Multi-Qubit Robustness by Local Encoding

Quantum Information and Quantum Matter Group www.iip.ufrn.br/qiqm

Rafael Chaves

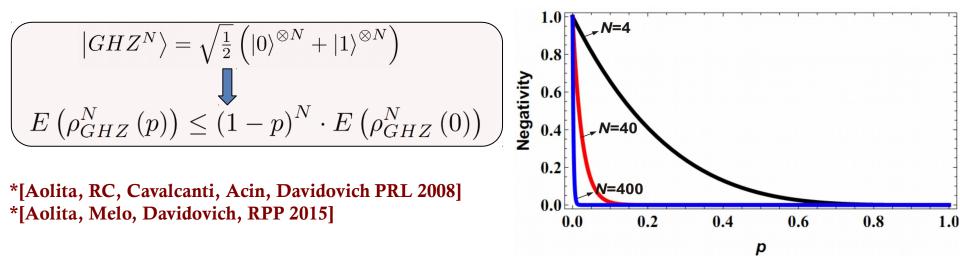
Conference on Quantum Measurement, Trieste 2019

Few words about Natal...

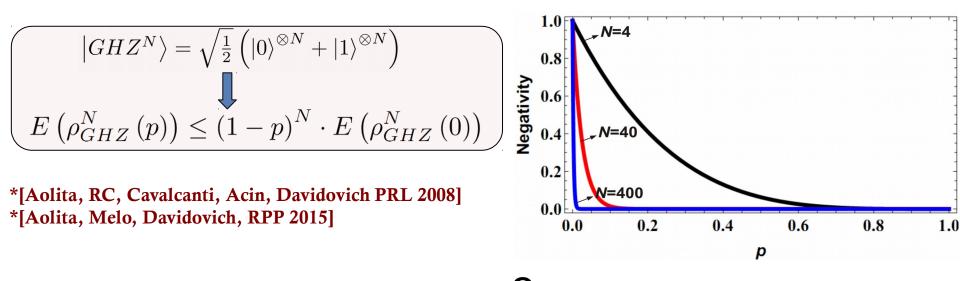
Cavenne

What is this talk about?

Quantum correlations can be fragile...



Quantum correlations can be fragile...



Fragile Entanglement = Fragile resource

Quantum Metrology

$$\delta \lambda \ge \frac{1}{2\sqrt{\nu\mathcal{F}}}$$

Apparently, any full-rank noise will spoil scaling quantum advantages.

$$\begin{array}{ccc} \mathcal{F}\left(\rho_{sep}\right) & \leq & N \\ \mathcal{F}\left(\rho_{GHZ}^{N}\left(\rho\right)\right) & = & \left(1-p\right)^{2N}N^{2} \end{array}$$

*[Huelga et al., PRL 1997]
*[Escher et al. NatPhys 2011]
*[Demkowicz-Dobrzanski et al. NatComm 2012]

Quantum correlations can be made robust...

Solution 1 (general state, any noise) Quantum error-correction codes

- Error Syndrome
- Feedback correction

Quantum correlations can be made robust...

Solution 1 (general state, any noise) Quantum error-correction codes

- Error Syndrome
- Feedback correction

Solution 2 (GHZ state, white noise) Encode each logical qubit into a GHZ state

*[Frowis, Duer, PRL 2011]

- Protection is achieved passively
- Experimental overhead

$$\begin{array}{ccc} \left| 0 \right\rangle & \rightarrow & \left| GHZ_{+}^{M} \right\rangle = \left| 0 \right\rangle^{\otimes M} + \left| 1 \right\rangle^{\otimes M} \\ \left| 1 \right\rangle & \rightarrow & \left| GHZ_{-}^{M} \right\rangle = \left| 0 \right\rangle^{\otimes M} - \left| 1 \right\rangle^{\otimes M} \end{array}$$

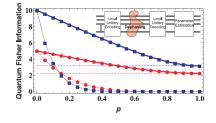
Decay rate of entaglement is still (1-p)^N but now p exponentially decreases with M. What about noise with a privileged direction?

- Trapped-íon experiments
- Photonic polarization-qubits

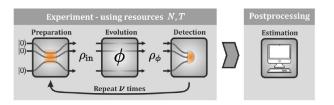
GHZ entanglement can be made exponentially more robust

Outline

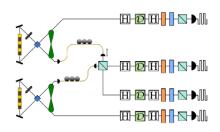
• Experimentally friendly robust GHZ entanglement



• Applications in Metrology



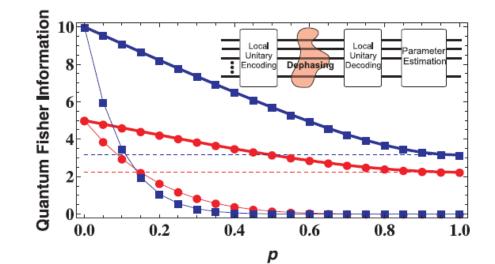
• An experimental investigation

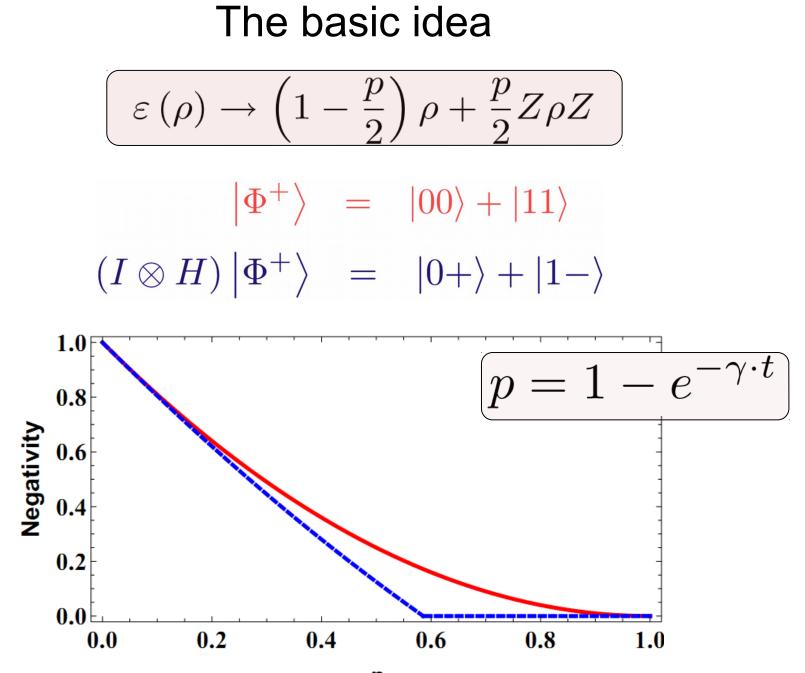


• Some puzzling open questions

Experimentally friendly robust GHZ entanglement

*[RC, Aolita, Acin, PRL 2012]





р

What is the most robust local encoding against dephasing?

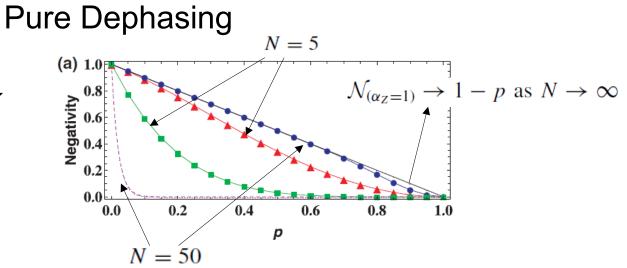
$$\varepsilon(\rho) \to \left(1 - \frac{p}{2}\right)\rho + \frac{p}{2}Z\rho Z$$
$$|\Phi_{+}^{N}\rangle \doteq \frac{1}{\sqrt{2}}(|0\rangle^{\otimes N} + |1\rangle^{\otimes N})$$

 Considering the negativity and numerical optimizations up to N=10 show that the optimal states are the transversal states.

$$\begin{split} \left| \Phi_{+T}^{N} \right\rangle &\doteq H^{\otimes N} \left| \Phi_{+}^{N} \right\rangle = \frac{1}{\sqrt{2}} (\left| + \right\rangle^{\otimes N} + \left| - \right\rangle^{\otimes N}) \\ \left| \pm \right\rangle &\doteq \frac{1}{\sqrt{2}} (\left| 0 \right\rangle \pm \left| 1 \right\rangle) \end{split}$$

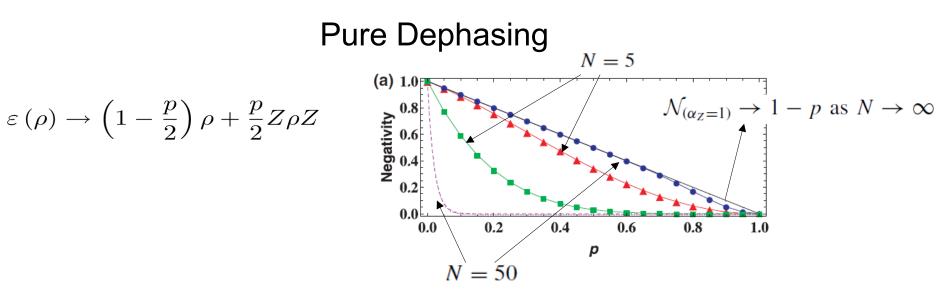
- Analytically we can prove that for any entanglement measure $E(\Lambda^{PD}(|\Phi_{+T}^{N}\rangle)) \ge E(\Lambda^{PD}(|\Phi_{+T}^{N-1}\rangle))$ $\ge \dots \ge E(\Lambda^{PD}(|\Phi_{+T}^{2}\rangle))$
 - N entangled qubits are at least as robust as 2 entangled ones!

What is the most robust local encoding against dephasing?

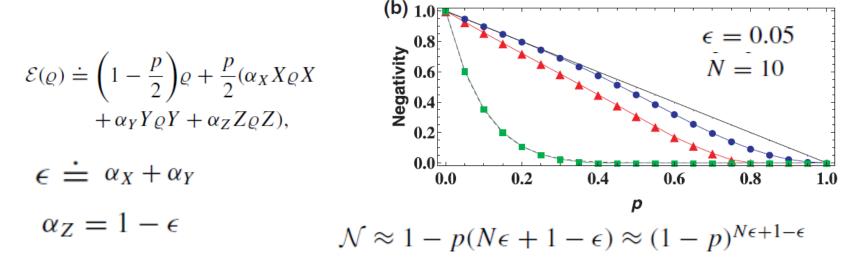


$$\varepsilon\left(\rho\right) \rightarrow \left(1 - \frac{p}{2}\right)\rho + \frac{p}{2}Z\rho Z$$

What is the most robust local encoding against dephasing?

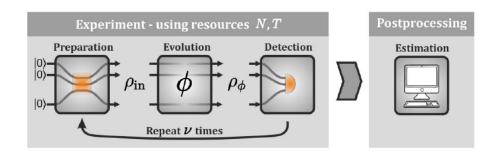


Deviations from pure dephasing

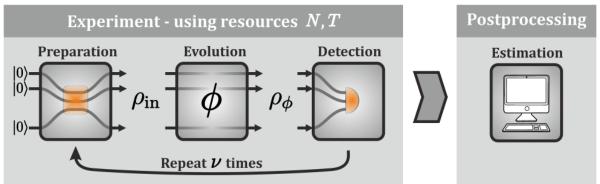


Applications in Metrology

*[RC, Aolita, Acin, PRA 2012] *[RC, Brask, Marki Acin, PRL 2013] *[Brask, RC, Markiewicz, Kolodynski, PRX 2014]



Single-Parameter Estimation



Typical experiment: [preparation+interaction+measurement]+postprocessing

As resources we take the probe size and the total time N, T

 Classical strategies based on separable states, the central limit theorem bounds the precision, the standard quantum limit (SQL)

$$\delta \omega \geq c_{cl} rac{1}{\sqrt{N
u}}$$

• For entangled states, the precision is limited by the quantum uncertainty relation, the *Heisenberg bound*

$$\delta \omega \ge c_q \frac{1}{N\sqrt{\nu}}$$
 $\nu = T/t$

Computing the precision

The attainable precision can be bounded by the quantum Fisher information

$$\delta \omega \geq \frac{1}{\sqrt{\mathcal{F}(\rho_{\omega})\nu}} = \frac{1}{\sqrt{\mathcal{F}(\rho_{\omega})T/t}}$$

 $\mathcal{F}(
ho_\omega)$ quantifies the information about $\,\omega\,$ encoded in ho_ω

The optimal precision requires optimization over inputs

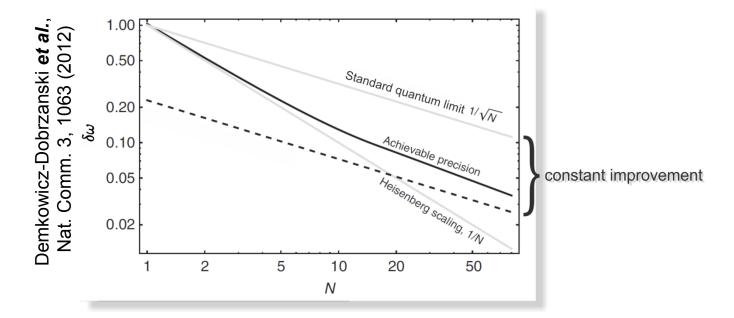
To avoid the optimization we can compute

 $\max_{\rho_{in}} \mathcal{F}(\rho_{\omega})$ hard!

- Fisher information of a *specific state* gives lower bound on the optimum
- Bounds that require no or simpler optimization
 gives upper bounds on the optimum

Metrology versus noise

- The attainable precision depends strongly on the noise model
 difficult to obtain general results
- Result indicate that even for arbitrarily small amounts of noise, quantum strategies provide only a *constant improvement over the SQL*



• Full rank noise independent of the probe size: SQL like scaling (Fujiwara, Imai, 2008)

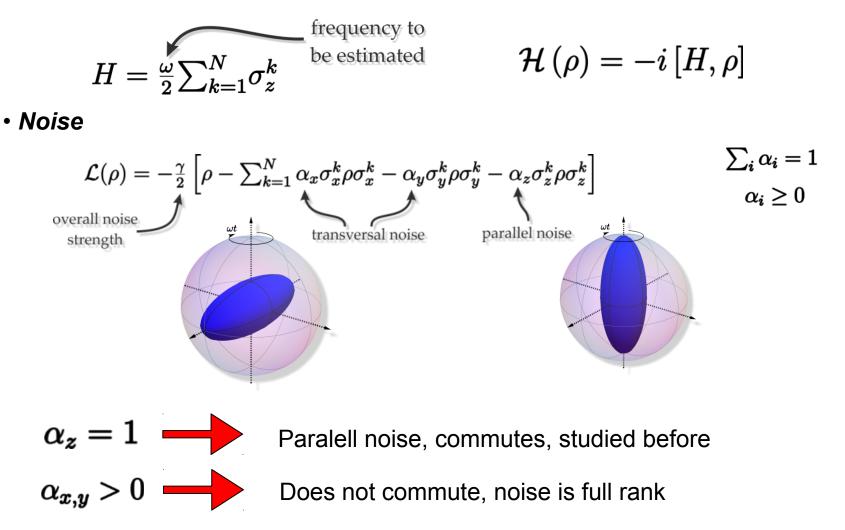
 SQL-like scaling for: lossy optical interferometry, atomic spectroscopy under dephasing or spontaneous emission (Knysh *et al.*, 2010, Escher *et al.*, 2011, Demkowicz-Dobrzanski *et al.*, 2012)

Noisy Frequency Estimation Model

We use a master equation description

$$rac{\partial
ho(t)}{\partial t} = \mathcal{H}\left(
ho
ight) + \mathcal{L}\left(
ho
ight)$$

Unitary Evolution



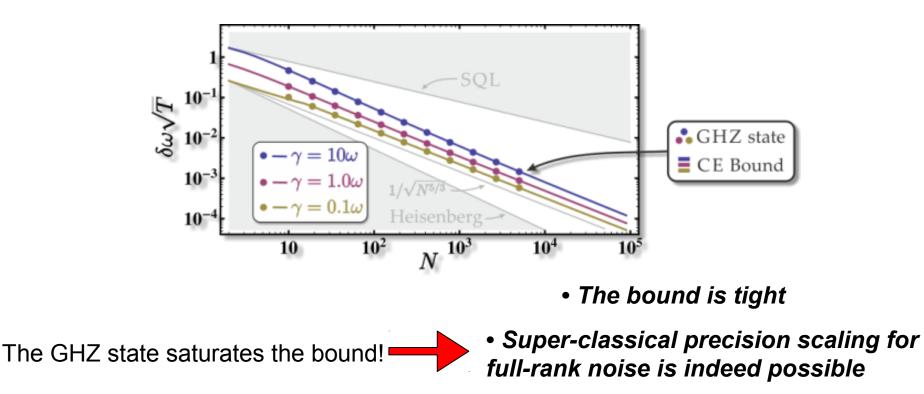
Beating the shot noise limit

We cannot derive analytical bounds – but we can compute the finite-N Channel extension numerically

$$\delta\omega\,\sqrt{T}\geq \sqrt{rac{c_x(\gamma)}{N^{5/3}}}$$
 (based on numerics)

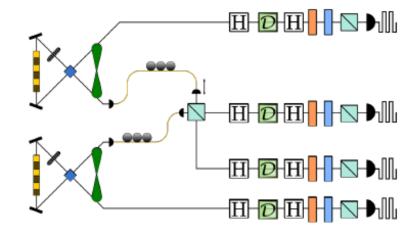
$$c_x(\gamma) = \frac{3^{2/3}}{2} \gamma^{1/3}$$
$$t_x^{\text{opt}} \xrightarrow[N \to \infty]{} 0$$

We can compute the Fisher Information for the GHZ state analytically and optimize the evolution time numerically

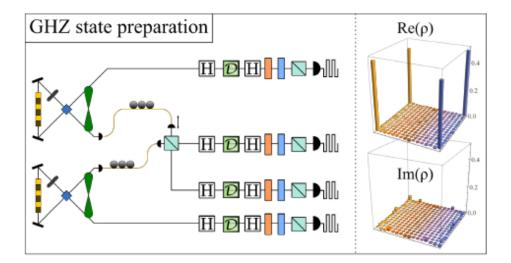


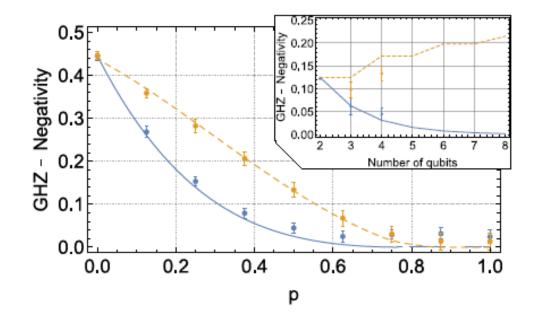
Experimental Investigation

*[M. Proietti, M. Ringbauer, F. Graffitti, P. Barrow, A. Pickston, D. Kundys, D. Cavalcanti, L. Aolita, R. Chaves, and A. Fedrizzi, arXiv: 1903.08667]

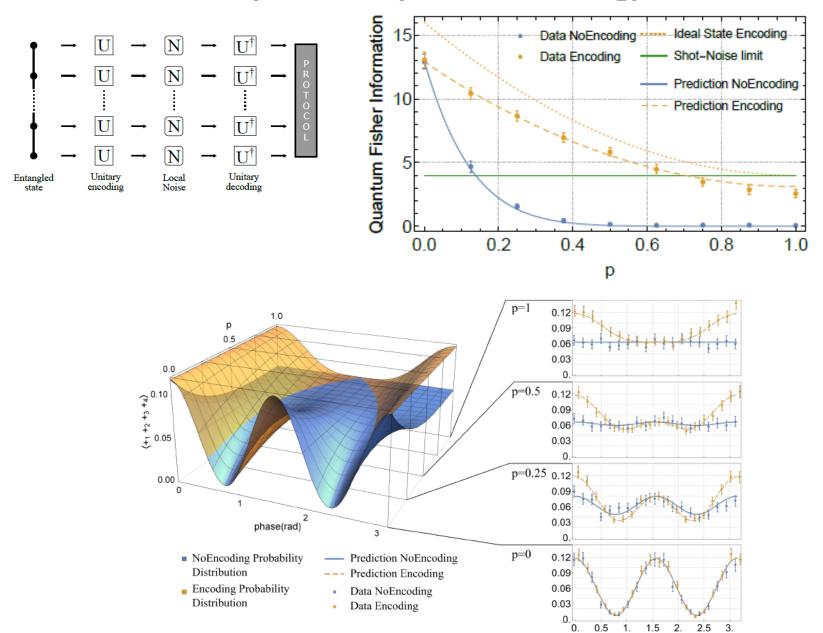


Experimentally Robust GHZ entanglement





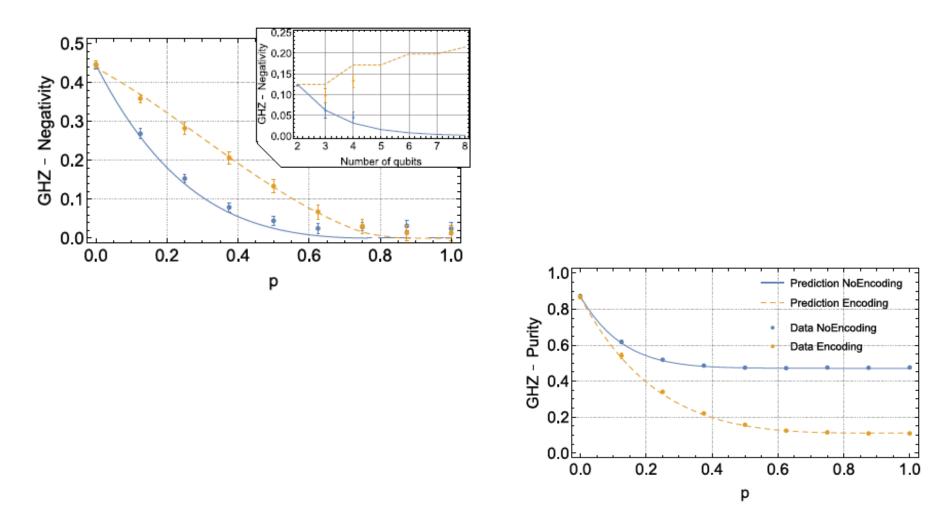
Experimentally Robust metrology



phase (rad)

A puzzling question

Puzzle



Most robust state is the one generating far more entanglement with the environment.

What to remember (if anything)

- i) If you have noise with privileged direction local encoding might improve a lot the robustness of correlations
- ii) This robustness is also reflected in the use of these correlations as a resource: metrology, Bell inequalities violation, communication complexity problems, etc
- iii) Is there a principle underlying what is the most robust local basis?