

Architecture of New Radiotherapy Equipment

ICTP School on Medical Physics March 25 – April 5, 2019 Miramare, Trieste

Yakov Pipman, DSc

Overview

- Tomotherapy
- Brainlab
- CyberKnife
- GammaKnife
- MRIdian
- Halcyon
- New ideas

Hybrid Technologies-Imaging and Therapy

• Linac/CBCT

Tomotherapy (now part of Accuray) Integrated Imaging and Therapy

Jeswani S, Mackie TR, Aoyama H. Overview of the HI-ART TM Helical Tomotherapy System.

Tomotherapy - Components

Tomotherapy - Binary MLC

FBrainLAB

IGRT Solutions Robotics ExacTrac X-Ray 6D

Adaptive Gating

In Room Radiographic guidance

BrainLAB ExacTrac 6D X-ray tubes recessed in floor Flat panels mounted to ceiling

Zmed System – Frameless Immobilization/tracking

Optical markers	Frameless Localization Accuracy (Mechanical Standard)					
		No.	AP	Lateral	Axial	RMS
STILL STATE		1 -	0.48	0.48	-0.61	0.91
Adjustment bolts		2	-0.05	0.46	0.50	0.69
		3	0.33	-0.20	-0.53	0.65
	1	4	-0.46	-0.15	-0.13	0.50
WIRATE STREET		5	0.43	-0.15	-0.13	0.40
Biteblock & impression material		Avera	ge		0.65	± 0.17 mm
	Y (2 X (1	AP) Lat)	0.: -0.0	L 57	ASPECIAL INCOMENTS I	Trincorded Persions
	Z (Z Vect	x) tor	-0.1 0.1	D		
	Couc	ch t	-0.0			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Spin	n	-0.0		Franciska Bright Ba	01/12/2010

Adapted from Dr. D Roa

- 1. Xchange[®] Robotic Collimator Changer
- 2. X-ray Imaging System
- 3. RoboCouch® (optional)
- 4. Robotic Manipulator

- 5. Linear Accelerator
- 6. InCise[™] 2 Multileaf Collimator (optional)
- 7. Iris[™] Variable Aperture Collimator
- 8. Synchrony[®] Respiratory Tracking System

CyberKnife (Accuray)

- Robotic arm -> treatment non-isocentric
- Beams re-targeted based on DRR/live image comparison
- Submillimeter accuracy with limited immobilization

- 6 MV Beam No flattening filter
- Dmax= 1.5cm
- 600-800 MU/min

CyberKnife (Accuray) – sub systems

- Image Guidance System
- Robotic Manipulator
- Treatment Delivery Control Console
- 12 Fixed Collimators (5mm to 60mm)
- Xchange® Robotic Collimator Changer (optional)
- Iris[™] Variable Aperture Collimator
- InCise[™] 2 MultiLeaf Collimator
- Standard Treatment Couch
- RoboCouch® Patient Positioning System
- Fiducial Tracking System

Leksell Gamma Knife® Perfexion[™] (Elekta)

Gamma Knife® Perfexion[™] collimators

- 192 Co-60 sources in 8 independently movable sectors on the collimator body
- 24 sources per sector
- Collimators of 4, 8 and 16 mm.
- At full loading (~6,300 Ci), dose rate > 3 Gy/min at focal point

Gamma Knife® Perfexion[™]

- Radiological accuracy < 0.5 mm
- Position repeatability < 0.05 mm

Leksell Positioning system

Coordinate Frame for spatial reference and immobilization MR, CT or AI indicator boxes for reference fiducials during image acquisition

MRIdian (ViewRay)-Imaging and Therapy

MRI + 3 x Co-60

- Rotating Gantry Assembly
- Independent Co60 Headed Design
- Asynchronous Delivery
- Mounted with 120 degree separation
- 15,000 Ci per source
- +-240 degree Rotation for 2 or 3 Head Operation for Maximum Reliability.
- [•] 3 Doubly Focused MLC Systems
- 180 MLC Leaves. 60 per Head
- Best-in-class MLC for Reduced Penumbra & Interleaf Leakage

MRIdian (ViewRay)- MRI / Linac

MRIdian (ViewRay)- MRI / Linac

Interventional MR Imaging System

- Split 0.35T Superconducting Magnet
- Does not distort either image or dose during therapy
- 50cm Field of View
- 70cm Bore accommodate large patients
- Fits in standard vaults.
- Pop-apart design for nondestructive rigging

LINAC Based Radiation System*

- Compact inline S-Band 6 MV standing wave linac with side coupled cavities
 - flattening filter free
- Designed for >600 MU/min
 - IMRT, SBRT, Conformal therapies
- ±180° gantry rotation

😽 VIEW RAY 🛛 Visibly Different

- 360° treatment around patient
- 5 RPM gantry rotation speed
 Enables faster treatments

*Technology in development. Descriptions and performance subject to change. Not available for clinical use prior to CE mark

Beam Profile on MRIdian Linac* System

*Technology in development. Descriptions and performance subject to change. Not available for clinical use prior to CE mark

😽 **V I E W** R A Y^{*} Visibly Different

Confidential Information

Double Stacked Double Focused MLC

138 leaf Double-focus, Double-stack MLC • 68 leaf upper stack; 70 leaf lower stack Upper stack offset by ½ leaf width Designed for SRS treatment 2 mm x 4 mm minimum field size Best-in-class for reduced penumbra & interleaf leakage Eliminates tongue and groove due to stack offsets Designed for 27cm x 27cm max field size Designed for 4 cm/sec leaf speed

IEWRAY* Visibly Different

*Technology in development. Descriptions and performance subject to change. Not available for clinical use prior to CE mark

Double Stacked Double Focused MLC Designed for SRS

*Technology in development. Descriptions and performance subject to change. Not available for clinical use prior to CE mark

Confidential Information

VIEWRAY^{*} Visibly Different

Fits in Standard Treatment Room

Space Requirements

Recommended Vault Size: 19'-2" (5.9 m) x 24'-8" (7.6 m)

Minimum Finished Ceiling Height: 9'-6" (2.9 m)

Minimum Clear Opening into Vault: 3'-11" (1.2 m) W x 6'-11" H (2.1 m)

Recommended RF Closet Size: 3'-8" (1.1 m) x 4'-0" (1.2 m)

VIEWRAY Visibly Different

MRIdian (ViewRay)- MRI / Linac

Other Linac/MRI systems

UMC Utrecht ELEKTA/Philips

Alberta, Canada (G. Fallone)

Figures from: Uwe Oelfke, Paul Keall

Halcyon

Integrated Imaging and Therapy

Halcyon – technical aspects

GANTRY 100 cm bore, linear-drive ring motor

STAND Small footprint, no modulator cabinet, beam stopper

BEAM6 FFF @ 800 cGy/minCone beam ... Max field size: 28 cm x 28 cm

COLLIMATION New, patented dual-layer MLC

IMAGING 100% IGRT, ~15 second MV CBCT Optional kV CBCT

CONSOLE & CONTROL SYSTEM Shared with TrueBeam™

Courtesy Paritosh Ambekar, Varian

Halcyon

Power Specifications Table 9: Supported Power Configuration Specifications	
Specifications	
Input Voltage for 3 Phase AC Power ¹	380 V: 50/60 HZ² Or 400–480 V: 50/60 HZ
Maximum Power ¹	18 kVA² Or 15 kVA
¹ Configuration depends on the country of use.	
² Requires a transformer that will be included with the system.	

Technology advantages

- More efficient
 - VMAT, TomoTherapy, Halcyon
 - Example: Installation, commissioning, training

Technology advantages

- More efficient
 - IMAT, TomoTherapy, Halcyon

Example: Patient throughput

Other ideas

Fixed source and Imager Move the patient.

Figure 2: (A) Proposed Nano-X prototype design. (B) Schematic of the Nano-X main functional components, showing the vertical linac; DMLC for intensity modulation and real-time adaptation; kV source and detector and MV detector for image guidance; and the patient rotation system for multiple beam angle and VMAT treatments.

Other ideas

physicsworld

RADIOTHERAPY RESEARCH UPDATE

Patient rotation enables fixed-beam radiotherapy system 14 Feb 2019

• Fixed source and Imager

• Move the patient.

The prototype radiotherapy system combines a fixed vertical radiation beam with horizontal patient rotation. (Courtesy: Paul Liu)

Thank you!