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General vs projective measurements

Textbook quantum measurements in
a space of dimension d are defined
by n < d orthogonal projectors
summing up to the identity.
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General vs projective measurements

Textbook quantum measurements in
a space of dimension d are defined
by n < d orthogonal projectors
summing up to the identity.

In the most general measurement an
auxiliary particle is added and a
projective measurement on both
particles is performed.

This general measurement is defined

by a Positive-Operator Valued
Measure (POVM):

M, =0 iMl:lS
i=1
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General vs projective measurements

General measurements provide an advantage over projective in many
guantum information applications:

e quantum tomography

* unambiguous discrimination of quantum states
* state estimation

e quantum cryptography

* information acquisition from a quantum source
* Bell inequalities (*)
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General measurements provide an advantage over projective in many
guantum information applications:

e quantum tomography

* unambiguous discrimination of quantum states
* state estimation

e quantum cryptography

* information acquisition from a quantum source
* Bell inequalities (*)

Example: tetrahedron POVM.

M, =%|ﬁi><ﬁi




POVMs and nonlocality

Open question: do POVM'’s help for nonlocality detection?
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POVMs and nonlocality

Open question: do POVM'’s help for nonlocality detection?

1
p(p)=pI®)(P|+(1-P)7
| |
Local PM | Known Bell violation
< I L >
| |
Local POVM | | | | CHSH violation
< 1 I | I >
Separable ! ' : : '
! l !
| | ' : ! L
| | | ' | ! .
1 0455 | 0683 0701  Lsco707 1 P
3 V2

Is there a state that: (i) has a local model for projective measurements but
(i) violates a Bell inequality when using POVM’s?



Bell certified randomness

1 x=1,....m y=1,...,m1

p(a,blx, )

1 a=1,....,r b=1,....r 1



Bell certified randomness

1 z 1. An external party, possibly an eavesdropper, has
a system correlated to the user’s systems.

2. She makes a measurement and according to the
result guesses the result of one (or the two)
boxes for one (or any) possible measurement.

1 e=1,...,r 3. The guess can be seen as the final measurement

output by the eavesdropper.




Bell certified randomness

z
1 If someone, e.g. the enemy, is able to predict the
outputs = local model =» No Bell violation.

It is possible to bound the randomness of the
outputs from the Bell inequality violation.
1 e=1,....r




Bell certified randomness

In quantum theory, the only way of getting the maximal violation of the CHSH
inequality is by measuring a two-qubit maximally entangled state.

AB +AB,+AB -AB, < 2
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Bell certified randomness

In quantum theory, the only way of getting the maximal violation of the CHSH
inequality is by measuring a two-qubit maximally entangled state.

AB +AB,+AB -AB, = 2

AB, +AB, +A,B - A,B, < 232

W), =5 (00)+[11) @)




Projective measurements and randomness

Using projective measurements one can certify at most log,d bits of
randomness per particle of dimension d.



Projective measurements and randomness

Using projective measurements one can certify at most log,d bits of
randomness per particle of dimension d.

A A2 B,

A,
KJ - -

A, B,
AB +AB,+AB -ADB, < 2

AB +AB,+A,B ~AB, < 22

Every measurement output defines a perfect random bit.
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randomness generation?



Do POVMs help for certified
randomness generation?

Optimal randomness certification
from one entangled bit

A. Acin, S. Pironio, T. Vértesi, P. Wittek
Phys. Rev. A 93, 040102 (2016)
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POVMs and Bell-certified randomness

Question: how much randomness can be extracted from an entangled bit?

Answer: if one performs projective measurements, at most one bit.

Question: are general measurements, or POVM'’s, of any help in randomness
certification?

Answer: randomness certification only cares about extremal correlations. In
a quantum system of dimension d, an extremal measurement has, at most,
d? outputs = at most 2 local random bits from an entangled bit.

Question: is this bound attainable?

Answer: Yes. POVM'’s help for randomness certification.



POVMs and Bell-certified randomness

Bell scenario: Alice has 3 measurements of 2 outcomes and Bob has 6 settings of 2
outcomes and 1 more of 4 outcomes, from which randomness is generated.
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Bell scenario: Alice has 3 measurements of 2 outcomes and Bob has 6 settings of 2
outcomes and 1 more of 4 outcomes, from which randomness is generated.
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Bell scenario: Alice has 3 measurements of 2 outcomes and Bob has 6 settings of 2
outcomes and 1 more of 4 outcomes, from which randomness is generated.
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POVMs and Bell-certified randomness

Bell scenario: Alice has 3 measurements of 2 outcomes and Bob has 6 settings of 2
outcomes and 1 more of 4 outcomes, from which randomness is generated.

CHSH(1,2;1,2)

| CHSH(1,3;3,4) +

CHSH (2,3:5,6) < 63/2
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POVMs and Bell-certified randomness

Bell scenario: Alice has 3 measurements of 2 outcomes and Bob has 6 settings of 2
outcomes and 1 more of 4 outcomes, from which randomness is generated.

CHSH (1,2;1,2)+ CHSH(1,3;3,4) -
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POVMs and Bell-certified randomness

Bell scenario: Alice has 3 measurements of 2 outcomes and Bob has 6 settings of 2
outcomes and 1 more of 4 outcomes, from which randomness is generated.

CHSH(1,2:1,2)+ CHSH (1,3;3,4)+ CHSH (2.3:5,6) < 62

The maximal violation of this inequality implies that: (i) Alice and Bob are measuring
a singlet and (ii) Alice is measuring in the x, y and z direction.



POVMs and Bell-certified randomness

Bell scenario: Alice has 3 measurements of 2 outcomes and Bob has 6 settings of 2
outcomes and 1 more of 4 outcomes, from which randomness is generated.

CHSH(1,2:1,2)+ CHSH (1,3;3,4)+ CHSH (2.3:5,6) < 62

The maximal violation of this inequality implies that: (i) Alice and Bob are measuring
a singlet and (ii) Alice is measuring in the x, y and z direction.

We have one more measurement, of 4 outcomes, on Bob’s side.
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POVMs and Bell-certified randomness

Bell scenario: Alice has 3 measurements of 2 outcomes and Bob has 6 settings of 2
outcomes and 1 more of 4 outcomes, from which randomness is generated.

CHSH(1,2:1,2)+ CHSH (1,3;3,4)+ CHSH (2.3:5,6) < 62

The maximal violation of this inequality implies that: (i) Alice and Bob are measuring

a singlet and (ii) Alice is measuring in the x, y and z direction.
Then, the correlations for the 7th measurement by Bob read:

|=x ) (x| (xx

p(a,b X,y = 7) = tr(|iy><iy ® M, |(I>><CI)|) = <iy

M

M

b‘y=7

b‘y=7

2)(2z (2| M,) 4 [£2)



POVMs and Bell-certified randomness

|ix><ix| <ix M bly=7 ix>
p(a,b|x,y = 7) = tr(|iy><ty ®M,, |CI)><(I>|) = (zy M, +y)
£2)(2 (2| My |22)

The correlations can be used to reconstruct the POVM elements. If we put the
tetrahedron POVM, the certify it = 2 random bits when acting on half of a singlet.



POVMs and Bell-certified randomness

|ix> <ix| <ix M

b‘y=7
6y =T)=tr(|ey) (| M, |O)N(@]) = (23| M,y =)
£2)(22 (2| My, 5 |22)

p(a,b

The correlations can be used to reconstruct the POVM elements. If we put the
tetrahedron POVM, the certify it = 2 random bits when acting on half of a singlet.

This is the intuition behind the construction, although in the end the analytical proof
is a bit different and follows from extremality. In fact, 2 random bits can be certified

from any extremal 4-outcome POVM such that:
tr(M,;)=1/2
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Bell scenario: Alice has 3 measurements of 2 outcomes and 1 more of 4 outcomes,
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POVMs and Bell-certified randomness

Bell scenario: Alice has 3 measurements of 2 outcomes and 1 more of 4 outcomes,
from which randomness is generated, while Bob has 4 settings of 2 outcomes.

Elegant Bell inequality (Gisin):
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POVMs and Bell-certified randomness

Bell scenario: Alice has 3 measurements of 2 outcomes and 1 more of 4 outcomes,
from which randomness is generated, while Bob has 4 settings of 2 outcomes.

Elegant Bell inequality (Gisin):

I,=(A+A,+A)B +(A-A,-A)B,+(-A +A, - A)) B, +(-A - A, +A3)B4§6

Iel

(A +A,+A)B +(A - A, — Ay)B, +(-A + A, - A;) By +(-A - A, +A3)B4§4\/§

We proved that the known violation was optimal. The known way of getting it
is by measuring a singlet in the (x,y,z) bases for Alice and measurements
pointing into the directions of a tetrahedron on Bob.

Alice Bob




POVMs and Bell-certified randomness

4

I, -Zp(A4 =i,B = +1)§4\E

Idea: The only way of saturating the bound is if the POVM elements of A, on
Alice’s side are anti-aligned with the directions defining the 4 measurements on
Bob’s side. They define the tetrahedron POVM.

Alice Bob

We confirm this intuition and proved the certification of 1.9999998947470 bits
using the NPA hierarchy.
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The constructions are demanding: high visibilities are necessary for >1 bit.



Experimental nonlocality-based
randomness generation with
nonprojective measurements

S. GOmez, A. Mattar, E. S. Gdmez, D. Cavalcanti, O. J. Farias, A. Acin, G. Lima
Phys. Rev. A 97, 040102 (2018)



Experimental setup
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Experimental setup

(@) (b)

A R
x=1
y=1
, == E x ,: y=2
E T E i ‘\ 3
E E 2 y=3
N I !
........ 4 z
source y=1,2,3 T
{ x
[ finm [lnwe [lawp [svmF [N PBS WAPD fPPKTP \:4
Visibility = (99.7 + 0.2)% Randomness = (1.18 + 0.08) bits

Four-outcome POVM: Smania et al., arXiv:1811.12851.



POVMs and Bell-certified randomness
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When do POVMs provide an advantage
over projective measurements?



When do POVMs provide an advantage
over projective measurements?

Simulating positive-operator-valued
measures with projective measurements

M. Oszmaniec, L. Guerini, P. Wittek, A. Acin
Phys. Rev. Lett. 119, 190501 (2017)



POVM simulation
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POVM simulation

r"’ 1
S -~
®—POVM[_,
| n
|
—’——? 1 1
> PM //”
T ] Ll ‘
/,,
—’—? 1 ,,,
) PM S S
s .
—’—'? 1 \\\*\~
> PM \\_\
~~ey d _’




POVM simulation: definitions

* A general measurement is projective simulable (PS) whenever it can be reproduced by
projective measurements assisted by classical processing.



POVM simulation: definitions

A general measurement is projective simulable (PS) whenever it can be reproduced by
projective measurements assisted by classical processing.

For a Hilbert space of dimension d we denote by PS(d) the set of measurements that
are PS.



POVM simulation: definitions

A general measurement is projective simulable (PS) whenever it can be reproduced by
projective measurements assisted by classical processing.

For a Hilbert space of dimension d we denote by PS(d) the set of measurements that
are PS.

Depolarizing map: given a measurement M, we denote by ¢,(M) the new
measurements whose elements are:

[®,(M)] =1 M, +(1—t)tr(Mi)§



POVM simulation: definitions

A general measurement is projective simulable (PS) whenever it can be reproduced by
projective measurements assisted by classical processing.

For a Hilbert space of dimension d we denote by PS(d) the set of measurements that
are PS.

Depolarizing map: given a measurement M, we denote by ¢,(M) the new
measurements whose elements are:

[, (M)] =1 M, +(1-1)1e(M,)

Given measurement M, t(M) denotes the minimal value of t such that ¢,(M) is not PS.



POVM simulation: definitions

A general measurement is projective simulable (PS) whenever it can be reproduced by
projective measurements assisted by classical processing.

For a Hilbert space of dimension d we denote by PS(d) the set of measurements that
are PS.

Depolarizing map: given a measurement M, we denote by ¢,(M) the new
measurements whose elements are:

[®,(M)] =1 M, +(1—t)tr(Mi)§

Given measurement M, t(M) denotes the minimal value of t such that ¢,(M) is not PS.

For a given dimension d, t(d) denotes the minimum of t(M) over all measurements.
The solution to this problem defines the most non-projective POVM.



POVM simulation: geometry
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POVM simulation: results

* For dimension d all POVM become PS when t(d) < 1/d.

e Given a qubit or qutrit measurement, computing the value of the visibility at which it
becomes PS can be cast as a semi-definite programming (SDP) instance.

* For qubits, a numerical search indicates that the tetrahedron is the most robust POVM,
with visibility
2
t. =.—=0,8165

tetra
3

Note: in fact, we could prove that all measurements are PS simulable whenever t < 0.8143,
but we now know that t.. is the actual value of t(2), see Hirsch et al., Quantum’17.



POVM simulation: applications

Correlations obtained when applying noisy measurements on a state are
the same as applying noise-less measurements on a noisier state. Bowles et al.,
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POVM simulation: applications

Correlations obtained when applying noisy measurements on a state are
the same as applying noise-less measurements on a noisier state. Bowles et al.,
PRL15

tr(CI)t (M,,)®, (M,,|y)p) -u(M, @M, (2,8 (p))
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POVM simulation: open questions

What’s the value of critical visibility for larger dimensions?
Is it always attained for a symetrically informationally complete (SIC) POVM?

What's the scaling of t(d)? Even simpler: does it tend to zero when d tends to
infinity? If yes, how?

Resource theory for POVMness?



Concluding remarks
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Concluding remarks

General measurements provide
an advantage for many quantum
information tasks. Also for non-
locality detection?

They do provide an advantage for
Bell certified randomness.

Noisy general measurements can
be projective measurements,
hence any advantage is lost.
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