

School on Medical Physics for Radiation Therapy: Dosimetry and Treatment Planning for Basic and Advanced Applications

25 March – 5 April 2019 Trieste, Italy

Further information: Activity URL: http://indico.ictp.it/event/8651/ smr3278@ictp.it

Methods for radiomics analysis

Methods for radiomics analysis

Michele Avanzo Medical Physicist Centro di Riferimento Oncologico IRCSS Aviano (PN) mavanzo@cro.it

ICTP Trieste 4/2/2019

"Images are more than pictures, they are data"

Gillies, Radiology 2016;278:563-577.

Radiomic features

Shape

Textural (2nd order)

Histogram (1st Order)

Avanzo et al. Phys Med 38 (2017) 122-139

Radiomic features

Shape

Histogram (1st Order)

$$kurtosis = \frac{\frac{1}{N} \sum_{i} (X(i) - \bar{X})^{4}}{\left(\frac{1}{N} \sum_{i} (X(i) - \bar{X})^{2}\right)^{2}}$$
$$entropy = \sum_{i} (P(i) \log_{2} P(i))$$

compactness 2 = $36\pi \frac{A^2}{V^3}$

Textural (2nd order)

autocorrelation =
$$\sum_{i,j} i * j * P(i, j)$$

cluster shade = $\sum_{i,j} (i + j - 2\mu)^3 * P(i, j)$
Higher
order
 $coarseness = \frac{1}{\varepsilon + \sum_i P(i)s(i)}$

Textural features

 The gray-level co-occurrence matrix (GLCM) is a matrix whose row and column numbers represent gray values, and the cells contain the number of times corresponding gray values are in a certain relationship (angle, distance).

GLCM with distance one pixel along directions 0°, 90°, 135°

Textural features

 The gray-level co-occurrence matrix (GLCM) is a matrix whose row and column numbers represent gray values, and the cells contain the number of times corresponding gray values are in a certain relationship (angle, distance).

$$autocorrelation = \sum_{i,j} i * j * P(i, j)$$

represents the correlation of the image along the specified direction

P(i,j) = element of GLCM, μ = average of GLCM

cluster shade = $\sum_{i,j} (i + j - 2\mu)^3 * P(i, j)$

When were features born?

• GLCM

Talega erseinen - erteiten terenenter file betette erterenenenter tes
T+++++++++++++++++++++++++++++++++++++
TOWNERS COTTONNESS
Tes fartes Walter++fastatatatatet+ tratt+++- wate
THE STORE MET AND A STOLET AND A STOLEN OF A STOLEN AND A
T#####################################
TRANSFERRET TARAFTER TO THE FORMATION AND AND AND AND AND AND AND AND AND AN
Tess" IF

The state of the state state of the state of
Les
The second s
Lear mentioner interviewers with the second
En la se a se ses en la serie de la ser
The second s
Landau and the second se
 A state of the sta
Inches accounts a sum and a sin for a total tax, soul

AN PRESS OF REAL PROPERTY AND AND A REAL PROPERTY AND A REAL PROPE
We we we have a second of the second of the second s
To - Leven to the second
The second s
bus and a second s
Transformer interest annual to the state of the second state of the
Literative and a second s
The second states and the second second states which the second second second second second second second second
Constant and the second s
The second s
Brite Course 1 and a Course for any James & save & and a find a find a find

ion

	Gr	assland			Water Body	,
Angle	ASM	Contrast	Correlation	ASM	Contrast	Correlati
0° 45° 90° 135° Avg.	.0128 .0080 .0077 .0064 .0087	3.048 4.011 4.014 4.709 3.945	.8075 .6366 .5987 .4610 .6259	.1016 .0771 .0762 .0741 .0822	2.153 3.057 3.113 3.129 2.863	.7254 .4768 .4646 .4650 .5327
		(a)			(b)	

Fig. 4. Textural features for two different land-use category images.

Textural features

 Gray Level Run Length Matrix (GLRLM) is a two-dimensional matrix in which each element describes the number of times j a gray level i appears consecutively in the direction specified

GLRLM matrix calculation for $\theta = 0^{\circ}$. (a) ROI 5×5; (b) Occurrences of gray levels with run length of k = 3.

Wanderley Rev. Bras. Eng. Bioméd 30 (1) 17-26, 2014; Journal of Thoracic Imaging · March 2017

Higher order variables

 In the neighborhood gray-tone difference matrix (NGTDM), the ith entry is a summation of the differences between all pixels with gray-tone i and the average value of their surrounding neighbors

Image								
3		2	0	1	0			
1		2	1	3	0			
3		1	0	2	3			
1		2	3	0	3			
0		0	0	0	1			

 NGTMD

 j
 S(j)

 0
 3.25

 1
 1.00

 2
 2.00

 3
 4.25

Kynetic variables

- Pharmacokinetics (uptake rate of contrast agent, washout...)
- Evolution in time of radiomic features in 4D DCE-MRI

Other features

Fractal

Fusion

Hausdorff's fractal dimension refers to selfrepeating textures of a pattern as one magnifies the feature:

$$\mathbf{D}_{0} = -\lim_{\varepsilon \to 0} (\log_{\varepsilon} \mathbf{N}(\varepsilon)) = \lim_{\varepsilon \to 0} \frac{\log(\mathbf{N}(\varepsilon))}{\log(\varepsilon^{-1})}$$

where N(ϵ) is the number of $\epsilon \times \epsilon$ squares needed to cover the 2D area.

Wavelet discrete trasform can be used to fuse images. The weight of wavelet bands in fusion can be used as a feature

Vallieres, Phys. Med. Biol. 60 (2015) 5471

Radiomic features

Radiomic features vs EGF mutation status

pre-RT

post-RT

EGFR status	CT acquisition	Volume	Radius_Std	Shape_SI6	Gabor_Energy- dir135-w3	Gabor_Energy-dir45- w9	Laws_Energy-10	Laws_Energy- 13
	Baseline (Fig 1-a)	7766.5	1.522	0.145	5337.9	419770.4	475.2	1369.6
EGFR positive	Followup (1-b)	7195.8	1.657	0.151	4043.5	327365.1	512.0	1352.9
	Change	-570.6	0.135	0.006	-1294.4	-92405.3	36.8	-16.6
	Baseline (Fig 1-c)	3502.4	1.422	0.173	11601.7	419578.9	367.7	353.9
Wild type	Followup (1-d)	4522.8	1.251	0.165	10605.5	361191.5	326.3	349.3
	Change	1020 /	-0 171	-0.009	-996.2	-58387 /	_/11 5	-15

Breast Cancer

ER, PR, positive, HER2 negative, stage II invasive breast cancer, good prognosis.

Radiology November 2016; 281(2): 382–391.

ER, PR, HER2 negative, stage II invasive breast , poor prognosis

Reproducibility (Test-retest)

• Measured from repeated measurements on same conditions

93(42.4%) over 219 features were stable (Concordance
(B) Correlation Coefficient above 0.85) respectively in the RIDER dataset

Second baseline scan

Textural features are more reproducible with respect to maximum and mean SUV. 63% of features stable (Intraclass correlation coefficient > 0.9)

Translational Oncology (2014) 7, 72–87

First baseline scan

van Velden, et al., Mol. Img. and Bio., 18(5), 2016

Robustness: CT

• Robustness is variability with changing conditions (e.g. reconstruction parameters, scanner, patient position)

Radiomic features from CT are sensitive to:

- Scanner
- Slice thickness
- reconstruction algorithms
- Segmentation

Robustness: PET

- Image reconstruction algorithm (OSEM, TOF, PSF, PSFTOF)
- The method of quantization or discretization, where voxel intensities are grouped into equally spaced bins, also affects reproducibility
- Scan duration (≈ noise)
- Segmentation

PET 3D phantom

Pfaehler, Medical Physics, 46 (2), February 2019

Robustness: MRI

- Radiomic features extracted from MRI scans depend on the pulse sequence, field of view, field strength, and slice thickness
- Effect of recostruction (iterative vs non iterative) algorithm is small

Digital ground truth phantom used as input to a MRI simulator in Matlab.

Yang, Physica Medica 50 (2018) 26–36

Which are the most stable features?

	FIRST ORDER	SHAPE METRICS	TEXTURE ANALYSIS	COMMENTS	
ROI SEGMENTATION MANUAL DELINEATION	•	***	***	Mainly PET studies and one multi-center CT study.Shape metrics	
SEMI-AUTO / AUTO	•	**	**	from PET may be less subject to inter-observer differences. Semi- automated methods generally improve reproducibility.	
IMAGE RECONSTRUCTION RECONSTRUCTION FILTER	•	**	***		
VOXEL SAMPLING	**	**	***	Consistent in a few CT and PET studies of NSCLC.	
IMAGE ACQUISITION SETTINGS RESPIRATORY MOTION	**	**	**	Consistent over single-institution PET and CBCT studies of NSCLC.	
SCATTERED RADIATION	**	?	**	In one CBCT study of NSCLC, but did not evaluate shape metrics.	
CT SCANNER	**	**	**	In one multi-institutional CT study in NSCLC , effects were similar in magnitude to inter-patient differences.	
DIGITAL IMAGE PRE-PROCESSING NOISE AND SMOOTHING	**	?	**	Single-center CBCT and planning CT study in H&N smoothing and noise have less effect than high-pass and logarithmic filters.	
INTENSITY DISCRETIZATION	**	**	**	Consistent in H&N studies of perfusion CT and PET, bin size may have less impact in PET.	
	Entropy was consistently among the most repeatable/reproducible first-order features. There were inconsistent findings for skewness and kurtosis.				
CONSENSUS ABOUT MOST STABLE OR LEAST STABLE RADIOMIC FEATURES	Certain shape metrics may be reproducible in PET, and slightly less reproducible in CT, though it is unclear which individual features prove to be stable.				
	No emergent patter reproducible.	n or consensus for hig	hly reproducible te	extural features. Coarseness and contrast were among the least	

♦ less likely ♦♦ probable ♦♦♦ highly likely influenced by parameters

Good repeatability is a necessary, but not sufficient condition for high predictive power of a feature,

If a feature has a low repeatability, its predictive power must be low, too

If a feature has a good repeatability, we cannot conclude anything about its predictive power

Traverso Int J Radiation Oncol Biol Phys, Vol. 102, No. 4, pp. 1143-1158, 2018

Radiomics and biology

- Radiomic features provide a description of the appearance of the tumor in the medical image
- Medical images are not the tumor, but a representation, but...
- ...in biopsy-based assays, the extracted sample does not always represent the entire population of tumor cells, and...
- radiomic features assess the comprehensive threedimensional tumor bulk by means of imaging information

Radiomics and biology

EXTRACELLUL	AR_REGION_PART				*
EXTRA	CELLULAR_SPACE				*
REGULATION_OF_MULTICELLULAR_ORGA	NISMAL_PROCESS				*
DNA_DEPENDENT_[NA_REPLICATION		_		*
REGULATION_OF_IMMUNE_S	YSTEM_PROCESS				*
TISSU	JE_DEVELOPMENT				*
LEUKO	CYTE_ACTIVATION				*
MITOTIC_CELL_CY	CLE_CHECKPOINT			*	
PROTEIN_AMINO	ACID_LIPIDATION			*	
LYMPHO	CYTE_ACTIVATION			*	*
EXTRAC	ELLULAR_REGION			*	*
PROTEIN_C	OMPLEX_BINDING	*		*	
ECTODER	M_DEVELOPMENT				
EPIDERM	IS_DEVELOPMENT	*		*	*
	DNA_REPAIR	*			
	CHROMOSOME	*			
	MITOSIS	*			
REGULATION_OF_DNA_MET	ABOLIC_PROCESS	*			
M_PHASE_OF_MIT	*				
CELL	CYCLE_PROCESS	*	*	*	
CE	LL_CYCLE_PHASE	*	*	*	
CELL_C	YCLE_GO_0007049	*	*		
MITO	OTIC_CELL_CYCLE	*	*		
DNA	_RECOMBINATION	*	*		
	M_PHASE	*	*		
ed with gene chment analysis tients (<i>n</i> =89).	Colour key 1 1.5 Enrichment score	Wavelet HLH RLGL grey level nonuniformity	RLGL grey level nonuniformity	Shape compactness	Statistics total energy
10.1029/ncommcE0	06	nity	nity		

Radiomic features are associated with gene expression using gene-set enrichment analysis (GSEA) in a data set of lung patients (n=89).

Aerts et. al Nat. Comm. 5:4006 10.1038/ncomms5006

Radiomics and biology

 Tumor histology (squamous cell carcinoma, large cell carcinoma, adenocarcinoma and "not otherwise specified")

Patil, Tomography 2 (4) DECEMBER 2016

- *ALK/ROS1/RET* fusion-positive tumor
- younger age, advanced tumor stage, solid tumor on CT, SUV_{max} tumor mass, kurtosis and variance
- sensitivity and specificity, 0.73 and 0.70, respectively.

Medicine Volume 94, Number 41, October 2015

Biology and radiomics: causal effect?

- Tumor cells of colon cancer(HCT116, GADD34 inducibili) injected in the flank of nude mices
- Some mices had placebo other received a drug which induces overexpression of gene GADD34 in the rumor
- CT scan was acquired and radiomic features extracted in both cohorts

Test-retest

Itiple delineations

Panth et al. Radiother and Oncol 116 (2015) 462–466

Definition of radiomics

- The term radiomics originates from the words <u>"radio</u>" which refers to radiology, i.e. medical images in the broad sense (CT, PET, MRI, US, mammography etc.), and <u>"omics"</u>, first used in the term genomics to indicate the mapping of human genome, indicating large scale analysis
- The goal of radiomics is prediction of biological or clinical endpoints by:
- quantitative analysis of tumor/organ at risk through extraction of a large amount of radiomic features
- use of machine learning for building predicting models

Radiomics: workflow

Pre-processing

Preprocessing aims at reduce noise and calculation time and to harmonize images of different patients:

1) Discretization of the intensity levels. 2 methods are used: :

- "fixed bin size", where intensity levels are grouped into bins of fixed size, such as 25 Hounsfield Units nella CT
- "fixed bin number", where the number of levels are fixed, e.g. 32 or 64

2) Resampling of image into voxels with size e.g. 3x3x3 mm³.

Interpolation algorithms used: nearest neighbour, trilinear, tricubic convolution, tricubic spline interpolation

Filtration

Wavelet Transform 2D:

Bagher-Ebadian et al. Med. Phys. 44 (5), May 2017, 1755

Filter Laplacian of Gaussian (LOG):

$$Log(x, y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

 σ = radius of gaussian

Definitions of radiomic features

• Some papers report comprehensive formulas of radiomic features: Kickengereder et al, Radiology 2016;:160845.

Aerts et. Al, NATURE COMMUNICATIONS | 5:4006 | DOI: 10.1038/ncomms5006

- Some inconsistencies in definitions:

Paper 1Paper 2
$$compactness 2 = 36\pi \frac{V^2}{A^3}$$
 $compactness 2 = 36\pi \frac{A^2}{V^3}$ Cornell UniversityarXiv.org > cs > arXiv:1612.07003Computer Science > Computer Vision and Pattern Recognition

Image biomarker standardisation initiative

Alex Zwanenburg, Stefan Leger, Martin Vallières, Steffen Löck, for the Image Biomarker Standardisation Initiative (Submitted on 21 Dec 2016 (v1), last revised 17 Sep 2018 (this version, v7))

Open-source softwares

- ePAD, Stanford University, doi.org/10.1016/B978-0-12-812133-7.00013-2
- PyRadiomics/Radiomics , Harvard Medical School 10.1158/0008-5472.CAN-17-0339
- Texture Analysis Toolbox, Martin Vallières, https://github.com/mvallieres/radiomics/tree/master/TextureToolbox
- Quantitative Image Feature Engine (QIFE) Stanford University, 10.1007/s10278-017-0019-x
- IBEX: MD Anderson Cancer Center, doi: 10.1118/1.4908210.
- MaZda, Technical University of Lodz, Poland, doi:10.1016/j.nima.2012.09.006
- LifeX , Gustave Roussy, Parigi, 10.1158/0008-5472.CAN-18-0125

Feature selection

- The building of a radiomic models has two phases.
- In the first, feature selection, the variables are reduced by eliminating those that are:
- Redundant, because they are inter-correlated
- Not predictive (not associated with the outcome)

Feature selection methods

- minimum redundancy maximum relevance (mRMR) calculates mutual information (MI) between a set of features and the outcome. The set of features with maximum MI is selected.
- *RELIEF (RELevance In Estimating Features),* ranks the features according to hw well they separate patients with different outcomes but similar values of features:
- Better score to features with different values in patients with different outcome
- Penalizes features which have different values in patients with the same outcome
- Stepwise selection is an iterative process which adds or removes features to a model at each step. Then the variables are included in the model according to a statistical test whith null hypothesis that the variable has zero coefficient in the model-

Machine learning

- Radiomic signature: combination of variables with high predictive power
- Classificator: model to classify the patient e.g. responder, non responder to therapy

Aerts et. Al, NATURE COMMUNICATIONS | 5:4006

TABLE 6. Summary of Classification Results Obtained by 10-Fold CV										
Parameter set	Algorithm	TP rate	FP rate	Specificity	Precision					
T1	ANN	0.968	0.091	0.909	0.968					
	k-NN	0.935	0.091	0.909	0.967					
T2	ANN	0.968	0.273	0.727	0.909					
	k-NN	0.935	0.182	0.818	0.935					
DWI	ANN	0.903	0.182	0.818	0.933					
	k-NN	0.968	0.182	0.818	0.938					
FP, false-positive; TP, true-positive.										

J. MAGN. RESON. IMAGING 2016;44:445-455.

Machine learning

• Logistic Regression

• Support Vector Machine

https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html

Classificazione automatica dell'iris

Machine learning

Overfitting

Too many variables --> risk of overfitting

- The overfitted model fails when used on a dataset different from the training dataset (poor generalizability)
- Overfitting can be avoided with careful feature selection and validation

http://mlwiki.org/index.php/Overfitting

Validation

According to TRIPOD (Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) criteria, there are the following validation methods:

1) Developing and validating on the same data, which gives apparent performance. This evaluation is usually optimistic estimation of the true performance

2) Developing the models using all the data, then using resampling techniques to evaluate the performance

3) Randomly split the data into 2 groups for development and validation separately

4) Split the data non-randomly (e.g. by location or time), which is stronger than 3)

5) Develop the model using one data set and validate on separate data. Stronger than performing posterior splitting of data
Resampling techniques

2 2 4 5 6 7 8 9 10
Bootstrap sample 1
1 4 3 5 5 3 7 8 9 10

1 X 3 X X 6 7 X 9 10 Bootstrap sample 2 1 2 3 1 5 8 5 8 9 1

Other techniques: "jackknife" or leave-one-out (LOOCV), where a
patient is removed from analysis at each itaration

Examples of predictive models

Survival for lung and H&N squamous cell

carcinoma

Aerts et. al NATURE COMMUNICATIONS | 5:4006 | DOI: 10.1038/ncomms5006

Gleason score and biovhemical relapse in prostate tumor

Gnep, J. MAGN. RESON. IMAGING 2016

Vallieres, Phys. Med. Biol. 60 (2015) 5471

Distant metastases from sarcoma of extremities

Immunotherapy

• Model for immunotherapy

Gene expression of CD8

cells (119 pts)

- Training set of 135 patients with different tumors
- Radiomic signature for presence of CD8 antigens estimated from RNA sequencing

Survival of patients treated with immunotherapy (137 pts)

Phenotype of tumor desert-immune

(few CD8 cells) vs inflamed (many

cells CD8), 100 pts

Sun et al. Lancet Oncol 2018; 19: 1180-91

Prediction for local recurrence in SBRT

113 patients

close to the chest wall: 10–12 Gy * 5 fractions, 12–14 Gy * 4 fractions Other: 18 Gy * 3

Free breathing CT

No feature had significant correlation with recurrence!

Huynh, Radiotherapy and Oncology 120 (2016) 258–266

Prediction for local recurrence in SBRT from PET

Figure 1 Value of textural and standard PET parameters for prediction of local recurrence. ROC curves for prediction of local recurrence through different PET parameters. Coarseness is the same curve as busyness.

Pyka et al. Radiation Oncology (2015) 10:100 DOI 10.1186/s13014-015-0407-7

Regional control after SBRT:PET/CT

 Radiomics on PET/CT for prediction of control and survival in SBRT-treated lung cancer patients.

150 patients, 172 cancers48-56 Gy SBRT Fractionation not included

Oikomonou SCIenTIfIC REPOrTS | (2018) 8:4003 | DOI:10.1038/s41598-018-22357-y

Regional control after SBRT:PET/CT

• Radiomics on PET/CT for prediction of control

Subgroups of low and high recurrence free survival were determined by a cut-off value of 0.09 for radiomic signature PC4

Oikomonou SCIenTIfIC REPOrTS | (2018) 8:4003 | DOI:10.1038/s41598-018-22357-y

Lung injury

- Radiomic features significantly correlates with lung-injury scored by oncologist post-SBRT (18 Gy*3, 12.5 Gy*4, 12 Gy*5)
- GLCM features outperformed histogram features

Prediction of radiation pneumonitis

• 50.4 Gy, non-SBRT, esophageal cancer

Int J Radiat Oncol Biol Phys. 2015 April 1; 91(5): 1048–1056

Differentiation of recurrence

- On two-fold CV, first-order features yielded 73% accuracy, second order 76%–77%
- longest axial diameter and 3D volume, gave 60% and 57%

(b) Benign radiation-induced lung injury

Benign changes

FIG. 2. Manual delineations of post-SABR consolidative and ground-glass opacity findings throughout follow-up for a patient with recurrence (a) and radiationinduced lung injury (b). The zero-month (0m) time point indicates the pretreatment lesion. The solid lines enclose consolidative regions and the dashed lines enclose ground-glass opacity regions.

Mattonen et al. Med. Phys. 41 (3), March 2014

Radiomics of oropharyngeal tumor

- Observational, retrospective, monoinstitutional study at the CRO - Aviano
- Collaboration among Medical Physics, Radiotherapy, Nuclear Medicine, Radiology
- Has the objective of building a predictive model for:
- HPV status, and
- response (complete/not complett) at 3 months from the end of radiotherapy

From radiomic analysis of pretreatment images of the patient and dose distribution

Radiomics and HPV status

• The tumors in HPV-positive patients appear more homogeneous and small in CT

FIG 3. Representative examples of patients with HPV-positive and HPV-negative SCC. *A*, HPV-negative right tonsillar squamous cell carcinoma (*arrows*) in a 65-year-old man. *B*, HPV-positive right tonsillar squamous cell carcinoma (*arrows*) in a 65-year-old man.

Radiomics and HPV status

- Model based on contrast-enhanced CT, 315 patients oropharingeal
- 150 patients for training, 165 validation
- Model had AUC of 0.915 in validation

Yu K, Clinical and Translational Radiation Oncology 7 (2017) 49–54

- Model for prediction of HPV determined from p16
- CT, no contrast
- Multicentric database of 778 patient, randomly split into training dataset (80%) and validation (N = 150).
- The model scored AUC=0.764 in validation

Oropharyngeal: local control

- 465 pazienti
- Local control proven pathologically (biopsy and/or resection) or radiologically
- Analysis on contrast enhanced CT
- Radiomic signature based on:
- Intensity Direct Local Range Max: average of range (max-min) for every voxel with respect to surrounding region
- Neighbor Intensity Difference Complexity: measures the perceived complexity in the image

The radiomic signature had higher predictiove capability than variables HPV status and administered therapy

Methods

- 51 Pazients treated with IMRT
- 70.95 Gy to microscopic disease
- 62,70 Gy to high risk lymph-nodes
- 59,10 Gy " low risk " "

Characteristics of patients

Patients	51
Male/female	41/10
Chemotherapy (no, Concomitant, neoadjuvant, neoad.+conc.)	1/12/36/2
Stage TNM 8°: 1, 2, 3, 4A, 4B	14/8/4/21/4
HPV Status (+,-)	28/23

Methods

- Tumor was contoured by one clinician using PET
- Contour reported on CT-PET and simulation CT using image registration
- Variables extracted also from dose distribution

Protocols of acquisition

PET Philips Gemini TF 16

Average injected activity of ¹⁸F-FDG was 280 MBq

Algorithm of reconstruction PET "Blob-OS-TF",

a 3D ordered subset iterative TOF reconstruction technique

Matrici 144 × 144 con voxel $4 \times 4 \times 4$ mm³

CT-PET Philips Gemini TF 16

- 120 kV, 108 mA average, pitch 0.83, acquisition time 0.5 s
- Slice thickness 5 mm, kernel: 'B' body

CT-SIM Toshiba Aquilion/LB

- 120 kV, average tube current 300 mA , rotation time 0.75 s
- Slice thickness 2 mm, kernel: 'C13'

Methods

• Software written "in-house" in Matlab, benchmarking with Ibex

IBEX is Intended for Research Use Only.IBEX $V1.0\beta$ IBEXImaging Biomarker Explorer Software

- 21 shape variables
- 47 textural (+ filters gaussian, LOG, median)
- 5 higher order (""")
- In total: 937 features per patient
- Stepwise feature selection, support vector machine
- Cross-validation

Preliminary results (1)

- Model for HPV status:
- 1 shape (solidity), 2 simulation CT, 1 PET, 2 dose variables were selected
- In the cross-validation:
- Sensitivity (positive on patient with HPV+): 85,2%%
- Specificity (negative on patient HPV-): 83,3%

		Real	
		HPV+	HPV-
Predicted	HPV+	23	4
	HPV-	4	20

Inv.Diff.Norm PET Measures local inhomogeneity

GLCM Cluster Prominence Measures variability of values

Preliminary results (2)

- Model for complete response 3 months from therapy:
- 1 shape (roundness), 3 simulation CT, 4 PET features were selected
- In the cross-validation:
- Sensitivity (positive on patient with HPV+): 100,%
- Specificity (negative on patiente HPV-): 95,1%

Matrice di confusione		Real	
		RC+	RC-
Predicted	RC+	39	2
	RC-	0	10

SRLGE PET Describes presence of stripes of low value voxels

Long run emphasis CT-SIM Presece of stripes of voxels with same value

Dose Range Related to inhomogeneity of dose

Conclusions

- Radiomics is entering its mature phase:
- The number of radiomic papers is increasing exponentially
- More and more radiomic studies have solid validation
- more attention than in the past to feature reproducibility
- If you want to approach radiomics:
- Read some of the many excellent reviews on the subject
- Read the Imaging Biomarker Standardisation Initiative
- Download and use open source software

School on Medical Physics for Radiation Therapy: Dosimetry and Treatment Planning for Basic and Advanced Applications

25 March – 5 April 2019 Trieste, Italy

Further information: Activity URL: http://indico.ictp.it/event/8651/ smr3278@ictp.it

Thank you for your attention!

Michele Avanzo Medical Physicist Centro di Riferimento Oncologico IRCSS Aviano (PN) mavanzo@cro.it

