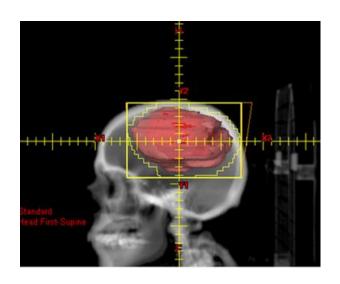


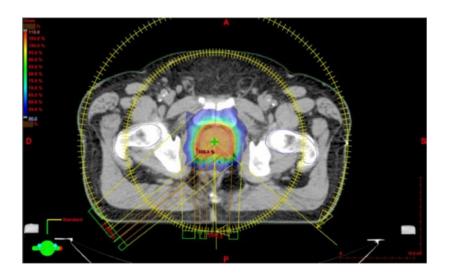
School on Medical Physics for Radiation Therapy:

Dosimetry and Treatment Planning for Basic and Advanced Applications
Trieste - Italy, 25 March-5 April 2019

Treatment Time / MU calculation in RT

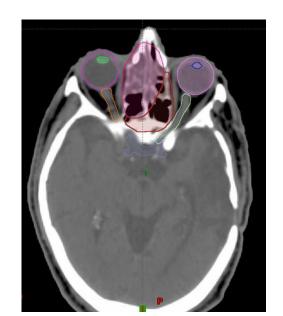
Maria Rosa Malisan

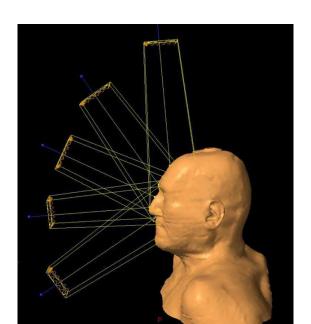

Clinical Dose Calculations

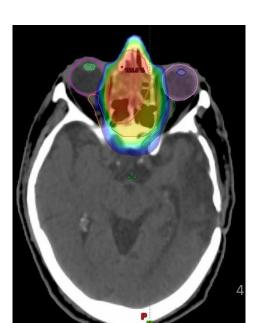

- Computing absorbed doses in a patient using data measured in a phantom has been the standard of practice in radiotherapy (RT).
- This is because direct measurement of absorbed doses in a patient is impractical and often impossible.
- Therefore, the treatment planning has to be based on calculation models.
- Even if direct measurements were possible, it would still be much more practical and convenient to perform planning based on calculation models.
- The dose predicted by a calculation method should correspond to the <u>real absorbed dose in the patient</u> as accurately as possible.

2

RT Planning

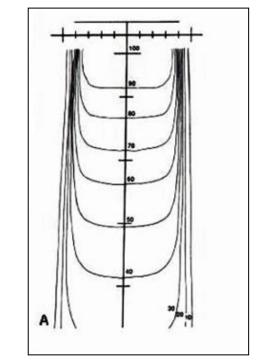

• In RT treatment planning, the purpose is to devise a treatment, which produces as uniform dose distribution as possible to the target volume and minimizes the dose outside this volume.

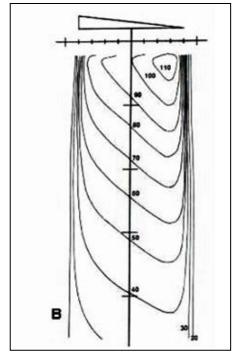




RT Planning

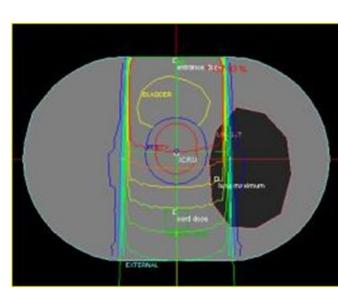
- In RT planning, the beam qualities, field sizes, positions, orientations and relative weights between the fields are typically modified.
- It is also possible to add certain accessories (e.g. wedge filters or blocks) to the fields to account for oblique patient surface or to shield critical structures from radiation exposure.





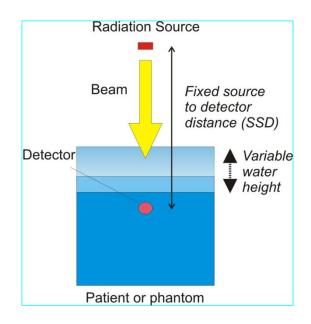
Historical Background

- Practising of treatment planning started in 1940's when the developments in radiation dosimetry enabled each clinic to measure the isodose charts for any type of treatment field, thus enabling manual 2D planning.
- To avoid laborious isodose measurements, <u>empirical methods</u> for the calculation of dose distribution were developed later.
- e.g. the percent depth dose (PDD) was introduced to calculate doses for treatments delivered using fixed treatment distance machines.



Historical Background

- Computer-based treatment planning systems (TPSs), first introduced in the '70's of last century, allowed the planner to see the effect of the beam modifications immediately on the predicted dose distribution.
- This resulted in better quality plans, since it became easier to experiment with a larger set of treatment parameters.
- Moreover, it improved dose-calculation accuracy with the incorporation of patient-specific anatomical information.



Factor vs Model-based algorithms

- First TPS's made use of factor based models, where the dose per MU is typically expressed as the dose to a reference point under reference conditions, corrected with a set of factors.
- Each factor accounts for one or several different effects:

- beam size, beam shape, depth, distance, wedges, etc.
- These factors are typically measured or calculated through simple modelling and stored in tables.
- The method is intuitive and robust, but <u>lacks general applicability</u>.
- It is in principle impossible to account for all different treatment design possibilities which are a part of modern radiotherapy.

Modern Treatment Planning Systems

- Therefore the model-based calculation methods were introduced within TPS's, where the commissioning measurements are used to determine a set of more fundamental physical parameters which characterize the radiation from the treatment unit.
- Model based algorithms can be made fully general without the need for a large set of characterization measurements.
- Recently, 3D TPS's have become common in RT departments offering improved accuracy and enhanced visualization in the RT treatment planning process.
- With recent improvement in computing technology, the newer TPS now <u>correctly model the radiation transport properties</u> three dimensionally and estimate the dose deposition precisely.

MU calculation

- In external beam RT, monitor units (MU) or beam-on time for a given treatment plan allows the RT technologists to deliver the actual dose to a patient.
- MU are calculated by the TPS by means of sophisticated algorithms from the calculated dose distribution and dose prescription.
- It is essential for the user of a TPS to understand the principles of the MU calculation algorithm!
- However, in "simple" cases MU can be computed by means of several dosimetric functions introduced to <u>relate absorbed doses</u> <u>measured in a phantom to absorbed doses in a patient</u>:

Manual calculation

Why Manual MU Calculation?

- Traditionally manual calculation is carried out by means of (correction) factor- based models.
- It can sound utterly out of fashion in the era of physics-based models or Monte Carlo TPS!
- However, it can result useful as a powerful QA tool during TPS commissioning.
- In fact, modern model-based TPS's dose calculations, make use of characterization measurements to determine more basic parameters: errors in characterization measurements can result in unexpected and systematic calculation errors.
- Moreover, software errors can go undetected during commissioning and manifest subsequently in clinical planning

Why Manual MU Calculation?

ICRP Report 86 has categorised accidents reported in ext RT:

28% in treatment planning and dose calculation.

- The human factor is the cause for a large majority of the incidents and accidents. In routine clinical practice, more likely sources of systematic dose error for individual patients result from a lack of:
 - understanding of the TPS;
 - appropriate commissioning (no comprehensive tests);
 - independent calculation checks.

46 accidents/incidents reported for external radiotherapy as categorized by ICRP 86

ТҮРЕ	#
Equipment problem	3
Maintenance	3
Calibration of beams	14
Treatment planning and dose calc	13
Simulation	4
Treatment setup and delivery	9

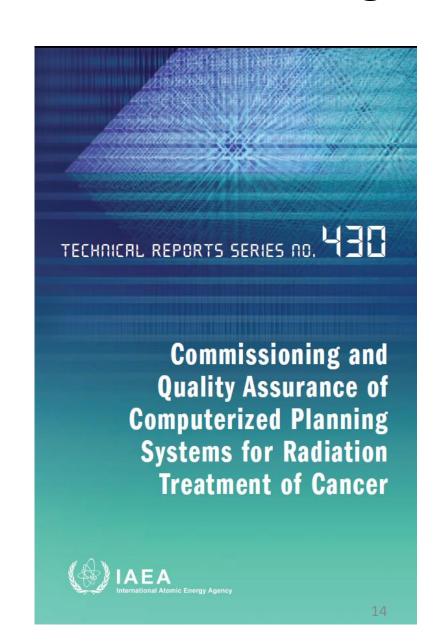
List of reported bugs from the <u>TPS vendors</u> collected from the FDA MAUDE database for the time period 2004-2008.

Year	Report Number	Problem
2007	8043933- 2007-00003	The MLC is not taken correctly into consideration under certain circumstances.
2006	MW1039971	Calculation error for physical wedges
2006	1937649- 2006-00004	Physical wedge included in dose calculations but not in RTPlan exported to OIS system
2006	1937649- 2006-00003	Position of X-jaw was ignored for Siemens accelerators, i.e. the field size was too large in the calculations
2006	9617016- 2006-00001	MU calculations up to 5 times wrong.
2005	1937649- 2005-00003	Dose calculations not removed or updated when changing treatment unit within the TPS
2005	1937649- 2005-00001	Underestimation of the dose in the penumbra under specific circumstances for Siemens accelerators. Leads to cold spots in IMRT plans.
2004	1937649- 2004-00004	Calculation error for Varian EDW when the central axis is blocked

- The companies are not obligated to report all problems, and different companies have different policies regarding the reporting.
- The presented list of identified bugs are therefore far from complete and is perhaps not even representative.

T. Nyholm, 2008

Why Manual MU Calculation?


 The major issues that relate to treatment planning errors can be summarized by four key words:

Education; Verification; Documentation; Communication

- The ICRP Report 86 concluded that many of these accidents could have been prevented through *independent verification* of the TPS and with systematic use of in-vivo dosimetry.
- Independent verification can also enhance confidence in the accuracy of the algorithm and integrity of the beam data used.
- It may also be <u>a formidable didactic tool!</u>

MU Calculation for TPS Commissioning

- IAEA TRS 430 Report lists some of the relevant issues that should be investigated
- It briefly describes the types of test that can help to verify the correct behaviour of the entire planning and MU/time calculation process.
- Detailed checks of the entire planning and MU/time calculation process should be performed.

IAEA TRS 430: MU calculation tests

- A number of important aspects of the treatment planning process affect the way one should calculate the MU's or time (e.g. normalization)
- For these 9 test situations, the MU/time calculation performed using the TPS should be compared to the manual MU/time calculation.

	Issue	Test
Open fields	Basic MU/time calculation Inverse square law	MU test 1
Tangential fields	Missing scatter Contour correction	MU test 2
Wedged fields	Wedge factor Wedge hardness correction Wedge OAR	MU test 3
Blocked fields	Equivalent square method Integration over shape Other method Separate head and phantom scatter	MU test 4
MLC shaped fields	Equivalent square method or integration over shape Does the calculation include jaw effects and a head scatter factor? Small MLC shapes and multisegment IMRT fields	MU test 5
Beam normalization point blocked	When MLCs or blocks shield the beam normalization point, how does beam weighting and MU/time calculation handle this situation?	MU test 4a MU test 5a
Inhomogeneity corrections	How are MU/time calculations performed when inhomogeneity corrections are used in the TPS plan?	MU test 6
	How are the differences in absolute dose to plan and beam normalization points handled?	
Off-axis calculations	What approximations are involved in off-axis calculations?	MU test 7
Dose prescription	How is dose prescription carried from the TPS plan to MU/time calculations? Are there limitations on allowed prescriptions?	MU test 8
Dose distribution units	How do different units used for the display of TPS dose distribution affect the MU/time calculation?	MU test 9
Documentation for the treatment chart	Check that the entire output from the MU/time calculation agrees with the TPS output and machine use	MU issue 1
Clinical check procedure	Verify that the clinical check procedure used for MU/time calculation checks is adequate for the complexity of the plans allowed	MU issue 2

IAEA TRS 430: Overall Clinical Tests

- Measurement or manual dose evaluation of the final dose delivery should be performed,
- to ensure that the correct absolute dose would be delivered to the patient following the completion of the total treatment planning process.

TABLE 60.	EXAMPLE CLINICAL TESTS EVALUATING THE TOTAL
TREATME	IT PLANNING PROCESS

	Description	Test
Open fields	Four field box and open fields	Clinical test 1
Blocking	Same four field box and heavily corner blocked fields	Clinical test 2
Wedges	Wedge pair	Clinical test 3
CT planning	AP-PA plan treating inhomogeneity (anthropomorphic or plastic phantom)	Clinical test 4
Conformally shaped fields	Six field axial conformal prostate plan	Clinical test 5
Non-axial or non- coplanar fields	Conformal non-coplanar brain plan	Clinical test 6
Electrons	Combined photon-electron plan	Clinical test 7
Brachytherapy applicator	Gynaecological: tandem and ovoids	Clinical test 8
Multiplanar implant	Two plane breast implant	Clinical test 9
Volume implant	Prostate implant	Clinical test 1
HDR	HDR test case	Clinical test 1

 While it is not necessary to implement these particular examples, it is important that some typical situations be developed and tested right through to the evaluation of absolute dose. This is especially true for a new TPS.

On the need for monitor unit calculations as part of a beam commissioning methodology for a radiation treatment planning system

George Starkschall,^{a)} Roy E. Steadham, Jr.,^{b)} Nathan H. Wells,^{c)} Laura O'Neill,^{d)} Linda A. Miller,^{e)} and Isaac I. Rosen^{f)} Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4095

- MU's calculated using the TPS were compared with MU's calculated from point dose calculations from TMR tables.
- Discrepancies in MU calculations were both significant (up to 5%) and systematic:
- 1) a coordinate system transformation error,
- 2) mishandling of dose-spread arrays,
- 3) differences between dose calculations in the commissioning software and the planning software,
- 4) shortcomings in modeling of head scatter.
- Corrections were made in the beam calculation software or in the data sets to overcome these discrepancies. Consequently, we recommend validation of MU calculations as part of commissioning process.

Independent Dose calculation

- Dose calculation with a TPS represents one of the most critical links in the RT treatment process, since it is the only realistic technique to estimate dose delivery in situ.
- Even though the calculation algorithms are tested during the commissioning of TPS and results are achieved with 1-2% accuracy in water phantom geometry, a good QA programme further requires that

all MU's calculated for clinical use should be verified using a second independent calculation method

- so that any errors due to software faults and improper use of the systems could be identified.
- This check becomes more important as the sophistication of the planning algorithm increases.

Safety Legislation

- In several European countries there are legal aspects based on EURATOM directive 97/43 for independent QA procedures and their implementation into national radiation protection and patient safety legislation.
- In particular, Article 8 states: "Member States shall ensure that...
 appropriate QA programmes including quality control measures and
 patient dose assessments are implemented....".
- This is also emphasized in Article 9 with respect to Special Practices: "...special attention shall be given to the QA programmes, including quality control measures and patient dose or administered activity assessment, as mentioned in Article 8."
- In a broad sense this directive directs the holder to assure that the delivered dose to the patient corresponds to the prescribed dose.

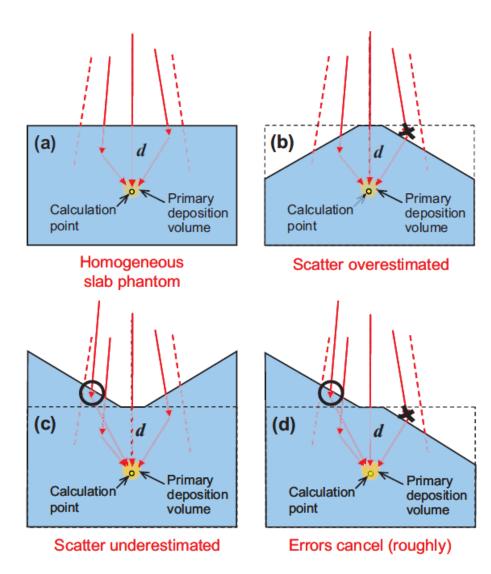
Independent MU calculation

- Dose errors arising in computing the MU could potentially affect the whole course of treatment and therefore are of particular concern.
- So, independent checking of MU calculations, for each RT treatment plan, is essential for QA.
- It is considered more than desirable if the <u>beam data set and</u> calculation algorithm are independent of those of the TPS.
- AAPM also recommends an independent calculation of the dose at one point in the plan, preferably <u>at the isocenter</u> or at a point near <u>the center of the PTV</u>.
- If the independent calculation differs from the treatment plan by more than a pre-set tolerance level, the disparity should be resolved before commencing or continuing treatment.

Independent dose calculation

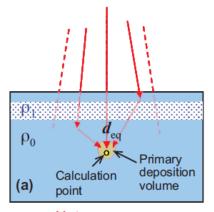
- Dose calculations can be performed through various methods using fairly different approaches.
- A tool for independent dose calculations is a compromise between the benefits and drawbacks associated with different calculation methods in relation to the demands on

accuracy, speed, ease of use.

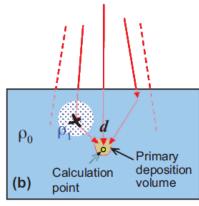

- Independent dose calculations have been used for a long time as a routine QA tool in conventional RT <u>using empirical</u> <u>algorithms in a manual calculation procedure, or using</u> software based on fairly simple dose calculation algorithms
- (Dutreix et al., 1997; Knöös et al., 2001; van Gasteren et al., 1998).

MU Verification: ESTRO and AAPM docs

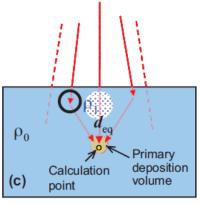
- Recommendations for MU verification have been published by ESTRO (Booklets 3 and 6) and by the Netherlands Commission on Radiation Dosimetry, NCS.
- AAPM Task Group 71, formed in 2001 to create a consistent nomenclature and formalism (national protocol) for MU Calculations, published the Report 258 In 2014:
- Monitor unit calculations for external photon and electron beams:
 Report of the AAPM Therapy Physics Committee TG No. 71, Medical Physics, Vol 41, Issue 3
- In these reports it is common practice to verify the dose at a point by translating the treatment beam geometry onto a flat homogeneous semi-infinite water phantom or "slab geometry".
- Users should be aware of the <u>limitations</u> of this compromise that favors simplicity and calculation speed over accuracy!


Limits of the manual MU verification

- Conventionally, MU calculation verification methods assume "water phantom geometry" in which the beam is presumed to be incident on a slab of material affording full scatter conditions.
- It is evident that this assumption yields over- or under- estimated scatter contributions, depending on the exact geometry.



Limits of the manual MU verification


- Various methods to handle and correct for density variations (heterogeneities) in the literature
- Most often these heterogeneity corrections rely on onedimensional depth scaling along ray lines from the direct source, employing equivalent/ effective/ radiological depths that replace the geometrical depths.
- In general, the full 3D nature of the process can not be properly modelled.
- The result is that all deviations from the ideal slab phantom geometry will cause different errors in the calculated doses.

Heterogeneous slab phantom

Scatter overestimated

Scatter underestimated

Scatter and primary overestimated

Manual MU Verification experiences

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 1, NUMBER 4, FALL 2000

Independent corroboration of monitor unit calculations performed by a 3D computerized planning system

Konrad W. Leszczynski* and Peter B. Dunscombe
Department of Medical Physics, Northeastern Ontario Regional Cancer Centre,
41 Ramsey Lake Road, Sudbury, P3E 5J1, Canada,
Department of Radiology, University of Ottawa, Ottawa K1N 6N5, Canada,
and Department of Physics, Laurentian University, Sudbury P3E 2C6, Canada

- An independent MU calculation is created in an MS-Excel spreadsheet. The method is shown sufficiently sensitive to identify significant errors and is consistent on the magnitude of uncertainties in clinical dosimetry.
- It is reported that using straightforward but detailed computer based verification calculations, it is possible to achieve a precision of 1% when compared with a 3D Helax TPS MU calculation.

Comparison of monitor unit calculations performed with a 3D computerized planning system and independent "hand" calculations: Results of three years clinical experience

Jackson Chan,* David Russell,† Victor G. Peters,‡ and Thomas J. Farrell§
Department of Medical Physics, Hamilton Regional Cancer Centre,
699 Concession St., Hamilton, Ontario, Canada L8V 5C2

- the MU's calculated by Pinnacle planning system were compared with hand calculations from lookup tables for nearly 13,500 treatment fields without considering the tissue inhomogeneity.
- The 3D TPS MU calculation was systematically higher than the "hand" calculation: for simple geometries the mean difference was 1% and was as high as 3% for more complicated geometries.
- Careful attention to factors such as patient contour could reduce the mean difference.
- "Hand" calculations were shown to be an accurate and useful tool for verification of TPS MU calculations.

Independent checking of the delivered dose for high-energy X-rays using a hand-held PC

Tommy Knöös*, Stefan A. Johnsson, Crister P. Ceberg, Andrej Tomaszewicz, Per Nilsson

Radiation Physics, Lund University Hospital, SE-221 85 Lund, Sweden

- This system has been implemented into the daily clinical quality control program.
- A hand-held PC allows direct calculation of the dose to the prescription point when the first treatment is delivered to the patient.
- The model is validated with measurements and is shown to be within ±1.0% (1 SD).
- Comparison against a state-of-the-art TPS shows an average difference of 0.3% with a standard deviation of $\pm 2.1\%$.
- An action level covering 95% of the cases has been chosen, i.e. ± 4.0%.
- Deviations larger than this are with a high probability due to erroneous handling of the patient set-up data.

Iranian Journal of Medical Physics

ijmp.mums.ac.ir

Verification of Monitor Unit Calculations for Eclipse Treatment Planning System by in-House Developed Spreadsheet

Athiyaman Mayivaganan^{1*}, Hemalatha Athiyaman¹, Arun Chougule², H.S Kumar³

- 1. Department of Radiological Physics, SP Medical College, Bikaner, Rajasthan, India.
- 2. Department of Radiological Physics, SMS Medical College, Jaipur, Rajasthan, India.
- 3. Department of Radiotherapy, SP Medical College, Bikaner, Rajasthan, India.

ARTICLEINFO

Article type: Original Article

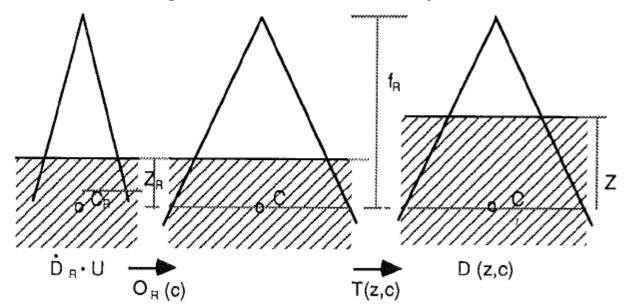
Article history: Received: Apr 05, 2017 Accepted: Nov 10, 2017

Keywords:

Radiotherapy Planning Computer Assisted Radiotherapy Radiotherapy Dosage

ABSTRACT

Introduction: Computerized treatment planning is a rapidly evolving modality that depends on hardware and software efficiency. Despite ICRU recommendations suggesting 5% deviation in dose delivery the overall uncertainty shall be less than 3.5% as suggested by B.J. Minjnheer. J. In house spreadsheets are developed by the medical physicists to cross-verify the dose calculated by the Treatment Planning System (TPS).


Materials and Methods: The monitor unit verification calculation (MUVC) verification was tested for pre-approved and executed treatment plans taken from the TPS. A total of 108 square fields and 120 multileaf-collimators (MLC) shaped fields for Head & Neck cancers, cervical and esophageal cancers were taken for evaluation. In house developed spreadsheet based on Microsoft Excel was developed. The dose calculation parameters such as Output Factor (O.F), Percentage Depth Dose (PDD) and off axis ratio (OAR) data were taken from the TPS.

Results: The overall MU ratio fell within the range of 0.999 to 1.02 for square field geometries showing deviation of 1% between the TPS calculation and the spread sheet calculation. The MU ratios were 0.995 for Head & Neck plans & 1.012 for cervix plans with the standard deviation of 0.024 & 0.029 respectively. However we observed the mean MU ratio for Esophagus plan was 1.026 with the standard deviation of 0.040.

Conclusion: The spreadsheet was tested for most of the routine treatment sites and geometries. It has good agreement with the Eclipse TPS version 13.8 for homogenous treatment sites such as head & and neck and carcinoma cervix.

Factor-based dose calculation

- Traditionally the most common way of calculating the dose is through a series of multiplicative correction factors that describe one-by-one the change in dose associated with a change of an individual treatment parameter, such as field size and depth, starting from the dose under reference conditions.
- This approach is commonly referred to as factor-based calculation and has been the subject of detailed descriptions.

Factor-based dose calculation

- The individual factors are normally structured in tables derived from measurements or described through parametrizations.
- Some factors can be calculated through simple modelling, for example the <u>inverse square law</u> accounting for varying treatment distances.
- From an implementation point of view a factor-based method may be an attractive approach due to its computational simplicity, once all the required data are available.

										6	MV X- QI = 0	-ra).6'
$d_{ref} = 10 \text{ cm}$												
Side of												_
square												
field (cm)	4	5	6	8	10	12	15	20	25	30	35	4
depth												
1.0	1.304	1.284	1.270	1.243	1.221	1.207	1.186	1.173	1.156	1.140	1.132	1.
1.5	1.371	1.346	1.330	1.297	1.272	1.254	1.229	1.209	1.188	1.167	1.158	1
2.0	1.369	1.348	1.331	1.297	1.272	1.253	1.229	1.207	1.189	1.170	1.161	1.
2.5	1.350	1.331	1.315	1.284	1.262	1.235	1.229	1.197	1.179	1.161	1.153	1
2.3	1.550	1.551	1.515	1.204	1.202	1.243	1.220	1.197	1.179	1.101	1.133	1.
3.0	1.332	1.316	1.300	1.270	1.248	1.232	1.210	1.190	1.172	1.152	1.145	1.
3.5	1.311	1.293	1.279	1.253	1.232	1.217	1.194	1.178	1.163	1.146	1.139	1.
4.0	1.282	1.268	1.256	1.234	1.217	1.204	1.184	1.165	1.151	1.137	1.130	1.
5.0	1.234	1.226	1.217	1.198	1.182	1.170	1.155	1.142	1.129	1.115	1.109	1.
6.0	1.188	1.181	1.172	1.155	1.145	1.136	1.125	1.116	1.107	1.097	1.092	1
7.0	1.138	1.134	1.129	1.116	1.107	1.101	1.092	1.087	1.080	1.071	1.068	1
8.0	1.094	1.091	1.087	1.076	1.071	1.067	1.063	1.061	1.056	1.050	1.046	1
9.0	1.043	1.045	1.044	1.070	1.071	1.031	1.003	1.001	1.028	1.024	1.023	1
10.0	1.043	1.043	1.000	1.000	1.000	1.000	1.028	1.029	1.028	1.000	1.000	1.
10.0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.
11.0	0.956	0.959	0.960	0.960	0.962	0.964	0.967	0.973	0.975	0.974	0.975	0.
12.0	0.915	0.919	0.921	0.922	0.925	0.929	0.932	0.941	0.947	0.948	0.949	0.
13.0	0.876	0.880	0.883	0.887	0.893	0.898	0.902	0.913	0.921	0.923	0.926	0
14.0	0.837	0.842	0.846	0.852	0.858	0.864	0.870	0.884	0.894	0.897	0.900	0.
15.0	0.803	0.808	0.812	0.816	0.823	0.831	0.839	0.853	0.864	0.869	0.874	0.
16.0	0.768	0.773	0.778	0.789	0.796	0.803	0.811	0.827	0.842	0.847	0.852	0.
17.0	0.733	0.739	0.744	0.753	0.760	0.768	0.779	0.797	0.811	0.820	0.828	0.
18.0	0.703	0.707	0.711	0.725	0.733	0.741	0.752	0.770	0.787	0.796	0.805	0.
19.0	0.673	0.679	0.684	0.694	0.704	0.715	0.724	0.744	0.765	0.772	0.780	0
20.0	0.643	0.648	0.653	0.666	0.675	0.684	0.697	0.718	0.737	0.748	0.758	0.
21.0	0.618	0.624	0.629	0.638	0.647	0.659	0.672	0.693	0.711	0.722	0.732	0.
22.0	0.586	0.591	0.596	0.611	0.622	0.633	0.647	0.668	0.686	0.697	0.708	0
23.0	0.565	0.571	0.576	0.588	0.598	0.608	0.621	0.643	0.665	0.675	0.685	0
24.0	0.544	0.548	0.552	0.562	0.571	0.583	0.597	0.619	0.643	0.654	0.665	0
25.0	0.519	0.524	0.528	0.539	0.549	0.561	0.575	0.597	0.619	0.632	0.644	0
26.0	0.500	0.504	0.508	0.519	0.528	0.539	0.553	0.575	0.598	0.612	0.625	0
27.0	0.479	0.482	0.485	0.495	0.504	0.515	0.530	0.554	0.575	0.589	0.602	0
28.0	0.458	0.461	0.464	0.475	0.485	0.497	0.511	0.533	0.555	0.568	0.580	0
29.0	0.438	0.442	0.446	0.457	0.466	0.476	0.490	0.513	0.535	0.549	0.560	0
30.0	0.420	0.424	0.428	0.439	0.448	0.458	0.472	0.494	0.515	0.530	0.542	0.

Limits of the Factor-based dose calculation

- The obvious problem associated with this approach is the required amount of commissioned beam data as this type of method can not calculate doses when the beam setup is not covered by the commissioned set of data.
- For treatment techniques that can make use of many degrees of freedom, such as the shape of an irregular field, it becomes practically impossible to tabulate or parameterize all factors needed to cover all possible cases.
 - Hence, the factor-based approach is **best suited for point dose** calculations along the central beam axis in beams of <u>simple</u> shapes and simple modifiers (wedges, blocks, MLC...).

Independent MU calculation: suggested steps by NCS (2005)

Quality assurance of 3-D treatment planning systems for external photon and electron beams

Practical guidelines for initial verification and periodic quality control of radiation therapy treatment planning systems

NEDERLANDSE COMMISSIE VOOR STRALINGSDOSIMETRIE

Report ## of the Netherlands Commission on Radiation Dosimetry

- a. Develop a MU calculation program, either for manual calculation or using a computer program, based on the formalisms given in ESTRO Booklets 3 and 6 or NCS Report 12. See also Venselaar *et al.*
- b. Include in the program the dependence on **depth** (using the percentage depth-dose, PDD, or tissue-phantom ratio, TPR), **SSD**, **field size**, and preferably taking the collimator exchange effect into account.
- c. Take into account the dose variation with field size in case of the presence in the beam of a wedge or a blocking tray by using field size dependent correction factors.
- d. For more complex situations involving tissue inhomogeneities, off-axis situations and MLC-shaped fields, more sophisticated algorithms are required. Several groups are currently in the process of developing these algorithms.

https://www.estro.org/binaries/content/assets/estro/school/publications/booklet-10---independent-dose-calculations---concepts-and-models.pdf

INDEPENDENT DOSE CALCULATIONS CONCEPTS AND MODELS

AUTHORS:

Mikael Karlsson, Department of Radiation Sciences, University Hospital of Northern Sweden, Umeå, Sweden.

Anders Ahnesjö, Department of Oncology, Radiology and Clinical Immunology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden and Nucletron AB, Uppsala, Sweden.

Dietmar Georg, Division Medical Radiation Physics, Department of Radiotherapy, Medical University Vienna/AKH, Wien, Austria.

Tufve Nyholm, Department of Radiation Sciences, University Hospital of Northern Sweden, Umeå. Sweden.

Jörgen Olofsson, Department of Radiation Sciences, University Hospital of Northern Sweden, Umeå, Sweden.

Conflict of Interest Notification,

A side effect of this booklet project was the development of a CE/FDA marked software owned by Nucletron. Author, A Ahnesjö is part time employed by Nucletron AB. Authors; A Ahnesjö, M Karlsson, T Nyholm and J Olofsson declare a agreement with Nucletron. Author, D Georg declares no conflict of interest.

Independent reviewers:

Geoffrey S Ibbott, Radiological Physics Center (RPC), Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Ben Mijnheer, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.

2010-First edition ISBN 90-804532-9 ©2010 by ESTRO

Verification of monitor unit calculations for non-IMRT clinical radiotherapy: Report of AAPM Task Group 114

Robin L. Sterna)

Department of Radiation Oncology, University of California, Davis, Sacramento, California 95817

Robert Heaton

Radiation Medicine Program, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9, Canada

Martin W. Fraser

Department of Radiation Oncology, Tufts Medical Center, 750 Washington Street #246, Boston, Massachusetts 02111

S. Murty Goddu

Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University, 4921 Parkview Place Campus, Box 8224, St. Louis, Missouri 63110

Thomas H. Kirby

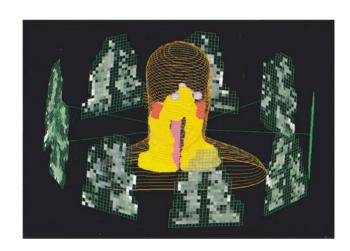
Global Physics Solutions, 5015 Larchmont NE, Albuquerque, New Mexico 87111

Kwok Leung Lam

Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan 48109

Andrea Molineu

Radiological Physics Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77030


Timothy C. Zhu

Department of Radiation Oncology, University of Pennsylvania, 2 Donner, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4283

(Received 12 August 2010; revised 8 November 2010; accepted for publication 9 November 2010; published 30 December 2010)

MU Verification Software

- The manual calculations are expected to be less accurate than those performed by the TPS because factors such as patient surface convexity, tissue heterogeneity or beam obliquity are not considered.
- Moreover, with the introduction of Intensity Modulation Radiation Therapy (IMRT), an independent manual calculation of MU becomes difficult due to the complex relationship between the MU and the beam shape as well as the technique used to generate the intensity modulation.
- Currently, a variety of new MU verification software packages have been introduced in the market and are claimed to be capable of accurately calculating the MU's even for IMRT.

SU-E-T-06: Comparison of Different Commercial MU Verification Software in Terms of Accuracy and Performance

R McKinsey¹, Y Qiu¹, S Stathakis¹, C Esquivel¹, N Papanikolaou¹ and P Mavroidis¹

Med. Phys. 40, 204 (2013); http://dx.doi.org/10.1118/1.4814440 2

IMSURE QA



RADCALC

MUCHECK

Conclusion: the variation of the MU calculations between the examined software was found to be very similar indicating that their ability to be used as QA tools of the TPS calculations is equivalent.

DIAMOND

Physica Medica

Volume 45, January 2018, Pages 186-191

Evaluation and comparison of second-check monitor unit calculation software with Pinnacle³ treatment planning system

B. Tuazon, G. Narayanasamy, N. Papanikolaou, N. Kirby, P. Mavroidis, S. Stathakis

Abstract

- The purpose of this study was to evaluate and compare the accuracy of dose calculations in 2nd check softwares (Diamond, IMSure, MuCheck, and RadCalc) against the Phillips Pinnacle³ TPS.
- •
- The mean percent difference in calculated dose for Diamond, IMSure, MuCheck, and RadCalc from Pinnacle³ were -0.67%, 0.31%, 1.51% and -0.36%, respectively.
- The corresponding variances were calculated to be 0.07%, 0.13%, 0.08%, and 0.03%; and the largest percent differences were −7.9%, 9.70%, 9.39%, and 5.45%.
- The dose differences of each of the second check software in this study can vary considerably and VMAT plans have larger differences than IMRT. [....]

AAPM TG114: Computer-based MU verification programs

 Most computer-based MU verification programs use an automated table look-up method similar to that outlined for manual calculation, e.g. in *ImSure* software:

$$\mathsf{MU=} \ \frac{RxDose/\mathit{IsoDoseLine}}{\mathit{TMRxOCRxWFxTFxSc}(FS)xSP(FS')x\mathit{CFxUFxInvSqCorr}}$$

- Some more complex MU calculation programs use pencil beam or convolution/superposition algorithms based on the empirical data.
- These computer programs require commissioning at multiple points and periodic QA to verify the continued data integrity and calculation algorithm functionality.

- Recommendations on establishing Action Levels for agreement between primary calculations and verification, and guidance in addressing discrepancies outside the action levels are provided.
- These recommendations shall not be interpreted as requirements.
- It is important that the physicist knows the <u>accuracy and limitations</u> of both the primary and the verification systems in order to set reasonable and achievable action levels and to better interpret the causes of differences between the two results.

- The level of agreement achievable depends on the details of the patient geometry, the primary and the verification calculation programs, and the clinical situation, in addition to whether corrections for tissue heterogeneities are used.
- It is therefore reasonable to have <u>different action levels for</u> <u>different situations</u>.
- Each institution must determine the proper action levels for that particular clinic.
- Results from planning system commissioning are useful in establishing these levels.

- A base action level of 2% was postulated for simple field geometries, consistent with the AAPM TG-53 criterion of 2% dose accuracy between calculations and measurements.
- From this starting point, additional range was added to account for the increased uncertainties of complex treatment geometries.
- The action level guidelines are divided into two tables, depending on whether or not tissue heterogeneities are taken into account in the primary calculation.

TABLE II. Guidelines for action levels for disagreement between verification and primary calculations for homogeneous conditions.

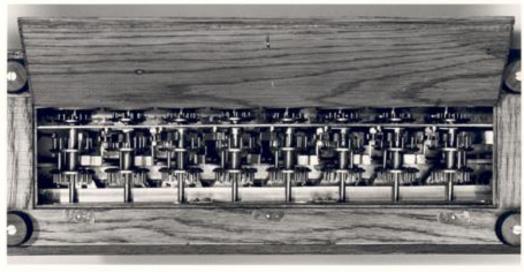
	Sim	ilar calculation alg	gorithms	Different calculation algorithms			
Primary calculation geometry	Same patient geometry (%)	Approx. patient geometry (%)	Uniform cube phantom approx. (%)	Same patient geometry (%)	Approx. patient geometry (%)	Uniform cube phantom approx. (%)	
Minimal field shaping	2	2.5	3	2.5	3	3	
Substantial field shaping and/or contour change	2.5	3	4	3	3.5	4	
Wedged fields, off-axis	2	2.5	3	3.5	4	5	

Table III. Guidelines for action levels for disagreement between verification and primary calculations with heterogeneity corrections.

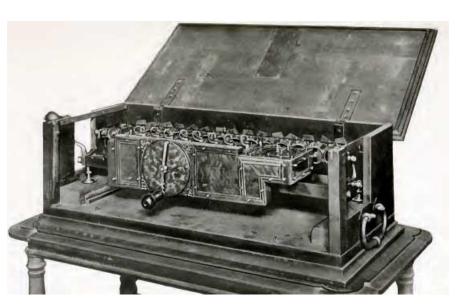
	Similar calculation	algorithms	Different calculation algorithms		
Primary calculation geometry	Same patient geometry (%)	Approx. patient geometry (%)	Same patient geometry (%)	Approx. patient geometry (%)	
Large field	2	3	2.5	3.5	
Wedged fields, off-axis	2	3	3.5	4.5	
Small field and/or low-density heterogeneity	3	3.5	4	5	

- When a discrepancy is noted, the first action should be to verify that a <u>calculation error</u> has not been made.
- If this basic review fails to identify the cause of a discrepancy, the next step should be to confirm that an appropriate <u>comparison point</u> has been chosen.
- Differences in accounting for <u>patient geometry</u> between the primary and the verification calculations can also lead to large discrepancies between results (e.g. breast treatment).

- Density corrections are required for verification of calculations which include heterogeneity effects.
- The verification calculation must at least take into account the radiological thickness of tissues overlying the point of calculation.
- At a minimum, if a discrepancy is attributed to differences in the calculation algorithms, an assessment to confirm that the discrepancy is the correct order of <u>magnitude and</u> <u>direction</u> should be made.


Conclusions-1

- «Manual» MU/time calculation can still have a role in modern RT characterised by sophisticated computation algorithms and 3D complex patient models.
- A measurement-based algorithm can have a good didactic value since it enables to decompose a calculation and consider the impact of each factor on an individual basis.
- It can be of value during commissioning of clinical modelbased TPS's, as required by the IAEA TRS 430.


Conclusions-2

- It results an essential tool in the "independent second check" for MU's or time calculated to deliver the prescribed dose to a patient, where a key aspect is the independent nature of the calculation methodology and of the beam data and treatment parameters.
- However, its effectiveness in clinical practice relies on a proper commissioning in order to assess its accuracy and limitations, so to set reasonable action levels and to better interpret the causes of differences between the two calculations.

Manual Calculation Tools

