}.\tag{33}$$

Theorem 4 (Gorini,Kossakowski,Sudarshan,Lindblad) A linear map $\mathcal{L} : L(\mathcal{H}) \rightarrow L(\mathcal{H})$ generates legitimate dynamical map if and only if

$$\mathcal{L}(\rho) = -i[H,\rho] + \sum_{k} \gamma_k \left(V_k \rho V_k^{\dagger} - \frac{1}{2} \{ V_k^{\dagger} V_k, \rho \} \right)$$
(34)

where $\{A, B\} = AB + BA$, and $\gamma_k > 0$.

2.1 Examples of Markovian semigroups

Example 3 (Qubit decoherence)

$$\mathcal{L}(\rho) = \frac{\gamma}{2} (\sigma_z \rho \sigma_z - \rho); \quad \gamma > 0.$$
(35)

Note that

$$\mathcal{L}(E_{11}) = 0 \mathcal{L}(E_{22}) = 0 \mathcal{L}(E_{12}) = -\gamma E_{12} \mathcal{L}(E_{21}) = -\gamma E_{21}$$

and hence

$$\Lambda_t(E_{11}) = E_{11} \Lambda_t(E_{22}) = E_{22} \Lambda_t(E_{12}) = e^{-\gamma t} E_{12} \Lambda_t(E_{21}) = e^{-\gamma t} E_{21}$$

Now finds the following Kraus representation

$$\Lambda_t(\rho) = \frac{1 + e^{-\gamma t}}{2} \rho + \frac{1 - e^{-\gamma t}}{2} \sigma_z \rho \sigma_z.$$
(36)

Another way is a direct computation of $e^{\mathcal{L}t}$.

Example 4 (Qubit dissipation) Let us consider

$$\Phi(\rho) = \frac{1}{2} \Big(\gamma_{+} \mathcal{L}_{+} + \gamma_{-} \mathcal{L}_{-} \Big)$$
(37)

where where

$$\mathcal{L}_{1}(\rho) = [\sigma_{+}, \rho\sigma_{-}] + [\sigma_{+}\rho, \sigma_{-}] ,
\mathcal{L}_{2}(\rho) = [\sigma_{-}, \rho\sigma_{+}] + [\sigma_{-}\rho, \sigma_{+}] ,$$
(38)

 \mathcal{L}_+ corresponds to pumping (heating) process, \mathcal{L}_- corresponds to relaxation (cooling). To solve the master equation $\dot{\rho}_t = L\rho_t$ let us parameterize ρ_t as follows

$$\rho_t = p_1(t)P_1 + p_2(t)P_2 + \alpha(t)\sigma_+ + \overline{\alpha(t)}\sigma_- , \qquad (39)$$

with $P_k = |k\rangle \langle k|$. Using the following relations

$$\begin{aligned} \mathcal{L}(P_1) &= -\gamma_+ \, \sigma_3 \;, \\ \mathcal{L}(P_2) &= \gamma_- \, \sigma_3 \;, \\ \mathcal{L}(\sigma_+) &= \gamma \, \sigma_+ \;, \\ \mathcal{L}(\sigma_-) &= \gamma \, \sigma_- \;, \end{aligned}$$

where

$$\gamma = \frac{\gamma_+ + \gamma_-}{2}.$$

one finds the following Pauli master equations for the probability distribution $(p_1(t), p_2(t))$

$$\dot{p}_1(t) = -\gamma_+ p_1(t) + \gamma_- p_2(t) ,$$
 (40)

$$\dot{p}_2(t) = \gamma_+ p_1(t) - \gamma_- p_2(t) , \qquad (41)$$

together with $\alpha(t) = e^{-\gamma t} \alpha(0)$. The corresponding solution reads

$$p_1(t) = p_1(0) e^{-(\gamma_+ + \gamma_-)t} + p_1^* \left[1 - e^{-(\gamma_+ + \gamma_-)t} \right], \qquad (42)$$

$$p_2(t) = p_2(0) e^{-(\gamma_+ + \gamma_-)t} + p_2^* \left[1 - e^{-(\gamma_+ + \gamma_-)t} \right], \qquad (43)$$

where we introduced

$$p_1^* = \frac{\gamma_+}{\gamma_+ + \gamma_-} , \quad p_2^* = \frac{\gamma_+}{\gamma_+ + \gamma_-} .$$
 (44)

Hence, we have purely classical evolution of probability vector $(p_1(t), p_2(t))$ on the diagonal of ρ_t and very simple evolution of the off-diagonal element $\alpha(t)$. Note, that asymptotically one obtains completely decohered density operator

$$\rho_t \longrightarrow \begin{pmatrix} p_1^* & 0 \\ 0 & p_2^* \end{pmatrix}.$$

In particular if $\gamma_{+} = \gamma_{-}$ a state ρ_{t} relaxes to maximally mixed state (a state becomes completely depolarized).

3 Beyond Markovian semigroup – non-Markovian evolution

Consider now

$$\dot{\Lambda}_t = \mathcal{L}_t \Lambda_t , \quad \Lambda_0 = \mathrm{id},$$
(45)

with time dependent generator \mathcal{L}_t . The formal solution reads

$$\Lambda_t = \mathcal{T} \exp\left(\int_0^t \mathcal{L}_u du\right) = \mathrm{id} + \int_0^t \mathcal{L}_u du + \int_0^t dt_2 \int_0^{t_2} dt_1 \mathcal{L}_{t_2} \mathcal{L}_{t_1} + \dots$$
(46)

If $[\mathcal{L}_t, \mathcal{L}_u] = 0$, then

$$\Lambda_t = \exp\left(\int_0^t \mathcal{L}_u du\right) = \mathrm{id} + \int_0^t \mathcal{L}_u du + \frac{1}{2}\left(\int_0^t \mathcal{L}_u du\right)^2 + \dots$$
(47)

Evolution Λ_t is called **divisible** if

$$\Lambda_t = V_{t,s}\Lambda_s \; ; \quad t \ge s. \tag{48}$$

It is called

- P-divisible if $V_{t,s}$ is PTP
- CP-divisible if $V_{t,s}$ is CPTP

Theorem 5 If Λ_t is *P*-divisible, then

$$\frac{d}{dt} \|\Lambda_t(X)\|_1 \le 0,\tag{49}$$

for all $X \in L(\mathcal{H})$. If Λ_t is CP-divisible, then

$$\frac{d}{dt}\|[\mathrm{id}\otimes\Lambda_t](X)\|_1 \le 0,\tag{50}$$

for all $X \in L(\mathcal{H}) \otimes L(\mathcal{H})$.

For invertible the converse is also true.

The evolution Λ_t is **Markovian** iff it is CP-divisible.

We stress, that there are many other approaches. For example the one based on distinguishability of states:

$$D(\rho, \sigma) := \frac{1}{2} \|\rho - \sigma\|_1$$
(51)

According to Breuer-Laine-Piilo (BLP) the evolution Λ_t is **Markovian** if

$$\frac{d}{dt} \|\Lambda_t(\rho) - \Lambda_t(\sigma)\|_1 \le 0, \tag{52}$$

for all states ρ and σ .

Example 5 Consider

$$\mathcal{L}_t(\rho) = \frac{1}{2} \sum_{k=1}^3 \gamma_k(t) (\sigma_k \rho \sigma_k - \rho), \tag{53}$$

with time dependent rates $\gamma_k(t)$. The corresponding map $\Lambda_t = \exp(\int_0^t \mathcal{L}_\tau d\tau)$ has the following form

$$\Lambda_t(\rho) = \sum_{\alpha=0}^3 p_\alpha(t) \sigma_\alpha \rho \sigma_\alpha, \tag{54}$$

where $\sigma_0 = 1$, and time-dependent probability distribution $p_{\alpha}(t)$ read:

$$p_{0}(t) = \frac{1}{4} \Big(1 + \lambda_{1}(t) + \lambda_{2}(t) + \lambda_{3}(t) \Big),$$

$$p_{1}(t) = \frac{1}{4} \Big(1 + \lambda_{1}(t) - \lambda_{2}(t) - \lambda_{3}(t) \Big),$$

$$p_{2}(t) = \frac{1}{4} \Big(1 - \lambda_{1}(t) + \lambda_{2}(t) - \lambda_{3}(t) \Big),$$

$$p_{3}(t) = \frac{1}{4} \Big(1 - \lambda_{1}(t) - \lambda_{2}(t) + \lambda_{3}(t) \Big),$$

with $\lambda_k(t)$ being eigenvalues of the map Λ_t : $\Lambda_t(\sigma_k) = \lambda_k(t)\sigma_k$ defined by

$$\lambda_i(t) = e^{-\Gamma_j(t) - \Gamma_k(t)},\tag{55}$$

where $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$, and $\Gamma_k(t) = \int_0^t \gamma_k(\tau) d\tau$.

Proposition 2 Time-local generator (53) gives rise to a legitimate dynamical map iff $p_{\alpha}(t) \geq 0$ for $t \geq 0$, that is,

$$\lambda_i(t) + \lambda_j(t) \le 1 + \lambda_k(t), \tag{56}$$

where $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$.

Note, that (56) provides highly nontrivial condition for the rates $\gamma_i(t)$.

Proposition 3 Λ_t is P-divisible iff

$$\gamma_1(t) + \gamma_2(t) \ge 0 , \ \gamma_2(t) + \gamma_3(t) \ge 0 , \ \gamma_3(t) + \gamma_1(t) \ge 0 , \tag{57}$$

for all $t \geq 0$.

Proof: note that conditions (56) are necessary. Indeed, P-divisibility requires $\frac{d}{dt} \|\Lambda_t(\sigma_k)\|_1 \leq 0$. One has

$$\frac{d}{dt}\|\Lambda_t(\sigma_k)\|_1 = \frac{d}{dt}|\lambda_k(t)|\|\sigma_k\|_1 = -2[\gamma_i(t) + \gamma_j(t)],$$

where again $\{i, j, k\}$ is a permutation of $\{1, 2, 3\}$ and we used the formula $\lambda_k(t) = \exp(-\Gamma_i(t) - \Gamma_j(t))$. Now, the corresponding propagator $V_{t,s}$ is given by $V_{t,s} = e^{\int_s^t \mathcal{L}_\tau d\tau}$, and hence $V_{t,s}$ is PTP iff \mathcal{L}_t is a generator of a family of positive trace-preserving maps, that is, for any ψ and ϕ such that $\langle \psi | \phi \rangle = 0$ one has

$$\langle \psi | \mathcal{L}_t(|\phi\rangle \langle \phi |) | \psi \rangle \ge 0,$$

for all $t \ge 0$. Introducing the corresponding rank-1 projectors $P_{\psi} = |\psi\rangle\langle\psi|$ and $P_{\phi} = |\phi\rangle\langle\phi|$ let us observe that $P_{\phi} = \mathbb{1} - P_{\psi}$ (due to orthogonality of ψ and ϕ) and hence

$$\langle \psi | \mathcal{L}_t(|\phi\rangle \langle \phi|) | \psi \rangle = \operatorname{Tr}(P_{\psi} \mathcal{L}_t(\mathbb{1} - P_{\psi})) = -\operatorname{Tr}(P_{\psi} \mathcal{L}_t(P_{\psi}))$$

= $-\frac{1}{2} \sum_k \gamma_k(t) \operatorname{Tr}(P_{\psi} \sigma_k P_{\psi} \sigma_k) = \frac{1}{2} \sum_k \gamma_k(t) (1 - |\langle \psi | \sigma_k | \psi \rangle|^2),$

due to $\mathcal{L}_t(1) = 0$. Observe that at any t at most one $\gamma_k(t)$ may be negative. Indeed, suppose that $\gamma_1(t) < 0$ and $\gamma_2(t) < 0$. Taking $|\psi\rangle = |0\rangle$ one finds

$$|\langle \psi | \sigma_1 | \psi \rangle|^2 = |\langle \psi | \sigma_2 | \psi \rangle|^2 = 0 , \quad |\langle \psi | \sigma_3 | \psi \rangle|^2 = 1,$$

and hence

$$\langle \psi | \mathcal{L}_t(|\phi\rangle \langle \phi |) | \psi \rangle = \gamma_1(t) + \gamma_2(t) < 0.$$

Now, let $\gamma_1(t) < 0$. One finds

$$\langle \psi | \mathcal{L}_t(|\phi\rangle\langle\phi|) | \psi \rangle \ge \min\{\gamma_1(t) + \gamma_2(t), \gamma_1(t) + \gamma_3(t)\}$$

which implies (57).

Proposition 4 Let
$$\rho$$
 be an arbitrary initial state. One has

$$\frac{d}{dt}S(\Lambda_t(\rho)) \ge 0,$$
(58)
iff Λ_t is P-divisible, that is, conditions (57) are satisfied.

Proof: clearly P-divisibility implies (58). Now, suppose that (58) is satisfied for any ρ . Taking the Bloch representation $\rho = \frac{1}{2}(\mathbb{1} + \sum_k x_k \sigma_k)$, one finds $\rho_t = \frac{1}{2}(\mathbb{1} + \sum_k x_k(t)\sigma_k)$, with

$$x_1(t) = e^{-\Gamma_2(t) - \Gamma_3(t)} x_1 , \ x_2(t) = e^{-\Gamma_1(t) - \Gamma_3(t)} x_2 , \ x_3(t) = e^{-\Gamma_1(t) - \Gamma_2(t)} x_3$$

that is, the Bloch vector evolves as follows $\mathbf{x}(t) = (\lambda_1(t) x_1, \lambda_2(t) x_2, \lambda_3(t) x_3)$. The corresponding eigenvalues $x_{\pm}(t)$ of ρ_t read

$$x_{\pm}(t) = \frac{1}{2}(1 \pm |\mathbf{x}(t)|)$$

Now, one has for the entropy

$$S(t) = -x_{+}(t)\log x_{+}(t) - x_{-}(t)\log x_{-}(t),$$

 $and\ hence$

$$\frac{d}{dt}S(t) = -\dot{x}_{+}(t)\log\frac{x_{+}(t)}{x_{-}(t)}.$$
(59)

Note that $\log \frac{x_+(t)}{x_-(t)} \ge 0$. Finally

$$\dot{x}_{+}(t) = \frac{1}{|\mathbf{x}(t)|} \sum_{k=1}^{3} \dot{\lambda}_{k}(t) \lambda_{k}(t) x_{k},$$

$$y \text{ condition } \dot{x}_{+}(t) < 0 \text{ reproduces (57).}$$

and hence since x_k are arbitrary condition $\dot{x}_+(t) \leq 0$ reproduces (57).

4 Memory kernel master equation

4.1 Quantum jump representation of Markovian semigroup

Consider Markovian semigroup Λ_t governed by

$$\Lambda_t = \mathcal{L}\Lambda_t. \tag{60}$$

Note taht

$$\mathcal{L} = B - Z,\tag{61}$$

where the operators $B, Z: L(\mathcal{H}) \to L(\mathcal{H})$ are defined as follows:

$$B(\rho) = \sum_{k} V_k \rho V_k^{\dagger} \tag{62}$$

and

$$Z(\rho) = i(C\rho - \rho C), \tag{63}$$

with $C \in L(\mathcal{H})$ given by

$$C = H + \frac{i}{2} \sum_{k} V_k^{\dagger} V_k.$$
(64)

Evidently, B is a CP map. Moreover, its dual $B^* : L(\mathcal{H}) \to L(\mathcal{H})$ reads $B^*(X) = \sum_k V_k^{\dagger} X V_k$ and hence $B^*(\mathbb{I}) = \sum_k V_k^{\dagger} V_k$. Now, let us denote by N_t a solution of the following equation

$$\dot{N}_t = -ZN_t$$
, $N_{t=0} = \text{id.}$ (65)

One immediately finds

$$N_t(\rho) = e^{-Zt}\rho = e^{-iCt}\rho e^{iC^{\dagger}t}$$
(66)

Proposition 5 If [B, Z] = 0, then the solution to (60) reads

$$\Lambda_t = N_t \sum_{k=0}^{\infty} \frac{t^k}{k!} B^k.$$
(67)

Proof: one has

$$\Lambda_t = e^{t\mathcal{L}} = e^{t(B-Z)} = e^{-tZ}e^{tB} = N_t \sum_{k=0}^{\infty} \frac{t^k}{k!} B^k,$$
(68)

where we used $e^{X+Y} = e^X e^Y$ for commuting X and Y. Now, since N_t and e^{tB} are CP, the map Λ_t is CP as well.

, . , **.** .

Proposition 6 The map N_t is trace non-increasing.

Proof: one has for arbitrary density operator ρ

$$\frac{d}{dt}\operatorname{Tr}[N_t(\rho)] = \operatorname{Tr}[(-iC + iC^{\dagger})\rho] = -\operatorname{Tr}[B^*(\mathbb{I})\rho] \le 0,$$
(69)

due to $B^*(\mathbb{I}) \geq 0$.

Theorem 6 The solution to (30) may be represented as follows

$$\Lambda_t = N_t * \sum_{k=0}^{\infty} Q_t^{*n},\tag{70}$$

where $X_t * Y_t := \int_0^t X_{t-\tau} Y_{\tau} d\tau$ denotes convolution, $Q_t := BN_t$, and $Q_t^{*n} := Q_t * \ldots * Q_t$ (n factors).

Proof: passing to the Laplace transform (LT) of (30) and (65) one finds

$$\widetilde{\Lambda}_s = \frac{1}{s - B + Z}, \quad \widetilde{N}_s = \frac{1}{s + Z}$$
(71)

and hence

$$\widetilde{\Lambda}_s = \widetilde{N}_s \frac{1}{\mathrm{id} - B\widetilde{N}_s},\tag{72}$$

where $\tilde{f}_s := \int_0^\infty f_t e^{-ts} dt$. Now, introducing $\tilde{Q}_s := B \tilde{N}_s$ one obtains

$$\widetilde{\Lambda}_s = \widetilde{N}_s \sum_{k=0}^{\infty} \widetilde{Q}_s^n, \tag{73}$$

which implies (70) in the time domain.

Representation (70) is often called a *quantum jump* representation of the dynamical map Λ_t and the CP map B is interpreted as quantum jump

$$\Lambda_t = e^{t\mathcal{L}} = 1 + \mathcal{L}t + \frac{(\mathcal{L}t)^2}{2} + \dots,$$
(74)

$$\Lambda_t = N_t + N_t * BN_t + N_t * BN_t * BN_t + \dots$$
(75)

4.2 Beyond Markovian semigroup

Consider now

$$\dot{\Lambda}_t = \int_0^t K_{t-\tau} \Lambda_\tau d\tau, \quad \Lambda_0 = \mathrm{id}.$$
(76)

Any memory kernel K_t has the following general structure

$$K_t = B_t - Z_t,\tag{77}$$

where maps $B_t, Z_t : L(\mathcal{H}) \to L(\mathcal{H})$ are Hermitian and satisfy $\operatorname{Tr}[B_t(\rho)] = \operatorname{Tr}[Z_t(\rho)]$. This condition guarantees that K_t annihilates the trace, that is, $\operatorname{Tr}[K_t(\rho)] = 0$ for any ρ , and hence Λ_t is trace-preserving. Now, let

$$\dot{N}_t = \int_0^t Z_{t-\tau} N_\tau d\tau, \quad N_0 = \text{id.}$$
(78)

and

$$Q_t = B_t * N_t. \tag{79}$$

Theorem 7 Let
$$\{N_t, Q_t\}$$
 be a pair of CP maps such that
1. $N_{t=0} = \operatorname{id},$
2. $\operatorname{Tr}[Q_t(\rho)] + \frac{d}{dt}\operatorname{Tr}[N_t(\rho)] = 0$ for any $\rho \in L(\mathcal{H}),$
3. $||\widetilde{Q}_s||_1 < 1.$
Then the following map
 $\Lambda_t = N_t + N_t * Q_t + N_t * Q * Q_t + \dots$
(80)

defines a legitimate dynamical map.

Proof: condition 3) guarantees that the series

$$\widetilde{\Lambda}_s = \widetilde{N}_s \sum_{k=0}^{\infty} \widetilde{Q}_s^n = \widetilde{N}_s \frac{1}{\mathrm{id} - \widetilde{Q}_s},$$

is convergent and hence (80) defines a CP map. Condition 1) implies that $\Lambda_{t=0} = N_{t=0} = id$. Finally, condition 2) implies that the map Λ_t is trace-preserving. Indeed, passing the Laplace transform domain one finds

$$\operatorname{Tr}[\widetilde{Q}_s(\rho)] + \operatorname{Tr}[s\widetilde{N}_s(\rho) - \rho] = 0.$$
(81)

Now,

$$\widetilde{\Lambda}_s(\mathrm{id} - \widetilde{Q}_s) = \widetilde{N}_s,\tag{82}$$

and hence

$$\frac{1}{s} \operatorname{Tr}([\operatorname{id} - \widetilde{Q}_s](\rho)) = \operatorname{Tr}[\widetilde{N}_s(\rho)),$$
(83)

due to

$$\operatorname{Tr}[\widetilde{\Lambda}_s(X)] = \frac{1}{s} \operatorname{Tr} X.$$
(84)

This proves that (81) is equivalent to the trace-preservation condition (83).

Semigroup $\Lambda_t = N_t + N_t * BN_t + N_t * BN_t * BN_t + \dots$ (85) and beyond

$$\Lambda_t = N_t + N_t * B_t * N_t + N_t * B_t * N_t * B_t * N_t + \dots$$
(86)

Example 6 Let

$$N_t = \left(1 - \int_0^t f(\tau) d\tau\right) \mathrm{id},\tag{87}$$

where the function $f : \mathbb{R}_+ \to \mathbb{R}$ satisfies:

$$f(t) \ge 0$$
, $\int_0^\infty f(\tau) d\tau \le 1$.

Moreover, let $Q_t = f(t)\mathcal{E}$, where \mathcal{E} is an arbitrary quantum channel. Then one finds the following formula for the memory kernel

$$K_t = \kappa(t)(\mathcal{E} - \mathrm{id}),\tag{88}$$

where the function $\kappa(t)$ is defined in terms of f(t) as follows

$$\widetilde{\kappa}(s) = \frac{s\widetilde{f}(s)}{1 - \widetilde{f}(s)}.$$
(89)

In particular taking $f(t) = \gamma e^{-\gamma t}$ one finds $K_t = \delta(t)\mathcal{L}$, with

$$\mathcal{L} = \gamma(\mathcal{E} - \mathrm{id}),\tag{90}$$

being the GKSL generator.

References

- [1] H.-P. Breuer and F. Petruccione, *The Theory of Open Quantum Systems* (Oxford Univ. Press, Oxford, 2007).
- [2] U. Weiss, Quantum Dissipative Systems, (World Scientific, Singapore, 2000).
- [3] E.B. Davies, Quantum Theory of Open Systems, Academic Press, London, 1976.
- [4] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications (Springer, Berlin, 1987).
- [5] A. Rivas and S. F. Huelga, Open Quantum Systems: An Introduction, Springer, 2011.
- [6] F. Benatti and R. Floreanini, Int. J. Mod. Phys. B 19, 3063 (2005).
- [7] V. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge University Press, 2003.
- [8] Å. Rivas, S. F. Huelga, and M. B. Plenio, Rep. Prog. Phys. 77, 094001 (2014).
- [9] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016).
- [10] I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
- [11] Li Li, M. J. W. Hall, and H. M. Wiseman, Concepts of quantum non-Markovianity: a hierarchy, Phys. Rep. (2018)
- [12] D. Chruściński, On Time-Local Generators of Quantum Evolution, Open Syst. Inf. Dyn., 21, 1440004 (2014).
- [13] D. Chruściński and S. Pascazio, A Brief History of the GKLS Equation, OPen Sys. Inf. Dyn. 24, 1740001 (2017).