

Present and Future of Radiation Therapy

ICTP School on Medical Physics March 25 – April 5, 2019 Miramare, Trieste

Yakov Pipman, DSc

Overview

- Then
- Now
- Tomorrow
- Summary

Radiotherapy 1-D

KiloVoltage therapy for breast

Elimina bed. Lesser, Schi f Whenden march der Cityten Vonnenstang Paters - Long be beton wigen liver my gauges thill Burken gauge Wild

Radiation therapy simulation... a note and a diagram in the chart

Radiotherapy 1-D and 2-D

April 1, 1969

Co-60 TREATMENT TIME and "SKIN" DOSAGE CHART at The Long Island Jewish Hospital 270-05 76th Avenue New Hyde Park, N.Y. 11040

Typical dosimetric calculation

_

Computation of Beam- ON time for a Co-60 treatment

Time in Minutes to give 100 rads tumor dose at depth and Max.r "skin" dose for 100 Rads at depth for period April 1, 1969 through June 30, 1969.

80 CM. S.S.D.

Depth .n CM.	AREA IN SQ. CM									
	Kay 1		Il Max 1		Max. 1		Max. I		Max. I	
	Rads	Min.	Rads	Min.	Rads	Min.	Rads	Min.	Rads	Min.
.5	100	.97	100	.96	100	.96	100	o),	100	.94
1.0	103	1.00	102	.98	102	.97	102	.96	102	.95
2.0	110	1.06	108	1.00	107	1.02	107	1.00	106	.99
3.0	117	1.13	115	1.10	113	1.08	112	1.05	111	1.04
4.0	125	1.22	122	1.17	120	1.14	118	1.11	117	1.10
ž.0	134	1.30	130	1.25	127	1.21	125	1.18	124	1.16
18		-				19 B				
5.0	145	1.40	139	1.35	136	1.30	133	1.25	131	1.23
	156	1.51	150	1.44	145	1.39	141	1.33	139	1.30
3.0	169	1.63	161	1.55	156	1.49	151	1.42	147	1.38
0.0	183	1.78	174	1.68	167	1.59	161	1.52	156	1.46
0.0	198	1.92	188	1.82	180	1.72	172	1.62	165	1.55
1.0	215	2.08	202	1.90	193	1.84	184,	1.74	176	1.65
2.0	233	2.25	218	2.11	207	1.98	197	1.84	188	1.76
3.0	252	2.44	236	2.29	223	2.12	210	1.98	200	1.87
4.0	273	2.64	254	2.47	239	2.28	225	2.10	212	1.99
5.0	296	2.86	275	2.66	257	2.45	239	2,25	226	2.12
5.0	310	3.08	298	2.87	276	2.63	256	2.40	240	2.25
7.0	345	3.33	320	3.08	296	2.83	274	2.57	257	2.40
3.0	371	3.59	345	3.33	318	3.03	293	2.74	272	2.55
	402	3.90	373	3.68	343	3.27	313	2.93	289	2.71
0.0	436	4.23	402	3.88	368	3.51	334	3.12	306	2.87
					1					

Textbook of RADIOTHERAPY GILBERT H. FLETCHER

FIG. 11–37. C. The same procedure used for the localization of the lowest palpable disease is also used to determine the center of the lateral portals. A Lucite bridge used for daily treatment duplication is also shown.

FIG. 11–37. A. Projection of vaginal disease onto the surface of the body. The cervical localizer, seen on the left side of the tray, consists of a plastic rod with a lead plug at its tip and a fluid level to assure its horizontal position. The plastic rod is introduced into the vagina, guided by the examining finger until contact is made with the lowest palpable vaginal disease. As the rod is then attached to the stand at exactly this level, the vertical pointer, which is in line with the tip of the rod, will project the location of the lowest palpable vaginal disease onto the surface of the body. The lower margin of the portal is drawn 2 cm below that projection. A verification film is taken immediately and adjustments are made until the field includes approximately 1 cm of tissue below the lead plug, which means that there will be at least 2 cm of normal vaginal tissues in the irradiated field.

Also seen on the tray are the compression cone for the 22-MeV betatron with the lead blocks to shield respectively 2 and 4 cm of tissue at 10-cm depth. The end of compression cone for the ⁶⁰Co unit is made of copper mesh to minimize secondary electron emission. The lead blocks can slide sideways to fit the isodose curves of the individual radium system.

D. Isodose distribution of ⁶⁹Co wedges. The tumor dose is taken at the 138% curve. The tissue volume included in the high dose range is not excessive.

The 90's – the era of 3D

DLOR FIGURE 13–3. Demonstration of various tools used in the planning of an evaluation of a tient with paranasal sinuses involving a medial wall of the right orbit. (A) Digitally reconstructed diograph depicting BEV-designed portal 3, which is an inferior superior beam. (B) Isodose distribution the central axis, coronal view.

CARLOS A. PEREZ • LUTHER W. BRADY

Principles and Practice of RADIATION ONCOLOGY

Third Edition

COLOR FIGURE 13–5. Patient with a localized prostate cancer. (A) BEV-designed portal, right lateral. (B) Room view depicting beam directions for a seven-beam plan: right lateral, RAO, AP, and LAO; left lateral, LPO and RPO. (C) isodose distribution at the level of the central axis. (D) Demonstration of dose surface (70 Gy) from various views.

Lippincott - Raven

Perez and Brady - Principles and Practice of Radiation Oncology-1998, and others...

Cranio- spinal Irradiation

RFS vs. DOSE - RT alone

From: M.J.Zelefsky et. al.; IJROBP June 1998

RFS vs. DOSE - RT alone

657 patients treated in 1994-95

Fig. 2. Kaplan-Meier prostate-specific antigen (PSA) disease-free survival curves of patients with intermediate-risk tumors (T1b, T1c, T2a, GS ≤ 6 and PSA ≥ 10 ng/mL but ≤ 20 ng/mL or T2b, GS ≤ 6 and PSA ≤ 20 ng/mL or GS 7 and PSA ≤ 20 ng/mL).

From: P. Kupelian et. al.; IJROBP Feb 2005

Dose Response

• From: G.E.Hanks et. al., IJROBP, June 1998

Morbidity vs. Dose

From:G.E.Hanks et. al., IJROBP, June 1998

Hypothesis ... for new technologies

More accurate dose delivery & better dose distributions yield better clinical outcomes! **Basic Strategy**

- Reduce treatment volume
 - Irradiate a smaller volume of normal tissue

... allows dose escalation - higher doses to tumours

CTV 15 5. CTV 15 5. CTV 5.

Courtesy: Dr Jacob (Jake) Van Dyk

Normal Tissue Toxicity (NTCP)

Radiation Oncology Historical Trends

Clinical Benefit (Survival) (Conformality)

USA 5-yr Survival: ~1970s [•] to ~2010s [•]

- All cancers up

 - Except cervix & uterus
- Prostate
 - 68% → 99%
- "early detection and <u>improved</u> <u>treatment</u>"

Courtesy: Dr Jacob (Jake) Van Dyk

Prostate Cancer EBRT

Thariat et al. Nat Rev Clin Oncol 10: 52–60; 2013

Image guidance over the years

- Portal Imaging (film and digital)
- Fluoroscopic tracking (range of motion)

Fiducial based 2D/2D match

Gold coils implanted in the prostate are shown on a DRR (a) and on an MV portal image (b). Image matching structures obtained from the DRR are superimposed on the EPID to target the coils, rather than the bony anatomy.

Image guidance over the years

• On Board imagers (kV and MV)

Localization and 4D RF Tracking of Implanted Markers

Image guidance over the years

• U-Sound targeting (mainly distance or interface)

In the planning room...

In the treatment room...

Image guidance over the years

 Optical surface matching (Visionrt)

Multimodality image registration

Acoustic neuroma not clearly visible on CT image

Mass clearly seen on reformatted MRI image after fusion with CT

Current

Image-Guided Radiation Therapy (IGRT)4-D Radiation Therapy

Reduction of systematic and random uncertainties

Adapted from Dr Jacob (Jake) Van Dyk

 Do We Deliver the Correct Dose Distribution for every Treatment?

For many anatomical sites we have limited control of the internal organ motion Effects of Intra-Fraction Organ Motion on the Delivery of IMRT with an MLC

Conventional treatment Effect of organ motion on **GTV** is accounted for by **PTV**, which is always inside the beam aperture. IMRT treatment: summation of small beams

No organ motion delivered = planned with organ motion delivered ≠ planned

Courtesy of Dr C. S. Chui

Hybrid Technologies-Imaging and Therapy

• Linac/CBCT

In Room Radiographic guidance

BrainLAB ExacTrac 6D X-ray tubes recessed in floor Flat panels mounted to ceiling Accuray CyberKnife X-ray tubes mounted to ceiling Flat panels recessed in floor

Hybrid Technologies-Imaging and Therapy

• Tomotherapy

100 70

• Halcyon

TM Helical Tomotherapy System

Hybrid Technologies-Imaging and Therapy Cobalt/MR

- Rotating Gantry Assembly
- Independent Co60 Headed Design
- Asynchronous Delivery
- Mounted with 120 degree separation
- 15,000 Ci per source
- +-240 degree Rotation for 2 or 3 Head Operation for Maximum Reliability.
- 3 Doubly Focused MLC Systems
- 180 MLC Leaves. 60 per Head
- Best-in-class MLC for Reduced Penumbra & Interleaf Leakage

Hybrid Technologies-Imaging and Therapy

• \rightarrow Linac/MR

Split MRI magnet Double-Magnetic & RF focused shielding technology MLC Linear accelerator Patient table *Technology in development. Descriptions and performance subject to change. Not available for clinical use prior to CE mark

Hybrid Technologies-Imaging and Therapy

• Linac/MR

UMC Utrecht ELEKTA/Philips

Alberta, Canada (G. Fallone)

Figures from: Uwe Oelfke, Paul Keall

Hybrid Technologies- Anatomy and Function

- PET/CT
- PET/MR

• Other advances

Autocontouring

Adaptive Radiation Therapy (ART)

Computing advances

Computer hardware (Moore's "law"): Size \downarrow , Density \uparrow (Doubling time < 2y) Processor Speed 1 Software: Parallel processing Optimization Processing capability 111

- Real-time adaptive RT
 - 4-D
 - Real-time replanning
 - Dose accumulation

Advanced algorithms

- Monte Carlo planning calculations, but much faster!
- Boltzmann transport
- Radiobiological models
- Accounting for Uncertainties (Robust Optimization)

Example of Robust Optimization

Adaptive technologies

- Image warping
- Daily-re-optimization
- Daily dose accumulation
- Real-time tracking of tumor markers
- Real-time tracking and correction of MLC apertures

More Adaptation ... example

• Tissue voxels move/change from day to day

Deformable Image Registration Thin-Plate Spline Image Warping

Source

Target

Courtesy: Jeff Kempe

Deformable Image Registration Thin-Plate Spline Image Warping

Result

Target

Courtesy: Jeff Kempe

Warping Example: 6-Field Prostate

Planned

Warped fraction 1

Treatment fraction 1

Note rectal distention ... pushes prostate up

80

10

Difference: warped – planned

Schaly et al, PMB 49: 791-805, 2004

Will image guidance & dose warping improve treatment outcome? lical Phys

50

55

100 Tattoo align - 10 mm 90 IGR' CTV align - 10 mm 80 Tattoo align - 5 mm 70 CTV align - 5 mm కి 60 Probability 50 40 30 20 aser 10 IGRT

60

65

70

75

Prescription dose (Gy)

85

80

95

90

100

Image-guided adaptive radiation therapy (IGART) dose escalation considerations for localized card

William Songa) and Bryan Schaly

Department of Medical Biophysics, University of Western Ontario, and Radiati London Regional Cancer Program, London Health Sciences Centre, London, C

Glenn Bauman

Department of Oncology, University of Western Ontario, and Radiation Treatm London Regional Cancer Program, London Health Sciences Centre, London, C

Jerry Battista and Jake Van Dyk

Departments of Medical Biophysics and Oncology, University of Western Ontai and Radiation Treatment Program, London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada

Best dose escalation strategy: Combine margin reduction (low NTCP) with daily IGRT technique (high TCP) to localize the daily moving/deforming target volume.

Song et al: Med Phys 32: 2193-203, 2005

IGRT Impact on Clinical Outcomes

From Dr Jacob (Jake) Van Dyk

Technology advantages

- More efficient
 - VMAT, TomoTherapy, Halcyon

Example: Installation, commissioning, training

Technology advantages

- More efficient
 - IMAT, TomoTherapy, Halcyon

Example: Patient throughput

Trends Over the Next 10 Years

- More particles
 - Protons, carbon ions, ...
 - Proton therapy
 - 92 operational (Feb 2019)
 - 45 under construction (Jan 2019)
 - Source Physics World, 25 Feb 2019
 - Carbon ion therapy
 - ~11 carbon ion facilities (2017)
 - 6 in Japan

Figure courtesy Thomas Bortfeld ... source: PTCOG

"Conservative Estimate"

- 10% of the patients who require radiation would benefit from proton therapy
 - From Thomas Bortfeld, MGH (2018)
- "... 10-20% of patients receiving radiotherapy might benefit from charged particle beams."
 - From Jones & Burnet, BMJ 330: 979-980; 2005

More Compact ... Shrinking Proton Accelerators

Trends Over the Next 10 Years

- More hypofractionation (higher doses/fraction, SBRT)
- Breast cancer

Yarnold BJR 92: 20170849; 2019

Fisher JCO 32:2894-2901; 2014

From Dr Jacob (Jake) Van Dyk

Brachytherapy

Iodine-125 seeds

Figure 1b. Model 6711. [Reprinted from Heintz, B. H., R. E. Wallace, and J. M. Hevezi, "Comparison of I-125 sources used for permanent interstitial implants," *Med Phys* 28:671–682. © 2001, with permission from AAPM.]

Figure 1c. Model 6733. [Reprinted from Meigooni, A. S., S. A. Dini, K. Sowards, J. L. Hayes, and A. Al-Otoom, "Experimental determination of the TG-43 dosimetric characteristics of EchoSeed[™] model 6733 ¹²⁵] brachytherapy source," *Med Phys* 29:939–942. © 2002, with permission from AAPM.]

Figure 2. Mcdel 200. [Reprinted from Rivard, M. J., B. M. Coursey, L. A. DeWerd, W.F. Hanson, M. S. Huq, G. S. Ibbott, M. G. Nitch, R. Nath, and J. F. Williamson, "Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations," *Med Phys* 31:633–674. © 2004, with permission from AAPM.]

LDR

HDR

e-Brachytherapy

Professional Communication

- Radiation Oncologists and Radiation Therapists
- Radiologists
- Interventional Radiologists (Cardiology, ENT, Gynecologists)
- Surgeons (Breast, Gynecology, H&N, s
- Neurosurgeons
- Administration
- Engineers
- Computer Scientists

