A coherent nanotube oscillator driven by electromechanical backaction Edward Laird

A coherent nanotube oscillator driven by electromechanical backaction

Yutian Wen Natalia Ares **Tian Pei** Felix Schupp Andrew Briggs (at Oxford)

European **Microkelvin** Platform

Engineering and Physical Sciences Research Council

European Research Council Scientific Council

ablished by the European Commissio

The limits of displacement sensing

Suspended carbon nanotube ~10⁶ nucleons

Length ~800 nm

- High mechanical quality factor
- High frequency (200 MHz \equiv 10 mK) lacksquare
- Mechanically compliant lacksquare
- Can be integrated into electronic circuits

Diameter ~5 nm

The limits of displacement sensing: Magnetic resonance microscopy

Force per proton: ~10⁻²⁰ N

Review: Poggio & Harzheim (2018)

A coherent nanotube oscillator driven by electromechanical backaction

- **1. Measuring vibrations with a single-electron transistor**
- 2. Creating a nanomechanical oscillator
- 3. Characterizing the oscillator

Question 1: How precisely can we measure nanomechanical vibrations?

Standard quantum limit for continuous measurements (m/ \sqrt{Hz}):

Caves et al. (RMP 1982) Theory: Experiment: LaHaye et al. (Science 2004) Clerk et al. (RMP 2010) Review:

Quality factor

Mechanical frequency Mass

Question 2: Can we make a laser for sound?

Microwave amplification by stimulated emission of radiation (Townes, 1955)

A vibrating carbon nanotube device

Laird et al (2011)

The single-electron transistor

Sensing vibrations

Hüttel et al (2009)

Fast readout for nanotube vibrations

How precisely can we measure nanomechanical vibrations?

Is this a laser analogue?

Two-level system

Frequency

Resonator

Evidence for self-driven oscillations

From Steele et al (Kouwenhoven group, 2009)

A coherent nanotube oscillator driven by electromechanical backaction

- 1. Measuring vibrations with a single-electron transistor
- 2. Creating a nanomechanical oscillator
- 3. Characterizing the oscillator

A coherent nanotube oscillator driven by electromechanical backaction

- 1. Measuring vibrations with a single-electron transistor
- 2. Creating a nanomechanical oscillator
- 3. Characterizing the oscillator

Measuring the output coherence

Statistics of the output coherence

How the oscillator works

Bennet & Clerk (2007) Usmani, Blanter, Nazarov (2007)

How the oscillator works

Bennet & Clerk (2007) Usmani, Blanter, Nazarov (2007)

Laser physics I: Injection locking

Implementation

Laser physics I: Injection locking

Laser physics II: Stabilising using feedback

Laser physics II: Stabilising using feedback

Why are nanomechanical lasers interesting?

- They connect the physics of backaction with the physics of lasers.
- They are amplifiers and transducers. Narrow linewidth means better sensitivity to perturbations.
- They are on-chip phonon generators for microscopy, information transfer, etc.
- They couple charge and motion on a mesoscopic scale.

Other nano-oscillators

Optomechanics (Grudinin 2010)

Double quantum dot micromaser (Liu 2017)

Optomechanics (Beardsley 2010)

Josephson laser (Cassidy 2017)

Vibrating SQUID (Etaki 2013)

Summary

Schupp et al. arXiv:1810.05767 (2018)

Quadrature signal Above-threshold emission In-phase signal Emission Frequency < 2 Hz linewidth Emission Frequency Wen et al. APL **113** 153101 (2018) Wen et al. arXiv:1903.04474 (2019)