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Succes or failure of radiotherapy

• Depends upon the accuracy with which
dose prescription is fulfilled

• AAPM, Taks Group 63 Report

• Human body consists of many tissues
e.g. soft, bone, lung, teeth, and air cavities

• high Z materials are also present
• hip prostheses
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Hip prosthesis influence

• decreased tumour 
dose

• increased dose near 
the tissue-metal 
interface
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dose distribution measured with Gafchromic film 
X 6MV, 10x10 cm, SSD=90 cm, 200 MU

brass cylinder, diameter 25mm 

courtesy of Ryszard Dąbrowski



Hip prosthesis influence

• decreased tumour 
dose

• Increased/decreased
dose near the tissue-
metal interface
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dose distribution measured with Gafchromic film 
X 6MV, 10x10 cm, SSD=90 cm, 200 MU

brass cylinder, diameter 25mm 
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Influence of High Z material on 
dose distribution
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Influence of High Z material on 
dose distribution

• Attenuation
• energy photon fluence is smaller due to

attenuation of photons
• dose is smaller

• Local perturbations – interface effects
• energy electron fluences is changed by

local perturbations
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attenuation

local perturbations
Interface effect



What we are talking about?
Comaparison of what?

• dose distribution with H – Z material
• and

• dose distribution without H – Z material

• Correction factor is the ratio of doses with and 
without the presence of H – Z material
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• E – photon Energy (spectrum)

• A, Am – field size, size of H-Z material

• d – depth of interface with the soft tissue

• t – thickness of H – Z material

• x – distance from the material to point 
where the dose is estimated

• Z,  – Z and density of material

• – the beam angle relative to material
(position with respect to material)
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Fluence Correction Factor
• To comapare homogenous and actual situations

but

• neglecting photon fluence changes
• CFFC

• CF is corrected for photon fluence
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tm – physical thickness of the inhomegeneities (prothesis)



Slab geometry
to make it more simple
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Slab geometry
to make it more simple

• Charged particle equilibrium

• YES
• dose ≈ kerma

• photon energy fluence

• No
• dose ≠ kerma

• transport of secondary electrons
and their spectrum is important
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Slab geometry
to make it more simple

• Charged particle equilibrium

• YES
• dose ≈ kerma

• photon energy fluence

• No -
• dose ≠ kerma

• transport of secondary electrons
and their spectrum is important
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No Charged Particle Equilibrium

• Energy is transfered from photons to electrons
• next: electrons transport energy

• transfer from photons to electrons depends on photons energy
• spectrum of electrons

• angular distribution of electrons

• Photons
• primary photons

• first scatter photons

• second and higher order scattered photons
15



Primary and scattered photons

• Photons
• primary photons

• first scatter photons

• second and higher
order scatter photons
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primary interaction

first scatter photon

interaction

second scatter photon

interaction



Dose components
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Sontag, Med. Phys. 1995, 22 (6)

primary dose > 80% of total dose

1st scattered > 60% of total scattered

scattered



Energy deposition homogeneous
equilibrium state

water

electrons energy is deposited here

𝐷 ≅ 𝐾𝑤𝑎𝑡𝑒𝑟 = Φ𝑤𝑎𝑡𝑒𝑟 ⋅
𝜇

𝜌
𝑤𝑎𝑡𝑒𝑟
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Energy deposition understanding
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material

electrons energy is deposited here

𝐷 ≠ 𝐾

= 𝛷ℎ𝜈 ⋅
𝜇
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Radiological properties
part of energy transfered is emmited as breamstrahlung radiation
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Muscle Lead

photon energy (cm2/g) (MeV) (cm2/g) (MeV)

1 MeV 0.0701 0.440 0.0701 0.550

2 MeV 0.0490 1.060 0.0453 1.130

3 MeV 0.0393 1.740 0.0417 1.860

5 MeV 0.0300 3.210 0.0423 3.600

8 MeV 0.0239 5.610 0.0454 6.470

10 MeV 0.0220 7.320 0.0488 8.45
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Radiological properties
part of energy transfered is emmited as breamstrahlung radiation
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Energy that will be transfered to tissue
(yellow) from small red box
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Muscle Lead
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H – Z versus muscle

• Primary dose is the most important
• effective energy transfered to electrons

• is not (very) much different for 6 MV

• is higher for 15 MV

• What is very much different
• Upper - back

• direction of electrons tracks

• Lower - forward
• photon fluence

• direction of electrons tracks 25
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Back scatter
Upper - back
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Med. Phys. Das 1989, 16 (3)

prosthesis
material



Back scatter
Upper - back

27Med. Phys. Das 1989, 16 (3)



Forward scattered
corrected for fluence
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Aluminium



Dose changes at interface

• Electron fluence is the same
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Lower - forward
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6 MV

18 MV

AAPM TG 63
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Kerma – Dose at interface
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Kerma – Dose at interface
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Practice
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How to recognize that medical
physicist is real expert?
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Be able to critically look at the 
results obtained.
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How to cope with H – Z material in daily practice?

• Don’t relay to much on TPS calculations
• be acquinted with the calculation algorithm

• limitations

• relay on your knowledge!

• Use the right HU – electron density curve
• measured yourself

• or overlay the electron density obtained from HU curve 
with the real one

• Use (if possible) CT obtained with metal artifacts
reduction protocol (MAR protocol)
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Calculation algorithm

• In general
• superposition-convolution algorithms give good results

in CPE region,

• Monte-Carlo – the only one may accuratly calculate
the dose in regin where there is no CPE (Monaco!)

• Acuros gives quite good results
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HU – electron density curve measurement

• e.g. CIRS Phantom
• special H-Z inserts

• aluminium, brass, steel
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What we should remember of?

• Standard mode
• 12 bits up to 212; 4096 HU: -1204 - +3071 (aluminium)

• Extended mode
• 16 bits up to 216; 65536 HU (any material)
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HU – electron density conversion curve

40



Metal Artifacts Reduction
algorithm
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artifacts

difficuly to draw the external contour

less artifacts

much easier to draw the external contour

with MAR

without MAR
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Med. Phys. 42 (3), March 2015



Brass cylinder imaged in standard 
and extended mode
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standard 
mode

extended
mode

extended mode

about 2.5 g/cm3



Another approach

• Knowing the 
prosthesis design

• manually defined
electron density
of the prostheis
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Co-Cr-Mo

alloy
titanium steel

atomic

composition

Co 60%

Cr 30%

Mo 5%

Ti  90%

Al 6%

Va 4%

Fe 65%

Cr 18%

Ni 12

Mo 3

ρ

[g/cm3]
7.9 4.3 8.1

relative

electron

density
6.8 3.6 6.7



How to know the design of the 
prosthesis and its size?
• From patient and 

manufacturer
• usually

impossible

• From CT made in 
extended mode

• very uncertain

45Med. Phys. 2015, 43 (3), Axente at al.



Megavoltage image

• Comparison of calculated and 
measured attenuation.

• measured with portal
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exp(-(μins- μwody) ·d)

close to edge of prosthesis
d



Attenuation calculation

47Air

Water



Attenuation for different materials
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woda Titanium Steel

μ/ρ

[cm2/g]
0.0397 0.0351 0.0362

ρ

[g/cm3]
1.0 4.3 8.1

attenuation

for 1cm

[%]

3.9 14.0 25.4



Comparison of measurements
and calculations
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Inclined 10o

Gafchromic solid water – slab phantom

brass cylinder
two pieces



Measurements results
gamma analysis (versus Monaco)
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gamma

blue < 1Why?



What we measure with film?
6 MV photons

• We measure the dose delivered by electrons
created in brass

• electron fluence spectrum is brass electron fluence
spectrum

• dose is absorbed in Gafchromic - water

51

4.1
ρ

S

D

D
water

brass

col

brass

film 











After corrections
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Summary

• CT for planning
should be 
performed with 
Metal Artifacts
Reduction
software and in 
extended mode
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with MAR

without MAR

courtesy of Ryszard Dąbrowski



Summary

• Individual HU - electron conversion curve should be 
used

• 16 bits mode

or

• Actual electron density should be manually 
overwritten
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Summary

• Influence of 
high 
attenuation
is the most 
important
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Summary

• To calculate attenuation
• to know the type of 

prosthesis
• it is not homogenous

• attenuation measurements 
performed with megavoltage 
beam is recommended
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Summary

• Opposed pairs of 
beams of 6 MV 
are preferable

• perturbance at
only 1 mm off

57

If beams must cross prosthesis!



Thank you
for your attention

Phew!

pawel.kukolowicz@gmail.com


