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Learning Objective

To understand new tools to improve
standardization and efficiency in IMRT planning
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Why Automate Planning?

e Efficient
e Standardization
* Consistent plan quality and evaluation



Automatic Segmentation

 Model Based Segmentation
(Pinnacle)

— Triangular mesh adapted to
points identified as boundaries
between one organ and the
next

e Atlas based segmentation
(Brainlab, MIM, etc.)

— More standard deformable
registration used to propagate
contours from one image to
the next

* Many TPS have tools to
autosegment particular areas
(ie. Bone, brain, lung, eyes,
etc.)

www.usa.philips.com



Automatic Beam Definition

e Use of scripting to automatically position and shape
beams

 TPS may have an algorithm to determine beam
angles

* Tools generally exist to shape blocks, jaws, etc. to
the field

www.usa.philips.com
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AUTOMATED PLANNING OF TANGENTIAL BREAST INTENSITY-MODULATED
RADIOTHERAPY USING HEURISTIC OPTIMIZATION
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Purpose: To present an automated technique for two-field tangential breast intensity-modulated radiotherapy
(IMRT) treatment planning.

Method and Materials: A total of 158 planned patients with Stage 0, I, and Il breast cancer treated using whole-
breast IMRT were retrospectively replanned using automated treatment planning tools. The tools developed are
integrated into the existing clinical treatment planning system (l’innacle"’) and are designed to perform the manual
volume delineation, beam placement, and IMRT treatment planning steps carried out by the treatment planning
radiation therapist. The automated algorithm, using only the radio-opaque markers placed at CT simulation as
inputs, optimizes the tangential beam parameters to geometrically minimize the amount of lung and heart treated
while covering the whole-breast volume. The IMRT parameters are optimized according to the automatically
delineated whole-breast volume.

Results: The mean time to generate a complete treatment plan was 6 min, 50 s + 1 min 12 s. For the automated
plans, 157 of 158 plans (99%) were deemed clinically acceptable, and 138 of 158 plans (87 %) were deemed clini-
cally improved or equal to the corresponding clinical plan when reviewed in a randomized, double-blinded study
by one experienced breast radiation oncologist. In addition, overall the automated plans were dosimetrically equiv-
alent to the clinical plans when scored for target coverage and lung and heart doses.

Conclusion: We have developed robust and efficient automated tools for fully inversed planned tangential breast
IMRT planning that can be readily integrated into clinical practice. The tools produce clinically acceptable plans
using only the common anatomic landmarks from the CT simulation process as an input. We anticipate the tools
will improve patient access to high-quality IMRT treatment by simplifyving the planning process and will reduce
the effort and cost of incorporating more advanced planning into clinical practice. © 2011 Elsevier Inc.
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Automatic Beam Placement

Table 1  Automated planning clinical decision hierarchy
Constraint
no. Clinical constraint” Description Default setting Default value
Anatomical constraints To direct placement of the Medial and lateral beams Contralateral breast sparing
treatment beams based on avoid contralateral breast is on
patient anatomy
Breast wire to beam  To direct placement of beam Breast wire exposed with I mm
relative to the breast wire a margin
(if placed at simulation)
Seroma cavity to beam To direct placement of beam Seroma cavity exposed 10 mm

relative to the delineated
seroma cavity
To direct beam placement
incorporating the proximity
of the cavity within the
breast volume
Lung volume exposed To direct placement of the
beams based on the lung
volume exposed

Cavity proximity

Breast volume To direct placement of the
beams based on the volume
of exposed breast tissue

Shielding To place shielding for the
heart, liver, spleen and

humeral head following

beam placement optimization

with a margin

Medial cavities will force
beam placement for
additional medial coverage

Cavity proximity correction
is on

The target mean and/or
maximum lung distance is
set by the algorithm. The
distance(s) can be adjusted
to incorporate a priori
patient information such as
previous treatment or use
of breath-hold imaging

The breast volume is set by Breast size correction calculates
the algorithm the breast tissue in the field.

Breast size correction is
turned on

Shielding is set according to Heart, 10-mm margin; liver/
either a negative or spleen, 8-mm margin;
positive margin humeral head, off

The lung distance is a function
of a number of anatomical
factors and is calculated for
each patient

* The clinical constraints follow the order shown in the default case. The user can reorder the priority of the clinical constraints or remove clinical
constraints by using the user interface in order to generate an automated plan. Each clinical constraint encodes a prescribed rule, that is, constraints 1, 2, 3,
4, and 7, or is learned based on previous (10) planning data, that is, constraints 5 and 6.



Automatic Beam Placement

From www,raysearchlabs.com.

From Purdie et al.



Breast Planning in RayStation




Breast Planning in Raystation
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From RaySerach Laboratories white paper.




BrainLab Elements

Figure 1: Automatic Brain Metastases Planning details for Patient 4 with 9 lesions.

 Multiple brain metastese plans

 Automated: critical organ segmentation (atlas based), margins, prescription,
isocenter, places 2 arcs per predetermined table angle, arc stop and stop

angles, MLC leaf pattern

e Each leaf pair can only expose one target at a time, collimator minimizes
interleaf leakage

* Weights, angles and margin adjusted after evaluting target conformity w/
common indices

Automatic Brain Metastases Planning Clinical Whilte Paper available from BrainLab



IMRT Optimization

Was not supposed to be so difficult......



Automatic IMRT Optimization

Pinnacle Autoplanning
Raysearch Multicriteria Optimization
Varian Knowledge based planning

Most of these solutions aim to avoid the trial
and error process of manually changing
objectives and searching for the “best” plan



Pinnacle Autoplanning

Mimics the planning process of an
experienced user

Creates residual structures (rings, etc.)
Adjust optimization goals based on overlap

Progressive tuning (based on match to
training plans)

Hot and cold spot reduction



Progressive optimization algorithm

Drives target coverage and sparing to the limits

Auto-Planning achieves these results... by mimicking the experienced planner
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Auto-Planning ROls
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Pinnacle® Auto-Planning
Accelerating IMRT & VMAT planning

Treatment Techniques
Technique Name Description

* Reduces the total time
required to create an IMRT or

S m a rtA rC p I a n Technique Name ‘ ?escnntlon
v  Prostate_RTOG0815 | |Phiips Sample Techniques
Simplified 3-step process reduces « (e | T
~ | ProstatelMRT_Auto-Plan | |[For Auto-Planning

time & effort to create a plan

Philps-Demo-HeadNeck-VMAT | | HeadNeck | PTV-70-63-56 | Sample | Auto-Plan

v | SmartArc | |For Aute-Pianning

* Replaces exhaustive manual

data entry to just a few clicks s e
Treatment Techniques created at O R et
setup are used repeatedly for each S L jforduo-Poeiy

plan ROI Type Result
+ [PTv_7000 2| Min DVH (%) ot et

v | Breast RTOG1005 | |Phiips Sample Techniques

+ [HEADandNECK_RTOG0320 | [Phiips Sample Techniques.

e Enhances plan quality and vV eome o
. v [PV ¢ MaxDvH(ems) i |[ok
ConSIStenCy v [PVEE0 ¢| MinDVH(%) i |[iet
The Auto-Planning Engine generates |- Fvsm o wnowieo |y
high quality plans at the 1 pass v [FPWLCORD | maovHcems) (i

* Simplifies and standardizes the
plan approval process
Scorecards reduce the need for
multiple plan reviews

PHILIPS

Slide courtesy of Francisco Nunez, Philips



Multi-Criteria Optimization

Optimization technique that tries to allow
olanners to more effectively explore trade-offs in
MRT planning

n IMRT you never know you have the best plan
of all the possible solutions and it would be

prohibitively time consume to evaluate all
possibilities

Allows for interactive exploration of the solution
space

Commercialized by RayStation




Multi-Criteria Optimization

MCO optimization avoid explicit weights

MCO identifies “pareto optimal” plans with respect to user
specified objectives

Pareto optimal plans are feasible with respect to all

constraints and no objective can be improved without
impairing at least one other

An infinite number of possible plans is represented by a
discrete number of plans that emphasize different
objectives

Dose in each structure is characterized using the EUD
(Equivalent Uniform Dose — Uniform dose that leads to the
same biological effect as the nonuniform dose in the organ)



Pareto Frontier

Example of Pareto Frontier. The boxed points
represent feasible choices and smaller values
L] are preferred to larger values. Point Cis not
] on the frontier because it is dominated by A
and B. A and B are not domiated by other so
[] u they do lie on the frontier.

f2(A) < f2(B) )

From Wikipedia



3D pareto surface for a prostate case

3D prostate Pareto surface
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From RaySearch White Paper



Anchor Plans
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MCO Algorithm

Optimizations performed using beamlet
Intensities

N plans generated where N=number of objectives
(anchor plans)

N+1 places equal emphasis on all objective
(balance plan)

Beyond N+1 (auxiliary plans) improve the Pareto
surface representation

— Generated by giving emphasis to pairs of objectives



Raystation Interface
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Navigation Algorithm

* Uses linear programming to translate input
from slider bars adjust by the user to
movement along the Pareto surface

e Algorithm looks for the best point that meets
the user specified trade off

* Dose is updated in real time by interpolation
between the Pareto optimal plans



Dose “Mimicking” Algorithm

e Use of direct machine parameter optimization
(DMPO) reduces the error between the
navigated solution and the deliverable plan

* The solution space is searched in dose which
minimizes error between the optimized and
delivered dose
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CLINICAL INVESTIGATION Physics

IMPROVED PLANNING TIME AND PLAN QUALITY THROUGH MULTICRITERIA
OPTIMIZATION FOR INTENSITY-MODULATED RADIOTHERAPY

Davip L. Crart, Pu.D., Turobpore S. Hong, M.D., HELEN A. Sum, M.D.,
AND THomas R. BorTrELD, Pu.D.

Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA

Purpose: To test whether multicriteria optimization (MCQ) can reduce treatment planning time and improve plan
quality in intensity-modulated radiotherapy (IMRT).

Conclusions

This provides the first concrete evidence that MCO-based planning is superior in terms of both planning

efficiency and dose distribution quality compared with the current trial and error—based IMRT planning
approach.

onc s provides the first concrete evidence t )-based planning is superior in terms of bo
mienc) and dose distribution quality compared wnth the current trial and error-based IMRT planning
approach. © 2012 Elsevier Inc.

Multiobjective, Inverse planning, Pareto optimization, Multicriteria.



Comparison to Conventional Optimization

Patient selected for inclusion.
Contours drawn by physician.

L v
Beam selection and Template beam arrangement
optimization done by staff and optimization formulation
treatment planner using XiO. input into RayStation.
¥

Database generated.

!

| Physician navigates to
desired plan and accepts it.

Buiuued asiaAul [BUOIDES |
Buuued astaaul QW

Physician plan review.

v

Patient treated with XiO plan.

L/ ¥
At least three weeks later, DVHs (and dose statistics
for LAPC cases) are blindly reviewed by
physician and one of the plans is chosen
as the better plan

IMAGE
Improved Planning Time and Plan Quality Through Multicriteria
Optimization for Intensity-Modulated Radiotherapy

International Journal of Radiation Oncology, Biology, Physics.

Craft, David L., Ph.D.; Hong, Theodore S., M.D.... Show all. Published December 31, 2011. Volume 82, Issue 1. Pages
e€83-e90. © 2012.



Planning Time Comparison

Planning time GBM Planning time LAPC
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Improved Planning Time and Plan Quality Through Multicriteria
Optimization for Intensity-Modulated Radiotherapy

International Journal of Radiation Oncology, Biology, Physics.

Craft, David L., Ph.D.; Hong, Theodore S., M.D.... Show all. Published December 31, 2011. Volume 82, Issue 1. Pages
€83-e90. © 2012.



Knowledge Based Planning

Aim is consistency between plans

Planning should be efficient and produce plans of high
quality

Uses shared clinical knowledge and supplied treatment
plan models or create their own

RP provides estimated DVHSs as a starting point for
IMRT

Dose and patient anatomy information from existing
plans used to estimate dose in new patient based on
patient anatomy

Marketed first by Varian Medical Systems



Dose Spread Known From Prior Plans




International Journal of Radiation

X Oncology*Biology*Physics
ELSEVIER Volume 99, Issue 4, 15 November 2017, Pages 1021-1028

Physics Contribution
Performance of Knowledge-Based Radiation Therapy

Planning for the Glioblastoma Disease Site

Avishek Chatterjee PhD A &, Monica Serban MSc, Bassam Abdulkarim MD, PhD, Valerie Panet-
Raymond MD, Luis Souhami MD, FASTRO, George Shenouda MBBCh, PhD, FRCP (C), Siham Sabri
PhD, Bertrand Jean-Claude PhD, Jan Seuntjens PhD
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Performance of Knowledge-Based Radiation Therapy Planning for
the Glioblastoma Disease Site

International Journal of Radiation Oncology, Biology, Physics.

Chatterjee, Avishek, PhD; Serban, Monica, MSc... Show all. Published November 14, 2017. Volume 99, Issue 4. Pages
1021-1028. © 2017.



McGill Study Summary

A knowledge based RT plan was created

82 GBM patient plans were used to train the
model

Model was validated on 45 patients

KB plans had superior PTV dose metrics and
better optic apparatus sparing than manual
plans

KB planning time 7 mins versus 4 hours
average time for manual planning



Comparison

Knowledge-based

Dependent on a
knowledge base
Not flexible to
inter-physician
variability

Only as good as
the knowledge

Does not address
new knowledge
on toxicity
endpoints

No direct way to
manage trade off

Multi-criteria
optimization

Trade offs easily
managed
Multiple
solutions can be
compared very
quickly

Requires most
physician time
Does not lend to
Standardization

Mimics actions
of trained
planner

Still hard to
determine plan
quality

Data required
for modeling
from institution
Can build
separate models
for physician
preferences




Robust Planning

* Errors occurin delivery
due to patient positioning
errors, anatomical
changes, etc.

* Robust planning allows
for improved delivery
accuracy (Robustness) for
certain defined
weaknesses

 More relevant for proton
therapy where the PTV
concept breaks down

Robust Optimization white paper by RaySearch



Biological Optimization

* Feed dose volume histogram data into
biological models for plan evaluation of the
impact of the dose distribution on biology
— NTC - Normal Tissue complication probability
— TCP = Tumor control probability



Summary

* There are several automated planning tools
available.

* These tools can be used to provide
standardized treatment plans

* These tools will make planning more efficient.



