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“Images are more than pictures, they are data”
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Gillies, Radiology 2016;278:563-577.



Radiomic features

Shape
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Avanzo et al. Phys Med 38 (2017) 122-139



Radiomic features

Shape

2

compactness 2 = 367TF

Textural (2" order)

autocorrelation = > "i* j*P(i, j)
i

cluster shade=>"(i+ j—2u) *P(i, j)
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Avanzo et al. Phys Med 38 (2017) 122-139
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Textural features

* The gray-level co-occurrence matrix (GLCM) is a matrix whose
row and column numbers represent gray values, and the cells
contain the number of times corresponding gray values are in
a certain relationship (angle, distance).

Test image GLCM 0° GLCM 90° GLCM 135°
111 2 2>2 1 0 6 0 2 O 2 1 3 0
1 1_2 2 2 4 0 O 0O 4 2 O 1 2 1 0
3 3 4 4 O 0 1 2 O 0 2 0 O 0 2 0

GLCM with distance one pixel along directions 0°, 90°, 135°



Textural features

* The gray-level co-occurrence matrix (GLCM) is a matrix whose
row and column numbers represent gray values, and the cells
contain the number of times corresponding gray values are in
a certain relationship (angle, distance).

50 100 150 200 250 300 350 400 450 500 10 20

30 40 50 60

autocorrelation = Zi* i*P(, j) represents the correlation of the image along the specified direction
i.j

cluster shade =>"(i+ j —2u)°*P(i, j) P(i,j) = element of GLCM, p = average of GLCM

ij



When were features born?

* GLCM

Haralick 1973
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Textural features

e Gray Level Run Length Matrix (GLRLM) is a two-dimensional
matrix in which each element describes the number of times j
a gray level i appears consecutively in the direction specified

CORONARY EXTRACTION OF DISCRETIZATION GLRLM @ ®
SEGMENTATION VOXELS Run Length

@ 1] 3 28| e

Outer vessel wall . GLRLM matrix calculation for 8 = 0°. (a) ROI 5+5: (b) Occurrences of gray levels with run length of k =3
Bl Inner vessel wall
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Wanderley Rev. Bras. Eng. Bioméd 30 (1) 17-26, 2014; Journal of Thoracic Imaging - March 2017



Higher order variables

In the neighborhood gray-tone difference matrix (NGTDM),
the ith entry is a summation of the differences between all
pixels with gray-tone i and the average value of their
surrounding neighbors

Image NGTMD
312101110 j S(j)
11211]13]|0 0 3.25
311101213 1 1.00
1121303 2 2.00
0O|O0OJO}|O]|1 3 4.25




Kynetic variables

- Pharmacokinetics (uptake rate of contrast agent, washout...)
- Evolution in time of radiomic features in 4D DCE-MRI

4D DCE-MRI Images
v
Radiologist-indicated Tumor Center
v
Computerized Tumor Segmentation
v
Computer-extracted image based phenotypes

v
v v v v
Contrast enhancement
O O ‘ * O Vib (kinetics)
Size Shape Morphology ¥ t o)

ANes

Enhancement Kinetic Enhancement
texture curve variance




Other features

Fractal

Fusion

Vallieres, Phys. Med. Biol. 60 (2015) 5471

Hausdorff’s fractal dimension refers to self-
repeating textures of a pattern as one
magnifies the feature:
D, =-lim(log,N(#)) = lim log(N(£)

£—0 |Og( )
where N(g) is the number of € x € squares
needed to cover the 2D area.

Wavelet discrete trasform can be used to fuse
images. The weight of wavelet bands in fusion can be
used as a feature



Radiomic features

Histogram (1%t Order)
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Aerts et al. Sci Rep 6 (2016) 33860

Radiomic features vs EGF mutation status

pre-RT post-RT

Wildtype

Gabor Ener - Gabor_| Ener -dir45- Laws_Energy-

Baseline (Fig 1-a) 7766.5 1.522 0.145 5337.9 419770.4 475.2 1369.6

EGFR positive Followup (1-b) 7195.8 1.657 0.151 4043.5 327365.1 512.0 1352.9
Change -570.6 0.135 0.006 -1294.4 -92405.3 36.8 -16.6

Baseline (Fig 1-c) 3502.4 1.422 0.173 11601.7 419578.9 367.7 353.9

Followup (1-d) 4522.8 1.251 0.165 10605.5 361191.5 326.3 349.3
Chancan 1NN N N 171 N NNO - Q0cCc 9 CO207 A1 N1 c nec



Breast Cancer

ER, PR, positive, HER2 negative, stage Il
invasive breast cancer, good prognosis.

ER, PR, HER2 negative, stage Il invasive
breast , poor prognosis

Radiology November 2016; 281(2): 382-391.



Reproducibility (Test-retest )

 Measured from repeated measurements on same conditions

93(42.4%) over 219 features
were stable (Concordance

(B) Correlation Coefficient above
0.85) respectively in the
RIDER dataset

First baseline scan Second baseline scan

Textural  features are more
reproducible with respect to
maximum and mean SUV.

63% of features stable (Intraclass
correlation coefficient > 0.9)

Translational Oncology (2014) 7, 72-87 van Velden, et al.,, Mol. Img. and Bio., 18(5), 2016



Robustness: CT

* Robustness is variability with changing conditions (e.g.
reconstruction parameters, scanner, patient position)

Radiomic features from CT are sensitive to:
e Scanner
e Slice thickness

* reconstruction algorithms
* Segmentation

od Al L

Traverso Int J Radiation Oncol Biol Phys, Vol. 102, No. 4, pp. 1143-1158, 2018




Robustness: PET

* Image reconstruction algorithm (OSEM, TOF, PSF, PSFTOF)

 The method of quantization or discretization, where voxel
intensities are grouped into equally spaced bins, also affects
reproducibility

* Scan duration (= noise)

* Segmentation
PET 3D phantom

&

Tumor 1 Tumor 2 Tumor 3

Pfaehler, Medical Physics, 46 (2), February 2019



Robustness: MRI

 Radiomic features extracted from MRI scans depend on the pulse
sequence, field of view, field strength, and slice thickness

e Effect of recostruction (iterative vs non iterative) algorithm is small

Digital ground truth phantom used as input to a MRI simulator in Matlab.
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Yang, Physica Medica 50 (2018) 26—36



Which are the most stable features?

FIRST SHAPE TEXTURE
ORDER METRICS ANALYSIS COMMENTS
ROI SEGMENTATION
MANUAL DELINEATION + YYs YY) Mainly PET studies and one multi-center CT study.Shape metrics
from PET may be less subject to inter-observer differences. Semi-
SEMI-AUTO / AUTO ¥ e *” automated methods generally improve reproducibility.
IMAGE RECONSTRUCTION
RECONSTRUCTION FILTER ¢+ +*e ‘e
Consistent in a few CT and PET studies of NSCLC.
VOXEL SAMPLING *" +*e ‘e
o AEQUIS]TIR%!P?EI?{?RGYSMDHDN " PN e ;n;giicstent over single-institution PET and CBCT studies of
SCATTERED RADIATION *" [ e In one CBCT study of NSCLC, but did not evaluate shape metrics.
CT SCANNER " *"” *e In one multi-institutional CT study in NSCLC , effects were

similar in magnitude to inter-patient differences.
DIGITAL IMAGE PRE-PROCESSING

NOISE AND SMOOTHING " ? *" Single—Fenter CBCT and planning .CT study in H&N; slmoo’Fhin'g
and noise have less effect than high-pass and logarithmic filters.

INTENSITY DISCRETIZATION " . . Consistent in H&N studies of perfusion CT and PET, bin size
may have less impact in PET.

Entropy was consistently among the most repeatable/reproducible first-order features. There were inconsistent findings for

skewness and kurtosis.

CONSENSUS ABOUT MOST STABLE OR . ) o ) o . o
LEAST STABLE RADIOMIC FEATURES | Certain shape metrics may be reproducible in PET, and slightly less reproducible in CT, though it is unclear which individual
features prove to be stable.

No emergent pattern or consensus for highly reproducible textural features. Coarseness and contrast were among the least
reproducible.

¢ less likely ¢ probable ¢#¢ highly likely influenced by parameters

Good repeatability is a necessary, but not sufficient condition for high predictive power of a
feature,

If a feature has a low repeatability, its predictive power must be low, too

If a feature has a good repeatability, we cannot conclude anything about its predictive power

Traverso Int J Radiation Oncol Biol Phys, Vol. 102, No. 4, pp. 1143-1158, 2018



Radiomics and biology

Radiomic features provide a description of the
appearance of the tumor in the medical image

Medical images are not the tumor, but a
representation, but...

...in biopsy-based assays, the extracted sample does
not always represent the entire population of tumor
cells, and...

radiomic features assess the comprehensive three-
dimensional tumor bulk by means of imaging
information



Radiomics and biology

EXTRACELLULAR_REGION_PART
EXTRACELLULAR_SPACE
REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS
DNA_DEPENDENT_DNA_REPLICATION
REGULATION_OF_IMMUNE_SYSTEM_PROCESS
TISSUE_DEVELOPMENT
LEUKOCYTE_ACTIVATION
MITOTIC_CELL_CYCLE_CHECKPOINT
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Radiomic features are associated with gene : e of 2 3 z
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Aerts et. al Nat. Comm. 5:4006 10.1038/ncomms5006



Radiomics and biology

100

* Tumor histology (squamous
cell carcinoma, large cell
carcinoma, adenocarcinoma
and “not otherwise - .
specified”) o : :

= Radiomic Features Nomal Features

Percentage

10

Patil, Tomography 2 (4) DECEMBER 2016

 ALK/ROS1/RET fusion-positive tumor

- younger age, advanced tumor stage, solid tumor on CT, SUV__,
tumor mass, kurtosis and variance

- sensitivity and specificity, 0.73 and 0.70, respectively.

Medicine Volume 94, Number 41, October 2015



Biology and radiomics: causal effect?

4 day post irradiation

Tumor size of 500mm3

A Wavelet_LHH_stats_rms , p = 0.016 Wavelet_LHH_stats_rms , p = 0.032
* Tumor cells of colon cancer(HCT116, e —
GADD34 inducibili) injected in the * |
flank of nude mices [ —
* Some mices had placebo other 1 | S |
. . . DOX- DOX+ DOX- DOX+
recelved a drug WhICh Induces Wavelet HHH_stats_md , p = 0.042 Wavelet_HHH_stats_md , p = 0.016
overexpression of gene GADD34 in o .
the rumor '
- ]| ¢ C——
e (T scan was acquired and radiomic 1
features extracted in both cohorts
DOX- DOX+ DOX- DOX+

Randomized Doxycycline
or Placebo

Randomized 10Gy or no _
radiotherapy

Tumor cell injection
4 days
interval

tumorsize |8
200mm’

Test-retest
Multiple delineations

Panth et al. Radiother and Oncol 116 (2015) 462—-466




Definition of radiomics

 The term radiomics originates from the words “radio” which
refers to radiology, i.e. medical images in the broad sense (CT,
PET, MRI, US, mammography etc.), and “omics”, first used in
the term genomics to indicate the mapping of human genome,
indicating large scale analysis

 The goal of radiomics is prediction of biological or clinical
endpoints by:

- quantitative analysis of tumor/organ at risk through extraction
of a large amount of radiomic features

- use of machine learning for building predicting models

Avanzo et al. Phys Med 38 (2017) 122-139



Radiomics: workflow

I. Imaging Il. Contouring

Ill. Pre- Processing, filtering Image features
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Pre-processing

Preprocessing aims at reduce noise and calculation time and to harmonize
images of different patients:

1) Discretization of the intensity levels. 2 methods are used: :

- “fixed bin size”, where intensity levels are grouped into bins of fixed size,
such as 25 Hounsfield Units nella CT

- “fixed bin number”, where the number of levels are fixed, e.g. 32 or 64
2) Resampling of image into voxels with size e.g. 3x3x3 mm?3.

Interpolation algorithms used: nearest neighbour, trilinear, tricubic

convolution, tricubic spline interpolation

CORONARY EXTRACTION OF DISCRETIZATION GLRLM
SEGMENTATION VOXELS

Outer vessel wall
B Inner vessel wall




Filtration

Low-pass and high pass filters: Filter Laplacian of Gaussian (LOG):
@) 1 X% + y2 —XZHZIZ
PCT ’ Log (X, y) =— . |:1_ : :|e 20
’ . ! % = 5 4 o 20
AL Rme) ! o = radius of gaussian
=8 N ‘

Baseline

an

Low-Pass - Gaussian
Cut off=0.0563 Cycles/mm)

@ .

RN
1‘6 |_.H
High-Pass (w=5) 50
100
150
Wavelet Transform 2D: .
50 100 150 200 250 50 100 150 200 250
HL HH
50 i ] : 50
100 e 100
150 ; 150
Bagher-Ebadian et al. Med. Phys. 44 (5), May 2017, 1755 o




Definitions of radiomic features

 Some papers report comprehensive formulas of radiomic features:
Kickengereder et al, Radiology 2016;:160845.
Aerts et. Al, NATURE COMMUNICATIONS | 5:4006 | DOI: 10.1038/ncomms5006

- Some inconsistencies in definitions:

Paper 1 Paper 2
VE AZ

compactness 2 = 36;&'? compactness 2 = 363’Tﬁ

@ Cornell University

arXiv.org > cs > arXiv:1612.07003

Computer Science > Computer Vision and Pattern Recognition

Image biomarker standardisation initiative

Alex Zwanenburg, Stefan Leger, Martin Vallieres, Steffen Lock, for the Image Biomarker Standardisation Initiative
{Submitted on 21 Dec 2016 {v1), last revised 17 Sep 201 8 (this version, v7))



Open-source softwares

ePAD, Stanford University, doi.org/10.1016/B978-0-12-812133-7.00013-2

PyRadiomics/Radiomics , Harvard Medical School 10.1158/0008-5472.CAN-17-
0339

Texture Analysis Toolbox, Martin Vallieres,
https://github.com/mvallieres/radiomics/tree/master/TextureToolbox

Quantitative Image Feature Engine (QIFE) Stanford University, 10.1007/s10278-
017-0019-x

IBEX: MD Anderson Cancer Center, doi: 10.1118/1.4908210.

MaZda, Technical University of Lodz, Poland, d0i:10.1016/j.nima.2012.09.006

LifeX , Gustave Roussy, Parigi, 10.1158/0008-5472.CAN-18-0125



Feature selection

The building of a radiomic models has two phases.

In the first, feature selection, the variables are reduced by
eliminating those that are:

Redundant, because they are inter-correlated
Not predictive (not associated with the outcome)

937 variabili B
6 - 9 variabili



Feature selection methods

minimum redundancy maximum relevance (mRMR) calculates mutual
information (MI) between a set of features and the outcome. The set of
features with maximum Ml is selected.

RELIEF (RELevance In Estimating Features), ranks the features according to
hw well they separate patients with different outcomes but similar values
of features:

Better score to features with different values in patients with different
outcome

Penalizes features which have different values in patients with the same
outcome

Stepwise selection is an iterative process which adds or removes features
to a model at each step. Then the variables are included in the model
according to a statistical test whith null hypothesis that the variable has
zero coefficient in the model-



Machine learning

e Radiomic signature: combination of variables with high predictive

power

e Classificator: model to classify the patient e.g. responder, non

responder to therapy

Kaplan-Meier radiomics signature

1.0 9+ — <= Median

--> Median

0.8 1 Training dataset
2 . Validation
2 s
S 0.6 K
e
o
2 04 ,
> -
w L o A
0.2 - B s o

Lung1: Maastro
Lung2: RadBoud

0 200 400 600 800 1,000 1,200 1,400
Survival time (days)

Aerts et. Al, NATURE COMMUNICATIONS | 5:4006

TABLE 6. Summary of Classification Results Obtained by 10-Fold CV

Parameter Algorithm
set
Ti ANN
k-NN
T2 ANN
k-NN
DWW ANN
k-NN

r

rate

0.968
0.935
0.968
0.935
0.903
0.968

| FL false-posicive; TE true-positive.

Fr
rate

0.091
0.091
0.273
0.182
0.182
0.182

Sptﬂ;iﬁtit}’

0.909
0.909
0.727
0.818
0.818
0.818

Precision

0.968
0.967
0.909
0.935
0.933
0.938

J. MAGN. RESON. IMAGING 2016;44:445-455.



VI

* Logistic Regression

0.3

Probability of Lung Mets

0.2
0.1

0
-60

achine learning

— Sigmoidal response
—— 85% CI: Lung Mets

@ Status: Lung Mets

- 95% CI: No Lung Mets
*® Status: No Lung Mets

40 50

60

-50 -40 30 =10 0 10 20

-20 10 30
Multivariable model response

Support Vector Machine

https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html

Length of petal

Classificazione automatica dell’iris
\

25 3

Width of petal'

1.5 2 3.5 4 4.5 5



Machine learning

Random forest

Unsupervised methods

Decision Forest

Features

sjualied



Overfitting

* Too many variables --> risk of overfitting

underfit mormal orgerfit

F )( {:} A )( f:_j
X S@G O X SGD O
X, | X 000 x, | X Q0O
OxX XO
X 00 X O
XX % X Xy X X%
Xx X XX X
X, } X, .
glth + Oz, + uzs) gl + Byxy 4 Baxs + Bax? 4 B4zl 4 Buzyza) G0 + BTy ¢ Byzs 4 Bhal 4

8,23 + Bex Ty + Bexizy 4
8.z 23 + Byziz] + ﬂg:!': ...

 The overfitted model fails when used on a dataset different from
the training dataset (poor generalizability)

e OQverfitting can be avoided with careful feature selection and
validation

http://mlwiki.org/index.php/Overfitting



Validation

According to TRIPOD (Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis) criteria,
there are the following validation methods:

1) Developing and validating on the same data, which gives
apparent performance. This evaluation is usually optimistic
estimation of the true performance

2) Developing the models using all the data, then using resampling
techniques to evaluate the performance

3) Randomly split the data into 2 groups for development and
validation separately

4) Split the data non-randomly (e.g. by location or time), which is
stronger than 3)

5) Develop the model using one data set and validate on separate
data. Stronger than performing posterior splitting of data

« Validetion strength

Ann Intern Med. 2015;162(1):W1-W73



Resampling techniques

Cross validation | |
nnnnnnnnnnn CIITIrrrm-="-
2" jteration | ‘ | | | | | | .:l — Ez li
e [T T T 11| M T]=6[ "%
Bootstrap e T T T T T T T] = o

X284%X678910 1 X3 4X67&910
Bootstrap sample 1 Bootstrap sample 2 ....
14355378910 1231585891

Other techniques: “jackknife” or leave-one-out (LOOCV), where a
patient is removed from analysis at each itaration



Examples of predictive models

Kaplan-Meier radiomics signature Kaplan-Meier radiomics signature
1.0 <= Median 1.0 4= — <= Medan
Eh Training dataset Pt
0.8 4 “ . . 0.8 4 Al s T 1
= LY Validation E = it
5 s 3 T
2 06 ?‘k S 0.6-
3 o
(=8 ﬁ"\‘:. (=}
S 04 LS. g 04 -
% ', e b mm e oo
@ ol ] A
02 s 0o Validation
e Validation
{ |Lung2: RadBoud 0.0 4 .
0 200 400 600 800 1,000 1,200 1,400 0 500 1,000 1,500 2,000
Survival time (days) Survival time (days)

e Survival for lung and H&N squamous cell
carcinoma

Aerts et. al NATURE COMMUNICATIONS | 5:4006 | DOI: 10.1038/ncomms5006

Gleason score and biovhemical
relapse in prostate tumor

Distant metastases from
sarcoma of extremities

Gnep, J. MAGN. RESON. IMAGING 2016

Vallieres, Phys. Med. Biol. 60 (2015) 5471



Immunotherapy

* Model for immunotherapy
* Training set of 135 patients with different tumors

* Radiomic signature for presence of CD8 antigens
estimated from RNA sequencing

Peripheral ring Tumour
_ Phenotype of tumor desert-immune
Gene expression of CD8 (few CD8 cells) vs inflamed (many Survival of patients treated with
cells (119 pts) cells CD8), 100 pts immunotherapy (137 pts)
100 ' Radiomics-based CD8 cell score
— —+ High —+ Low
7 751
£
- 2
T
254
AUC=0.67 (95% Cl 0.57-077) AUC=076 (95% C1 0-66-0-86) ey 0o (1035087
' T T T T T ' ' I ' ' 0 | | T | | | | \ |
0 0.2 0-4 0.6 0-8 1.0 0 02 0-4 0-6 0-8 1.0 0 4 8 12 16 20 24 28 32 36 40
False-positive rate False-positive rate . Time (months)

Sun et al. Lancet Oncol 2018; 19: 118091



Prediction for local recurrence in SBRT

113 patients

close to the chest wall:
10-12 Gy * 5 fractions,
12-14 Gy * 4 fractions
Other: 18 Gy * 3

Free breathing CT

LoG 2mm 2D glszm largeAreaEmphasis

LoG 5mm 3D rigl shortRunEmphasis

LoG 4 5mm 3D stats skewness
LoG 2mm 3D glcm infoCorr1

Locoregional recurrence

(events = 24/113)
Shape volume
Shape maxDiameter3D
Shape maxAxialDiameter
Wv LLH stats range
Wv LHL stats totalenergy

GLCM infoCorr1
Wv HLL stats var

Whv LLL glem infoCorr2
GLCM clusShade

Stats median

LoG 5mm 2D glcm correll
Overall Stage

Gender

Performance Status

Age

0.3 04 0.5 0.6 0.7
(Inv.Prop.) (Rand.) (Prop.)

Concordance Index (Cl)

. Statistics . Texture . Conventional . Clinical

No feature had significant
correlation with recurrence!

Huynh, Radiotherapy and Oncology 120 (2016) 258—-266



Prediction for local recurrence in SBRT from PET

1.0 4 ——T T
0.8 4 SUVmax
------ SUVmean
Zos Ty
ZE' TLG
E e EN{ropy
& 0.4 4
= = = Busyness
Contrast
02 1 Correlation
T .
0.0 4 'em iy . . . .
. T S TN

1-Specificity

Figure 1 Value of textural and standard PET parameters for
prediction of local recurrence. ROC curves for prediction of local
recurrence through different PET parameters. Coarseness is the
same curve as busyness.

45 patients

24-45 Gy delivered in 3-5 fractions.
Dose prescribed to the 60% isodose
which had to cover 100% PTV

Significant correlation of
several textural parameters
with local recurrence.

AUC value for entropy of 0.872

Pyka et al. Radiation Oncology (2015) 10:100 DOI 10.1186/s13014-015-0407-7



Regional control after SBRT:PET/CT

e Radiomics on PET/CT for prediction of control and survival in
SBRT-treated lung cancer patients.

150 patients, 172 cancers
48-56 Gy SBRT Fractionation not included

Oikomonou SClenTIfIC REPOrTS | (2018) 8:4003 | DOI:10.1038/s41598-018-22357-y



Regional control after SBRT:PET/CT

e Radiomics on PET/CT for prediction of control

Radiomic signature “PC4”
_Y\TL—\— Kurtosis

(PET)
L 1t order
Skewness*
PC 4 < -0.09 (high risk) (PET)

PC4 > -0.09 (low risk)

Homogeneity
(PET)

Textural Normalized
Entropy

(PET)
Area regularity

(PET)

Area regularity

Subgroups of low and high

recurrence free survival Shape (CT)

were determined by a cut-off value S g

of 0.09 for radiomic signature PC4 regularity (2)
(PET)

Oikomonou SClenTIfIC REPOrTS | (2018) 8:4003 | DOI:10.1038/s41598-018-22357-y



Lung injury

* Radiomic features significantly correlates with lung-injury
scored by oncologist post-SBRT (18 Gy*3, 12.5 Gy*4, 12 Gy*5)

 GLCM features outperformed histogram features
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Prediction of radiation pneumonitis

* 50.4 Gy, non-SBRT, esophageal cancer

Mean CT Pixel Value
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Int J Radiat Oncol Biol Phys. 2015 April 1; 91(5): 1048-1056



Differentiation of recurrence

* On two-fold CV, first-order features yielded 73% accuracy,
second order 76%—77%

* longest axial diameter and 3D volume, gave 60% and 57%

(a) Recurrence

Om

Recurrence

Benign
changes

FIG. 2. Manual delineations of post-SABR consolidative and ground-glass opacity findings throughout follow-up for a patient with recurrence (a) and radiation-
induced lung injury (b). The zero-month (Om) time point indicates the pretreatment lesion. The solid lines enclose consolidative regions and the dashed lines
enclose ground-glass opacity regions.

Mattonen et al. Med. Phys. 41 (3), March 2014



Radiomics of oropharyngeal tumor

* Observational, retrospective, monoinstitutional study at the
CRO - Aviano

* Collaboration among Medical Physics, Radiotherapy, Nuclear
Medicine, Radiology

* Has the objective of building a predictive model for:
- HPV status, and

- response (complete/not complett) at 3 months from the end
of radiotherapy

From radiomic analysis of pretreatment images of the patient
and dose distribution



Radiomics and HPV status

 The tumors in HPV-positive patients appear more
homogeneous and small in CT

FIG 3. Representative examples of patients with HPV-positive and HPV-negative SCC. A, HPV-
negative right tonsillar squamous cell carcinoma (arrows) in a 65-year-old man. B, HPV-positive
right tonsillar squamous cell carcinoma (arrows) in a 65-year-old man.

AJNR Am J Neuroradiol 36:1343—-48 Jul 2015



Radiomics and HPV status

* Model based on contrast-enhanced CT, 315
patients oropharingeal

* 150 patients for training, 165 validation
* Model had AUC of 0.915 in validation

Yu K, Clinical and Translational Radiation Oncology 7 (2017) 49-54

ROI1 ROI2 ROI3

 Model for prediction of HPV determined from
pl6
* CT, no contrast

* Multicentric database of 778 patient, randomly
split into training dataset (80%) and validation (N
= 150).

* The model scored AUC=0.764 in validation

Leijenaar, Br J Radiol 2018; 91: 2017049811075



Oropharyngeal: local control

465 pazienti

* Local control proven pathologically (biopsy and/or resection) or
radiologically

* Analysis on contrast enhanced CT
 Radiomic signature based on:

- Intensity Direct Local Range Max: average of range (max-min) for every
voxel with respect to surrounding region

- Neighbor Intensity Difference Complexity: measures the perceived
complexity in the image

The radiomic signature had higher predictiove capability than variables HPV
status and administered therapy

SCIENTIFIC ReportS | (2018) 8:1524 | DOI:10.1038/s41598-017-14687-0



Methods

* 51 Pazients treated with IMRT

e 70.95 Gy to microscopic disease

* 62,70 Gy to high risk lymph-nodes
e 59,10Gy “ lowrisk “ “

Characteristics of patients

Patients 51

Male/female 41/10

Chemotherapy (no, Concomitant,

_ 1/12/36/2
neoadjuvant, neoad.+conc.) AU

Stage TNM 8°: 1, 2, 3, 4A, 4B 14/8/4/21/4

HPV Status (+,-) 28/23




Dose

Tumor was contoured by one clinician using PET

Contour reported on CT-PET and simulation CT using image
registration

Variables extracted also from dose distribution



Protocols of acquisition

PET Philips Gemini TF 16

Average injected activity of 8F-FDG was 280 MBq
Algorithm of reconstruction PET “Blob-OS-TF”,

a 3D ordered subset iterative TOF reconstruction technique
Matrici 144 x 144 con voxel 4 x 4 x 4 mm3

CT-PET Philips Gemini TF 16
 120kV, 108 mA average, pitch 0.83, acquisition time 0.5 s
* Slice thickness 5 mm, kernel: ‘B’ body

CT-SIM Toshiba Aquilion/LB
e 120 kV, average tube current 300 mA , rotation time 0.75 s
e Slice thickness 2 mm, kernel: ‘C13’



Methods

* Software written “in-house” in Matlab, benchmarking with Ibex

V1.08

IBEX

Imaging Biomarker Explorer Software

e 21 shape variables
* 47 textural (+ filters gaussian, LOG, median)

* 5 higher order (“ “ “ )
* |ntotal: 937 features per patient

* Stepwise feature selection, support vector machine
* Cross-validation



Preliminary results (1)

* Model for HPV status:

* 1 shape (solidity), 2 simulation CT, 1 PET, 2 dose variables were selected
* Inthe cross-validation:

- Sensitivity (positive on patient with HPV+): 85,2%%

- Specificity (negative on patient HPV-): 83,3%

Real
HPV+ HPV-
HPV+ 23 4
Predicted
HPV- 4 20

Inv.Diff.Norm PET
Measures local inhomogeneity

GLCM Cluster Prominence
Measures variability of values




Preliminary results (2)

* Model for complete response 3 months from therapy:

* 1shape (roundness), 3 simulation CT, 4 PET features were selected
* Inthe cross-validation:

- Sensitivity (positive on patient with HPV+): 100,%

- Specificity (negative on patiente HPV-): 95,1%

] ) ) Real
Matrice di confusione
RC+ RC-
Predicted 1o 39 2
RC- 0 10
Dose Range
Related to inhomogeneity
of dose

SRLGE PET
Describes presence of stripes of Long run emphasis CT-SIM
low value voxels Presece of stripes of voxels Q

with same value



Conclusions

Radiomics is entering its mature phase:

The number of radiomic papers is increasing exponentially
More and more radiomic studies have solid validation
more attention than in the past to feature reproducibility
If you want to approach radiomics:

Read some of the many excellent reviews on the subject
Read the Imaging Biomarker Standardisation Initiative
Download and use open source software



School on Medical Physics for
Radiation Therapy: (CTP)
Dosimeltry and

Treatment Planning for Basic and
Advanced Applications

25 March - 5 April 20]9 Further information;:
- Activity URL: hitlp://indico.ictp.it/event/8651/
Trieste, ltaly smr3278aictpit

Thank you for your attention!

Michele Avanzo

Medical Physicist C R O

Centro di Riferimento Oncologico
IRCSS Aviano (PN) mavanzo@cro.it AVIANO




