
Brief review: GCM, 
• Clustering …?Chimera? 1989-90

• Chaotic Itinerancy                 1989-90

• CI as Milnor Attractor Networks 1997-98

• Dominance of Milnor Attractors for  N>5 2002

Chaotic Griffiths Phase in Coupled Map Network   
2006

Chaos on/near High-dim Torus in Globally 
Coupled Circle Maps         2019

Revisit to Globally Coupled Maps after 30 year；
Hierarchical Clustering, Chaotic Griffith Phase, 
and High-dimensional-Torus-Chaos Transition

Kunihiko Kaneko, U Tokyo

Beyond?



My current study: Universal Biology
Low-dimensional structure formed from high-
dimensional phenotypic space  robustness
(Furusawa, KK, Phys Rev E, 2018, 
KK, Furusawa,  Ann Rev Biophys 2018)

Universal law for adaptation
(KK FurusawaYomo PRX2015)

Evolutionary LeChatelier Principle
（Furusawa KK    Interface 2015)

Evolutionary-Fluctuation-Response
+Vg-Vip Law (Sato et al2003,KK2006)
( direction in phenotypic evolution)

Micro-Macro Consistency
Between different levels
(molecule-cell-organism--)
(slow genetic change –
fast phenotypic dynamics
 Universal law
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Globally coupled map (no spatial structure) (1989,KK)

Cf    Coupled map lattice     space-time chaos (1984,KK)

Cf. synchronized state is stable if

Synchronization of all elements with chaos  is possible

Equivalent with  ｆ（ｚ）＝ｒｚ（１－ｚ）



Clustering

3-clusters,  with each 
synchronized oscillation

Differentiation of behavior of 
identical elements and identical 
interaction

Cluster of synchronized elements
+ non-synchronized elements

Desynchronized







Phase Diagram

Onset of chaos a:  nonlinearity – strength of chaos

ε
Coupling 
strength



Many attractors : eg 2 cluster (N1,N2) ‐‐‐
coded as ‘internal bifurcation’



Partition Complexity in Hierarchically Clustered States

Similarity with spinglass

Fluctuation in partition remains even in N -> ∞
(KK, J. Phys 1992)



Remark 1:
clustering  by 

(i) ‘phase of oscillation’, 
(ii) ‘amplitude’, 
(iii) ‘frequency’
IN GCM mainly (i) (+ (ii),(iii))
(discussion with Walter Freeman around 1990, on the 

application to neuroscience)       cf. clustering  (cell) 
differentiation （Furusawa,KK, Science 2012)
Remark 2 (kk,1989,90,.)
often large cluster + other desynchronized

e.g.  (N-k, 1,1,1,…1)  or (N-k’, 2,..2,1…,1)
Chimera?      …. no spatial structure
(but global+ local can retain some spatial structure )  

( Ouchi, KK 2000 Chaos)
Additional Remark:valid for continuous time (GC-Roessler,GCGL)



Chaotic Itinerancy:  
effective degrees of freedom go down  stay at low-dimensional 

states (‘attractor-ruin’)  move back to high-dim chaotic state 
come to another low-dim attractor-ruins （in general)
In GCM,  formation/collapse of (almost) synchronized cluster

Np Number of Effective synchro clusters            
s.t.x(i)〜 x(j) with precision P 



Neural network dynamics (Tsuda 1990)
Optical turbulence (Ikeda 1989) 
KK Tsuda (Chaos 2003) - special issue with a variety of examples

currently actively studied in neuroscience

Commonly observed in high-dimensional dynamical system 
with (global or long-ranged interaction)  GCM (89)

Chaotic Itinerancy If effectively 2‐
cluster  2‐dim ,



One possible interpretation of CI :
Network of ‘Milnor-attractors 〜 attractor ruins’

Milnor attractor -- without asymptotic stability
(attractor and its basin boundary touches)

i.e., any small perturbation from it can kick the 
orbit out of the attractor, while it has a finite 
measure of basin 

Observed; Milnor attractors large portion of basin
for the partially ordered phase in GCM
(kk,PRL97,PhysicaD98)

CI --- attraction to / leave from Milnor attractors



Cluster: group of elements such that  x(i)=x(j);  
Number of elements in each cluster;   N1,N2,…,Nk
•at some parameter region many attractors with different clusterings
Due to the symmetry there are 

attractors of the same clusterings   --
combinatorially many  increase with the order of (N-1)!   
or so            (KK,PRL89)

a

εCombinatory many attractors in GCM



Log(σｃ）

a

a

Log(<σｃ>）

Attractors that collide with their 
basin boundary ( σc=0), yet have 
large basin volume

(“Milnor Attractor’’)
Dominant at some parameter region

‐1

‐4





The fraction of basin
(i.e. initial values) for
Milnor attractors,
Plotted as a function of
Logistic map parameter

Note! Fraction is almost
1 for some region

Result for N=10,50,100
…. a

1

Kk,97



One possible interpretation of CI :
Network of ‘Milnor-attractors 〜 attractor ruins’

Milnor attractor -- without asymptotic stability
(attractor and its basin boundary touches)

i.e., any small perturbation from it can kick the 
orbit out of the attractor, while it has a finite 
measure of basin 

Observed; Milnor attractors large portion of basin
for the partially ordered phase in GCM
(kk,PRL97,PhysicaD98)

CI --- attraction to / leave from Milnor attractors



The Milnor attractors become dominant around N＞~（5－８）

N=3, almost 0
5,  few cases
7,8,9,.. dominant



The Milnor attractors become dominant around N ＞~（５－８）

Dependence
On the
Number of
Elements N

(accumulation
over 
1.55<a<1.72)

（ｋｋ、PRE,2002)

Magic No. 7 ± 2 (cf Ishihara, KK, PRL 2005)



• Why?
Conjecture by combinatorial explosion of basin boundaries

Simple separation   x(i)>x* or x(i)<x*;  one can separate 2 ^N 
attractors by N planes. In this case the distance between 
attractor and the basin boundary does not change with N
but The boundary makes combinatorial explosion ‐‐‐‐

Order of (N‐1)! many ways of partition



• The number of basin boundary planes has 
combinatorial explosion, as factorial wins over 
exponential ( (N-1)! > 2       at N=6). 

• Then, the basin boundary is ‘crowded’ in the phase 
space.  Thus often attractors  touch with basin 
boundaries
 dominance of Milnor attractors 

(complete symmetry is unnecessary)
When combinatorial variety wins over exponential 

increase of the phase space, ‘complex dynamics’
(also in neural net model, Ishihara,kk 2005,PRL).

If elements more than 7 are entangled, clear separation 
behavior is difficult

cf magic number 7±2 in psycology

N



Randomly Coupled Map(RCM)

K:degree of a element, T: adjacency matrixDense LimitSparse Limit

RCM GCMex. CML

Studying RCM, the properties of the border between CML and GCM will become clear, 
and new effect which is dependent on its degree will be discovered. 

Shinoda, KK, PRL 2016

Chaotic Griffiths Phase with Anomalous 
Lyapunov Spectra in Coupled Map Networks



Phase Diagram

Chaotic 
synchronization

Chaotic 
Griffiths phase

Fully chaotic Frozen chaos 
with macro order Ordered 

Time series per 2 steps

X(i)

Formation/ 
Collapse of 
large synchro 
cluster

Connectivity k

Coupling ε



Order for optimal degrees of connection?
– to eliminate chaos

Ordered State (k=10)
Disordered State (k=4)

Chaotic Itinerancy (k=40)

Coherent State (k=49)
--GCM

N=50, a=1.7, ε=0.38 (Coherent Phase@GCM)

Maximum Lyapunov 
Exponent 

Degree k



Synchronization-Desynchronization process in 
Chaotic Griffiths Phase

Power law distribution of 
synchro- cluster sizes

Criticality over a range 
of parameters

Temporal evolution of maximum  
synchro-cluster size s (N=1000)

Cluster=synchronized within the 
resolution .001

Exponent  α changes with parametersChaotic Itinerancy (CI)

s-α

log(s)

log P(S)



Number of positive Lyapunov
exponents is scaled with 

anomalous power N
Exponent β changes with 

parameters
Lyapunov spectra are 

scaled anomolusly with 
the power β 

β

N:system size



Exponents for cluster distribution α and for 
anomalous Lyapunov spectra β satisfy

α~2(1+β）
universal in a class of random networks 



consider the degree of chaos increases 
anomalously with s with an exponent β

Possible explanation butnnot yet an answer..
Size of coherent cluster s:  random-walk approximation,
but add an element or escape is proportional to s
(normal case)

α＝２(1＋β）

Distribution of cluster size P(s)



chaos
Fixed point Limit cycle

Fixed point

C
haotic itinerancy

)11(  Ni ～

Slow (i=1)

fast

Stochastic switch over multistable states by collective chaos

1 slow many fast 
elements, coupled 
globally (threshold 
dynamics, neural 
network)

Slow element

Fast elements

Fast Elements

Slightly beyond 
adiabatic elimination

Multi-branced
Slow Manifold

Another example in CI: slow-fast system



Globally coupled circle maps, high-dimensional 
torus to chaos

• Heterogeneous (with different frequencies)
Yamagishi, KK, 2019, in prep

(I)

(II)
Below, mostly the case (I), for (II) also valid, but probably lower‐dim tori

N‐dim in map  (N+1)‐dim in flow 



Brief partial review of GCM, 
• Hierarchical Clustering…? Chimera?        
• Chaotic Itinerancy over clusterings
• CI as Milnor Attractor Networks 
• Dominance of Milnor Attractors for  N>5 

Chaotic Griffiths Phase in Coupled Map Network 
Formation-Collapse of Synchro clusters, power law, anomalous 

Lyapunov spectra; universal scaling          with Kenji Shinoda

Chaos on/near High-dim Torus in Coupled 
Oscillators (Maps) Chaos on high-dim tori, transition via 
fractalization?                                      with Jumpei F Yamagishi


