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Why hadrons?



State of the art of XRT
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How do we solve the problem?
Spreading the unwanted dose around

Shape and intensity

Dose per field Cumulative dose
Of a single field P
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Pro: Good conformity
Con: large volume of tissues receving

some dose Courtesy B. Mijnheer



What if instead of this ...
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. we could use this?
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Dose shaping in water achievable continuosly from Ocm to 32cm
Accuracy and precision < 1mm

(Slightly) sharper dose falloff for lower energies/depth
Physical limit (falloff due to range straggling) = 0.016*Range



(dose shaping in

Lower energies:
Larger beam size at patient entrance
Less scatter in the patient
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Higher energies:
Smaller beam size at patient entrance
More scatter in the patient
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From physics to biological effect



Energy loss of a "heavy charged particle”

Most energy losses are due to Coulomb interactions with orbital
electrons.

Analytical expression provided by the Bethe-Bloch equation

Property of the particle
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Stopping power of therapeutic beams

10000

===Protons

£
< ===Helium
1000
2
S Carbon
=
Q
3 100
o
Q
o
=
S 10
o
ot
(") ]
1
0 50 100 150 200 250 300 350 400
Energy (MeV per nucleon)

Different ions have different SP by orders of magnitude
Protons should not be considered high LET radiation



Stopping power of therapeutic beams

Beam direction
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A dramatic increase in SP (only) happens at the very end



Local Dose [(Gy]

Carbon ion - radial track
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Differences in physics =2 differences in
biological effect
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Thus the concept of relative biological effectiveness (RBE)
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NB1 Saying that “particle x has RBE y” is often a (gross) simplification.

NB2 RBE is a ratio, i.e. its variation may have to do also with variation
in effect of the reference radiation



RBE variations between and within particles
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At higher LET, saturation effects > RBE decrease.

What matters is not high vs low RBE per se
but where the RBE peak is with respect to the dose peak



C ions — Example of physical vs biological dose
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(One additional reason why particle therapy may seem (very) uncertain
is that the biological effect is included in the prescription, unlike in XRT)
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Protons - LET vs energy vs range
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RBE

Proton RBE vs dose per fraction - in vivo
(animal studies)
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From physics to technology



Radiological Use of Fast Protons
ROBERT R. WILSON
Ressarch Laboratory of Physics, Harvard Usiversity

XCEPT FOR electrons, the particles
whichhwbemmwhigh

energies by machines such as cyclotrons or the energy of the proton.

Thus the specific
Van de Graaff generators have not been ionization or dose is many times léss where

directly used therapeutically. Rather, tbemmtasthcﬁsneuhkhmgy
the neutrons, gamma rays, or artificial than it is in the last centimeter of the path
t?dioactivida produced in various reac- where the jon is brought to rest.

““““ L
1
1200
¥ 1000
3
x
A 800
-
2 !
S M
2 600 -
h -
5 '
B 400 PROTON BEAM —+f L
& 4 SINGLE PROTON
'l
200
" % .8

) 2 4 6 ) 0 2
DEPTH, CM.
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Layout of a PT centre (Trento, IT)




Layout of a Carbon ion centre (Heidelberg, GER)
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Cyclo in Trento
key specs

Isochronous cyclotron
235 MeV proton energy
300nA beam current
Typical efficiency:55%"™

Conventional magnet coil:1.7-2.2T (fixed field)
RF frequency: 106 MHz (fixed frequency)
Dee voltage: 55 to 150kV peak

Approx weight: 220 tons
Diameter: 4.3m
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Small pencil beams

Pencil beam
(a few mm)

scanning

(PBS) Scanning magnets to

position the beam in
the transversal plane

Energy selection to control the peak depth

PBS is the gold standard for proton beam delivery



Hadron-specific medical physics issues



Ideal scenario

.': .‘! -'{ AT ATE :
Fr _.-'t..-‘_‘,.{_.‘:!i-"_- EE A
e dreeal Ll
R e e R L L.

IF entrance dose is not a significant concern (e.g. target starts
close to the surface)

IF we are confident about range in the patient

This is the solution



... Not so fast

Range uncertainties are inherently part of proton therapy

They do not have to do with fluctuations in beam energy at
patient’s entrance (i.e. with proton range in water).

They do have to do with proton range in the patient, i.e. with
differences between planned and actual anatomy density
distribution due to

v Wrong range estimation at treatment planning and/or
v Set up errors and/or

v Organ motion and/or

v Anatomy changes and/or

The distal dose falloff is a powerful tool, but it must be used carefully






Model of the (static) patient for dose
calculation



In theory, «proton CT» is what we’d like to have

Tracker Tracker

Calorimeter

Picture from
fnal.gov



In practice, we start from CT scans

CT (X, y) — 1000 IL[(X, y)_ luwater

zuwater
P, = 'ONeW Photons
PV
P, = PN —> SPH:Pe longeCZﬂz/lm(l_ﬂz)]_ﬁz Protons
¢ pWN;V log[Zmeczﬂz/Iw(l —,82)]—,82



Impact of different calibration curves
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(Large) surgical implants quite
common in PT patients

Issues with image quality, SPR
estimation and dose calculation

When possible, implants material
should be characterized with
phantoms

Different PT centers have different
policies about what (not to) treat

Dental implants may be very
problematic too



Dose calculation



X-rays vs p+ dose calc - source model

Photons Protons (PBS)

Broad energetic spectrum (quasi) monoenergetic
spectrum

The beam interacts with quite

a few objects before reaching Nice and gaussian at the

the patient nozzle exit

Beam (or segment)-specific beam Steered by magnets, not
modifiers shaped by iron

For deep seated targets, modeling a proton PBS beam is
actually simpler than modeling a photon beam



Beam scanning & beam modifiers

(PBS is not entirely patient-specific hardware free)

Any scattering material
between the last focusing
element and the patient

makes dose calculation
difficult

The thinner the
preabsorber, and the
smaller the airgap, the
better.




Gamma passing rates vs. depth in homogeneous medium
(i.e. issues with the source model)
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Dose calculation in heterogeneous medium
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"Spot decomposition”

Accurate raytracing of the spot in the patient is crucial to
achieve accurate dose calculation



Select dose for plan ¥ | Plan dose: P1F1_PB (CT charlie 15-17)
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Charged particles planning &
geometrical uncertainties



PTV and particles are not good friends

PTV

The Planning Target Volume approach works when

a) Margins are defined correctly vis a vis the geometrical
uncertainties

b) The dose is as homogeneous as possible
c) The dose is invariant after anatomy translations/rotations



Margin-based approach in particles for
single field optimization (SFO)
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Margins more problematic in MFO/IMPT




MFO & geometrical uncertainties

In MFO planning there isnt an explicit method to

- Handle geometrical&range uncertainties

- Place the dose gradients at specific positions

- D%cide whether lateral penumbra or distal fall-off should be
use

In theory there is no other way to explicitely include them in
the optimization (a.k.a. ‘robust optimization’)

(As always) clinical practice does not match theory
(as always) because of a mix of good and bad reasons



Worst case optimization

1) Calculate the worst case dose distribution D,
2) Optimize

Pflugfelder PMB 2008

5mm
Range
Uncert.



Min-max optimization
Set up errors and range uncertainties can be handled

Instead of optimizing the nominal scenario

minimize fld(x))

X

subject to x=0,

One ‘minimizes the damage’ in a realistic worst case
scenarios

minimize max{f(d(x,s))}

x FES

subject to x=0.

Fredriksson MedPhys 2011
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Image guidance and adaptive therapy



How much adaptive are we doing nowadays?

0.7%

W cCT -> rePCT (BSC)
B cCT -> rePCT (H&N)
B cCT->rePCT (E)

W cCT->rePCT (P)

Courtesy Lorenzo Placidi - PSI

W Patients with at least one rescan ~ Replans

PSI

730 patients
66% BoS
14%H&N
Extracranial CNS
15%

Pelvis 3%

Trento
120 patients

About 50%
intracranial
and 50%

extracranial



How much adaptive do we need? XRT vs PT

Lung XRT - Re-calculated at fx 10 and 20 on repeat CTs
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How much adaptive do we need? XRT vs PT
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What imaging tools in the
treatment room are
available/needed?

CT on rail

Different compromises with
respect to CBCT.

Worth evaluating.

It may remain a niche.

CBCT

It's coming for protons too,
but nowhere near a
standard yet.

Is the compromise of
image quality vs speed of
intervention good?

In vivo range MRI
measurements Don’t hold your
Active area of breath

developments

Not “ready for primetime”
Proton radiography
Proton CT

PET

Prompt Gamma



Gantry Mounted CBCT

+ FOV: 34 cm axial and 34 cm Idngitudina field of view
* Rotation speed of 0.5 or 1 RPM (full scan or half scan)
+ First installation in UPenn room Sept 2014

Courtesy Kevin Teo



From CBCT to Virtual CT (vCT)

Method works in most cases

Limitations:

(1) Complex anatomical change not
handled correctly by deformable
image registration (DIR) software

(2) Subtle changes in lung/tumor
density not accounted for

C Veiga et al, IJROBP 95 549 (2016)

Courtesy Kevin Teo



CT on rail as a solution for image guidance in p+

High image quality needed for dose recalculation and
adaptive regimes



Conclusion

It's a good time to be a medical physicist in particle therapy.

There are many opportunities to make an impact, both as
researchers and as clinical medical physicists.

We are ready to shift our focus away from the equipment per
se and to focus on the interactions between technical tools
and clinical outcomes.



Grazie



