Revisit to Globally Coupled Maps after 30 year ;
Hierarchical Clustering, Chaotic Griffith Phase,

and High-dimensional-Torus-Chaos Transition
Kunihiko Kaneko, U Tokyo

Brief review: GCM,

» Clustering ...? Chimera?  1989-90 L
e Chaotic Itinerancy =~ 198990 i
» Cl as Milnor Attractor Networks 1997-98 =

l» Dominance of Milnor Attractors for N>5 2002 |

\Chaotic Griffiths Phase in Coupled Map Network
12006 |



My current study: Universal Biology
Low-dimensional structure formed from high-
dimensional phenotypic space € robustness s

Systems

(Furusawa, KK, Phys Rev E, 2018, Biology
KK, Furusawa, Ann Rev Biophys 2018)
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Universal law for adaptatlon
Cro -Macro Consistency (KK FurusawaYomo PRX2015)
Between different levels Evolutionary LeChatelier Principle
(molecule-cell-organism--) (Furusawa KK Interface 2015)
(slow genetic change - Evolutionary-Fluctuation-Response

fast phenotypic dynamics | .vg.vip Law (Sato et al2003,KK2006)
= Universal law (= direction in phenotypic evolution)



Globally Coupled Map

: logistic map
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mean-field model for coupled map lattice
KK PRL1989 PhysicaD 1990
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)
%, (i) = (1= f(x,()) + 5 T f(x,()).
(1)

Globally coupled map (no spatial structure) (1989,KK)
logistic map f(x)=1 — ax?
Equivalent with f(z) =rz(1—=z)

Cf Coupled map lattice > space-time chaos (1984,KK)
xu+l(j) = (] - ‘)f(xu(i))

+3e[f(x,(i+ 1)+ f(x,(i-1))].
(2)

Cf. synchronized state is stable if )\ 4 1og(1 —¢) <0.

Synchronization of all elements with chaos is possible



3-clusters, with each
synchronized oscillation
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1g. 1. Schematic figure for clusterings: (a) Coherent attractor.
1) Few clusters (k= 3). (¢) Many-cluster attractor with un-
jual partition. (d) Many-cluster attractor with £ =N




Phase Diagram
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Many attractors : eg 2 cluster (N1,N2) ---
coded as ‘internal bifurcation’
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Partition Complexity in Hierarchically Clustered States
Similarity with spinglass

Spin Glass
GCM P @

element (N) L

. .. . oN)
branchmg/@ initial condition (

Fluctuation in partition remains even in N -> «
(KK, J. Phys 1992)



Remark 1:
clustering by
(i) ‘phase of oscillation’,
(i) ‘amplitude’,
(i) ‘frequency’
IN GCM mainly (i) (+ (ii),(iii))

(discussion with Walter Freeman around 1990, on the
application to neuroscience) cf. clustering > (cell)
differentiation  ( Furusawa,KK, Science 2012)

Remark 2 (kk,1989,90,.)
often large cluster + other desynchronized
e.g. (N-k, 1,1,1,...1) or (N-k’, 2,..2,1...,1)
Chimera?  .... no spatial structure

(but global+ local can retain some spatial structure )

( Ouchi, KK 2000 Chaos)
Additional Remark:valid for continuous time (GC-Roessler,GCGL)



Chaotic Itinerancy:

effective degrees of freedom go down - stay at low-dimensional
states (‘attractor-ruin’) = move back to high-dim chaotic state -
come to another low-dim attractor-ruins ( In general)

In GCM, formation/collapse of (almost) synchronized cluster

Np Number of Effective synchro clusters
7 s.t.x(i)— x(j) with precision P
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If effectively 2-

high—dimensll‘}nal
3|

x(k)

J -
high—dimensional
At — __chaos
N —
~
T

Commonly observed in high-dimensional dynamical system
with (global or long-ranged interaction) GCM (89)

X (1)

Neural network dynamics (Tsuda 1990)

Optical turbulence (lkeda 1989)

KK Tsuda (Chaos 2003) - special issue with a variety of examples
currently actively studied in neuroscience



One possible interpretation of Cl :
Network of ‘Milnor-attractors — attractor ruins’
Milnor attractor -- without asymptotic stability
(attractor and its basin boundary touches)

l.e., any small perturbation from it can kick the
orbit out of the attractor, while it has a finite
measure of basin

Observed; Milnor attractors large portion of basin

for the partially ordered phase in GCM
(kk,PRL97,PhysicaD98)

Cl --- attraction to / leave from Milnor attractors



Comblnatory many attractors In GCI‘v.

ffi=(1=elfln )4 Ef -

COHERENT

2

where n is the discrete time and 7 being the index for | .- . <
elements (=12, ..., N= dimension of the system). For 2

elements we choose f(x)=1 [-ax* since the mode! P S B S S
Ns

Cluster: group of elements such that x(i)=x(j); N

Number of elements in each cluster; N1,N2,...,Nk N3 e

*at some parameter region many attractors with different clusterings
Due to the symmetry there are

M(Nl: - - Nk) (N'/Hz—lNz'!)HoversetsofNi=Ni.(l/m€!)

attractors of the same clusterings --

combinatorially many increase with the order of (N-1)!
or so (KK,PRL89)



Attractors that collide with their
basin boundary ( 0c=0), yet have
large basin volume

(“Milnor Attractor”’)
Crsant at some parameter region
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0.1. The number of initial conditions leadine to log:n o.. within



200000 e
L Milngr ——
£ 150000 | 0.75
; :
% 100000 | ) 12
= i : 5
E R
5 BO000 5'15‘ 1.25
1y :'- 1 ﬁu"‘
|:| w k i i i L_‘...,h_—
156 1,58 1.6 1.62 1.64 1.66 1.68 1.7 1.72

FIG. 3. The number of attractors (+) estimated from simmila-
tions over 10° initial conditions. The estimated number of attractors
15 plotted as a function of . N=10. All attractors that are com-

cluded to exist by the symmetry argument are also counted. The
basin fraction of Milnor attractors obtained in the same way as in



The fraction of basin
(i.e. initial values) for
Milnor attractors,
Plotted as a function of
Logistic map parameter

Note! Fraction is almost
1 for some region

Result for N=10,50,100

Kk,97

Sair ol Wi pEacrn
'
L |
'-IET_.',___##_

I I." i i ._.
:

LE]
-]
I

L |

Fig. 9. The basin volume rmtie of Milner amracis wigh the
change of a. For each a, we lake 1000 inigial condiiices, and
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One possible interpretation of Cl :
Network of ‘Milnor-attractors — attractor ruins’
Milnor attractor -- without asymptotic stability
(attractor and its basin boundary touches)

l.e., any small perturbation from it can kick the
orbit out of the attractor, while it has a finite
measure of basin

Observed; Milnor attractors large portion of basin

for the partially ordered phase in GCM
(kk,PRL97,PhysicaD98)

Cl --- attraction to / leave from Milnor attractors



The Milnor attractors become dominant around N>~(5—8)
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FIG. 1. The basin fraction of Milnor attractors plotted as a func-
1on of the parameter a, for N=3,5, 7, and 9. For the present
ammilations, we take 1000 randomly chosen initial conditions, and
terate 10° steps. Then the orbit is perturbed as x,(7)+ 10" o,



The Milnor attractors become dominant around N >~(5—8)
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(kk. PRE,2002)
FIG. 2. The average fraction of the basin ratio of Milnor attrac-
tors. After the basin fraction of Milnor attractor 15 computed as in

Fig. 1, the average of the rafios for parameter values a
=1.550,1.552,1.554, .. _, 1.72 15 taken This average frachion is

Magic No. 7 = 2 (cf Ishihara, KK, PRL 2005)



e Why?

Conjecture by combinatorial explosion of basin boundaries
Simple separation x(i)>x* or x(i)<x*; one can separate 2 *N
attractors by N planes. In this case the distance between

attractor and the basin boundary does not change with N

but The boundary makes combinatorial explosion ----
Order of (N-1)! € many ways of partition

On the other hand. consider a boundary given by some
condition for [x(1), ... ,x(N)]. In the present system with
zlobal (all-to-all) couplings, many of permmutahonal change
of x(7) m the condiion give also basin boundanes. Here the
condihon for the basin can also have clustenng
(N1.....Ng)., smmce the attractors are chistered as such

Then there are M(N,, ... N} parbhons by boundanes
E.q'ui'l:l_.l.lﬂ'ﬂ" ey marmtahAame T ha meormibhar af reoosame PE.IT.I.—

M(N1, .. Np)=(NUI_ N oot o = { Lim 1)




* The number of basin boundary planes has
combinatorial explosion, as factorial wins over
exponential (  (N-1)! >2"  at N=6).

* Then, the basin boundary is ‘crowded’ in the phase
space. Thus often attractors touch with basin
boundaries

- dominance of Milnor attractors

(

When combinatorial variety wins over exponential
increase of the phase space, ‘complex dynamics’

(also in neural net model, Ishihara,kk 2005,PRL).

If elements more than 7 are entangled, clear separation
behavior is difficult

cf magic number 7x2 in psycology



Chaotic Griffiths Phase with Anomalous
Lyapunov Spectra in Coupled Map Networks

PRL 117, 254101 (2016) PHYSICAL REVIEW LETTERS 16 DECEMBER 2016

Chaotic Griffiths Phase with Anomalous Lyapunov Spectra in Coupled Map Networks

Randomly Coupled Map(RCM) ~ - --3hinoda, KK, PRL 2016
€ 1l :
T = (L= —I—EZTJZ—JCQL’Z
K:degree of a element T: adjacency matrix .
Sparse Limit J J y Dense Limit
ex. CML GCM

Studying RCM, the properties of the border between CML and GCM will become clear,
and new effect which is dependent on its degree will be discovered.
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Order for optimal degrees of connection?

to eliminate chaos
N=50, a=1.7, €=0.38 (Coherent Phase@GCM)
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Synchronization-Desynchronization process in
Chaotic Griffiths Phase

Power law distribution of

Temporal evolution of maximum _
synchro- cluster sizes

synchro-cluster size s (N=1000)
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Number of positive Lyapunov
exponents is scaled W|th
anomalous power N
Exponent 3 changes with

parameters
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Exponents for cluster distribution a and for

anomalous Lyapunov spectra 3 satisfy
a~2(1+pB)
universal |n a class of random networks
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Possible explanation butnnot yet an answer..

Size of coherent cluster s: random-walk approximation,
but add an element or escape is proportional to s
(normal case)

Distribution of cluster size P(s)

ds = sodt _P( ) ~ 572,

P o b o e WA Y

consider the degree of chaos increases
anomalously with s with an exponent f3

'- —2(14+p
ds = s1tP O(H » )

o a=2(1+p)



Another example in CI: slow-fast system

Fast elements
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PRL 111, 144102 (2013)

PHYSICAL REVIEW LETTERS
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Slow Stochastic Switching by Collective Chaos of Fast Elements
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Globally coupled circle maps, high-dimensional

torus to chaos
Yamagishi, KK, 2019, in prep

* Heterogeneous (with different frequencies)

(1)

(1)

Below, mostly the case (l), for (ll) also valid, but probably lower-dim tori

N-dim in map < —2(N+1)-dim in flow



Brief partial review of GCM,
 Hierarchical Clustering...? Chimera?
» Chaotic ltinerancy over clusterings

* Cl as Milnor Attractor Networks =
* Dominance of Milnor Attractors for N>5

Chaotic Griffiths Phase in Coupled Map Network

Formation-Collapse of Synchro clusters, power law, anomalous
Lyapunov spectra; universal scaling with Kenji Shinoda

Chaos on/near High-dim Torus in Coupled

Oscillators (Maps) Chaos on high-dim tori, transition via
fractalization? with Jumpei F Yamagishi



