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distributed natural frequencies.
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4. K: Coupling constant,
wj's: Natural frequencies, Unimodal
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» N — oo, t — oo limit:

1. Define r = |% ZJN:I e,

2. Highf(: Synchronized phase, r # 0. VpT======e====t it
3. Low K: Incoherent phase, r = 0.
4

. "Phase transition” (Bifurcation) on

r

tuning K. _
D2 2 — [
5. Ke = roian- 7.
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Nonlinear dynamics:

Statistical Physics:

1. Deterministic
equations of motion

= £(x).
2. Study, on a

case-by-case basis,
x as a function of t;
Interest:

limit t — oo.

1. Stochastic equations of motion,

e.g., a Hamiltonian system

with no external drive

+ environment (heat bath at temp. T):

dg _

a — P

4 = Force derived from Hamiltonian
—7p +1(t).
————

Effect of environment
Langevin: Gaussian white noise 7)(t):

(n(t)) =0, (n(t)n(t")) = 2D5(t - t').

. D =~kgT (Fluc.-Dissipation Th.)

= P(x,t = 00) x exp(—H/T)
(no need to solve the dynamics).

. Useful concepts like free energy whose

minimization yields equilibrium phases.



Our contributions from statphys perspective

> The key steps taken:
1. Including noise in the Kuramoto dynamics.
2. Interpreting the model as a long-range interacting system of
particles with quenched disorder, driven out of equilibrium.
3. Employing tools of statistical mechanics and kinetic theory
to study statics and dynamics.
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Our contributions from statphys perspective

> The key steps taken:
1. Including noise in the Kuramoto dynamics.
2. Interpreting the model as a long-range interacting system of
particles with quenched disorder, driven out of equilibrium.
3. Employing tools of statistical mechanics and kinetic theory
to study statics and dynamics.

> ...and the main results:

1. Proving that the system relaxes to a
nonequilibrium steady state (NESS) at long times.

2. Developing an exact analytical approach to compute the
steady state distr.

3. By considering generalized Kuramoto dynamics, demonstrating
with exact results a very rich phase diagram
with eqlbm. and noneqlbm. transitions.
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1. N globally coupled rotors.

2. 2 dynamical variables:
0;: Phase,
vi: Angular velocity.

de; _
3. “H =i

N
4. mu = K E sin(6; — 6;)
’ de = N J -
j=1

Long—range interaction
» m: Moment of inertia, K: Coupling constant.

» Hamiltonian dynamics
H = Z, 1 2m + N Z,’J 1 [1 COS(G,’ — 0])]1 pi = my;.




Our setting: The generalized Kuramoto model

1. N globally coupled rotors.

2. 2 dynamical variables:
0;: Phase,
vi: Angular velocity.

d0 _
3. TTI = Vj.
dv;
4. mG =
—vv, + —Zsm +n,( ).
depmg N01sc

Long—range interaction
» m: Moment of inertia, K: Coupling constant, ~: Friction
constant.

» Hamiltonian + heat bath.

» Gaussian white noise:

(ni(t)) = 0, (mi(t)n(t")) = 2y Téj0(t — 1)
T: Temperature of the heat bath.



Our setting: The generalized Kuramoto model

1. N globally coupled rotors.

2. 2 dynamical variables:

0;: Phase,
vi: Angular velocity.
do; .
3. & V.
dv;
4 mﬁ
K N
—yvi + — » sin(0; —0;) + wj +ni(t).
YVi N Z_; C ) YWi ni(t)
Damping J= Drive (Quenched disorder)  Noise

Long—range interaction
» m: Moment of inertia, ~: Friction constant,

K: Coupling constant.
» w;'s: Quenched random variables from a common distr. g(w).

» Gaussian white noise:
(mi(t)) = 0, (mi(t)n;(t")) =29 To;0(t — t').



Long-range interactions: A one-slide summary

V(r)~&; 0<a<d.
Examples: Gravitation, Coulomb interaction,...
Main distinguishing feature: Non-additivity.
Etotal # E1 + Ejy.

Consequences:
» Statics: Ensemble inequivalence.

» Dynamics:
Slow relaxation over times diverging with the system size.
Physics of Long-Range Interacting Systems,
Campa, Dauxois, Fanelli, Ruffo (Oxford, 2014)
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Our setting: The generalized Kuramoto model

o, _ .

> 5 = Vi

dvi _

> mdt =
vty § sin( Ywi +ni(t).
D amping Drive (Quenched disorder)  Noise

Long—range interaction

1. g(w) unimodal, with mean w and width o.

2. Dynamics invariant under
0; — 0; +wt, v, > vi+w,w; > w; +w
(Go to the comoving frame)
= consider g(w) with zero mean.

3. Take w; — ow;,
where g(w) now has unit width.



Dynamics in a reduced parameter space

—Vi
—~—
Damping

KN
+ N;sm(@- —0;) +
J:

Long—range interaction

yow;
——

Drive (Quenched disorder)

+ni(t).
——

Noise



Dynamics in a reduced parameter space

do, _ .
> @ T Vi
av;
lr:
E sin(6; — Yow; +ni(t).
Dampmg Drive (Quenched disorder)  Noise
Long—range interaction
» The dimensionless dynamics:
do, _ .
dt — Vlv
dvi __ 1. 1 N
G = T mVi TN 2= 1sin(0; — 0;) 4+ ow; + ni(t).

v

(ni(t)) =0, (ni(t)n;(¢")) = 2(T //m)d;d(t — t').

Only 3 dimensionless parameters: m, T, 0.

v



o = 0 = No external drive = Equilibrium (Hamiltonian system + heat bath)

do; __ .
ar — Vi
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F= Vit e sin(0) — 0;) + mi(t).
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o = 0 = No external drive = Equilibrium (Hamiltonian system + heat bath)

do; __ .
ar — Vi

dV,' _ N H
F= Vit e sin(0) — 0;) + mi(t).

(ni(t)) = 0, (ni(t)n;(t")) = 2(T //m)d6(t — t').
» Hamiltonian H = Z, 1% ﬁzl’\gzl 1 —cos(8; —0))].

» Mean-field XY model.

» Steady state: Canonical equilibrium

Peq({0i, vi}) o< exp(—H/T).



o = 0 = No external drive = Equilibrium (Hamiltonian system + heat bath)

o, __ .
dt 7VI1

% = —\/1»V, + ,{, jN:1 Sin(ej —0;) + ow; + ni(t).

(ni(t)) = 0, (mi()n;(¢")) = 2(T /v/m)dyo(t — t').
» Hamiltonian H = Z, 1 7’ iNleFl 1 —cos(6; —0))].

» Motion of a single particle in a mean field =
. . . . 2 .
single-particle Hamiltonian Hgingle = % — rxcosf — ry sin6,

single-particle equilibrium Peq (6, v) o exp(—Hsingle/ T).



o = 0 = No external drive = Equilibrium (Hamiltonian system + heat bath)

%= —vit & Ly sin(0 — 07) + 0w + (1),

(ni(£)) = 0, (mi()m;(¢)) = 2(T /v/m)dyo(t — t').

» Single-particle Hamiltonian Hpgle = "72 — rxcost) —r,sin0,
single-particle equilibrium Peq (6, v) o exp(—Hsingle/ T).

» O(2) symmetry = r, =0,
o [ d6dv cos 0 exp(—Hgingle/T) 02" df cosBexp(rx/ T cosf)
X [dodv exp(—Hsingle/T) foh df exp(rx/ T cos0)

= continuous transition between unsynchronized and
synchronized phase, critical temperature T, =1/2
independent of m.



Dynamics in a reduced parameter space

do; _ .
gt — Vi

% = —ﬁv,- + % ';\1:1 sin(9j — 9,‘) + ow; + 77,'(1.‘).

» 0 = 0 — continuous transition between unsynchronized and
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» o # 0 = Nonequilibrium stationary state.

» Kuramoto dyn. m=T =0, o # 0:
continuous “transition”, critical point.



Dynamics in a reduced parameter space

do; _ .
gt — Vi

» o = 0 — continuous transition between unsynchronized and
synchronized phase, critical line T, =1/2.

» o # 0 = Nonequilibrium stationary state.

» Kuramotodyn.. m=T =0, o #0:
continuous “transition”, critical point.

QUESTION: For the generalized model,
STEADY STATE 7?7 SYNCHRONY ?? TRANSITIONS 7?7



The complete phase diagram

Kuramoto model
critical point

Critical line

Synchrony within the region bounded by the blue surface.



The complete phase diagram

IKuramoto model
critical point

Critical line

Order parameter

Order parameter

T=0.25,N=500

m=10,N=500

T=0.15
09 T-035 ——

0 0.25 0.5
Adiabatically tuned o



Bistability close to the first-order transition

m=20.T=0.25,0=0.195N=100

mM=20,T=0.25N=100
8
7 =018 ——
. B o=0.185
£ =019 ——
L5 =0195
5 02
= 5 40 ™ =0.205
a \
z 3
5 2f Tl /
1
o s — \_‘_/ L
0 01 02 03 04 05 06 07 08 09

0 5000 10000 15000 20000 25000 30000 r
Time t



Continuum limit (N — oo) analysis: The main steps

AR A

Fokker-Planck eqgn. for the 2N-dim. phase space density.
Reduced distribution functions.
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy.
N — oo: Closure by neglecting two-particle correlations.
Single-particle distribution (6, v,w, t): Evolution by
“Kramers” equation,

f f . 2
% = —V%—F%(ﬁ—Uw—rsm(w—e))f—i—\/—%%_

r determined self-consistently:
re’ = [ dfdvdw g(w)ef(0,v,w, t).



The unsynchronized steady state

0= v+ §(J5 —ow - reinw - 0)7 + F5L

re’ = [ dfdvdw g(w)ef (0, v,w).

1. Unsynchronized (r = 0) solution:

fsitnc(a v w) 217T 2];rTe—(v—Uw\/E)2/(2T).

2. Stability analysis gives o™

= Linear stability analysis:

F(0,v,w,t) = (0, v,w) + e sf (0, v,w).
3. A satisfies (Acebrdn, Bonilla and Spigler (2000))

_emT oo (—mT)P(1+:55) g(w)dw
1_2T ZPO p foo]_+ T+,ﬂ+

T\f



Linear stability of the unsynchronized phase

. (=mT)P(1+ T) w)dw
_2TZPO P fool+T+’ow+/\

T/m -
1. We proved that

(1) the equation has at most one solution for A with a

positive real part, and (2) when the solution exists, it is
necessarily real.



Linear stability of the unsynchronized phase

. (=mT)P(1+ T) (w)dw
—2TZPO pl fOO]_J,— T+’UW+T\/\/E-

1. We proved that
(1) the equation has at most one solution for A with a
positive real part, and (2) when the solution exists, it is
necessarily real.

2. Neutral stability = )\ = 0 gives

mT (—=m +00 g(w)dw
1 e ZOO f
2T p=0 | — oinc)2,,2
p (1+5)? +%

= Stability surface o™¢(m, T).



The synchronized steady state

. 2
0= v+ & (% —ow—rsin(w—0))f + L2F,

rel¥ = fdedvdw g(w)eief(ea va)

» Exact steady state distr. for the sync. phase: Main steps
L0, v,w) = 9057 ) Toco ba®a( 57

®,,: Hermite functions



The synchronized steady state

0——vgg—i-g%(ﬁ—aw—rsin(qp_g))f_i_ T 82f,

rel¥ = fdedvdw g(w)eief(ea va)

» Exact steady state distr. for the sync. phase: Main steps
L0, v,w) = 9057 ) Toco ba®a( 57

d> Hermite functions

bp(6) = kZo(vm) cp.k(6)



The synchronized steady state
0= —Vgg + a%(ﬁ —ow — rsin(y — 9))7‘-1— TTE%'

rel¥ = fdevdw g(w)eief(ea va)

» Exact steady state distr. for the sync. phase: Main steps
L0, v,w) = 9057 ) Toco ba®a( 57

d> Hermite functions

bp(6) = 3kZo(v/m) cp.k(6)

3 Recursion relations for cp «:

Cop 0 o 0 Coa 0

Ny P
\/
\

Sparse matrix, computationally efficient



The synchronized steady state

0= —V%%—%(ﬁ—ow—rsin(w—ﬂ))fjt\/—TE%,

re’.d’ = fdﬁdvdw g(w)eiaf(ea va)

» Exact steady state distr. for the sync. phase: Main steps
L0, v,w) = @0 57 ) Lilo ba®a( 757 );
®,,: Hermite functions
2. bp(0) = 3220 (VM) cp(0)
» Key features of the analytic approach:

1. Exact expansion—No small parameter
2. Generalizable to any periodic mean-field potential



Comparison with N-body simulations: Gaussian g(w)

1. The 6 distribution:

04
0.35 | m=1,T=0.25
0.3 | 6=0.295N=10°
0.25

S 02
0.15
0.1
0.05

Simulations @
Numerics




Comparison with N-body simulations: Gaussian g(w)

1. The 6 distribution:

0.35 | m=1,T=0.25
6=0.295,N=10°

0.25
B
= 0.2
0.15

Simulations @
Numerics

2. rvs. o:

0
0 0.050.10.150.20.250.30.350.40.450.5
G



...and now the dynamics
(relaxation to steady state)

(for a representative g(w), namely, a Gaussian).



Schematic Landau “free energy” landscapes

Landau “free energy” landscape:
> < g - R
(i) (i) (ii)
g =0,
=
&
(iv)
0 1
T
0. <o <goh o = gh o> goh
W) /\/ (vi) / (vil)

Order parameter

T=0.25,N=500

Adiabatically tuned ¢

Pt eoh



Relaxation dynamics (Gaussian g(w))

For m =20, T = 0.25, o™ ~ 0.10076...
Let us choose o < o'¢,

o <o o =" o <o <o,
m=20,T=0.25,0=0.09
(i) (ii) (iif)
o =0,
=
(iv)
0 1

r

g < 0 < o o = gooh
) /\/ (vi) / (vil)




Relaxation dynamics

For m =20, T = 0.25, 0™ ~ 0.10076...
Let us choose o < o'¢,

o o <o <o
m=20.T=0.25,0=0.095
(i) (ii) (i) - . }
o =0, .
3 ] .
<9
(iv)
0 1
T
g < 0 < ot o = g o> g
NIV / L/



Relaxation dynamics

For m =20, T = 0.25, o™ ~ 0.10076...
Let us choose o = o'¢,

o . <o <o
M=20,T=0.25,5=0.11
() (i) (i)
o=0,
= .
(iv)
0 1
r
0. <o < ogh R———— > geoh
) /\/ (vi) / (vil) /



Relaxation dynamics

For m =20, T = 0.25, o™ ~ 0.10076...

Let us choose o 2 oinc. M=20,T=0.25,6=0.11
- . . 0.8
n: fraction of realizations 08
. . . . 0.7
relaxing to sync. state in a fixed time. 06
_ 0.5
o< o™ o =o" o' <o <o, 0.4
0.3
0.2
(i) (i) (ii) 0.1 |
0
o =0,
= 1 2exp(-0.00027x)
(iv)
0 1
T 1t e
0. <o < gt = gtoh o> b =
) /\/ (vi) / (vi) / 0.1 '

/S D
1 7000 14000

System size N



Relaxation dynamics

For m =20, T = 0.25, 0™ ~ 0.10076...

Let us choose o 2 o'™°

n: fraction of realizations

relaxing to sync. state in a fixed time.
F(r)yvs. r

m=20,T=0.25,0=0.11

10 2exp(-0.00027x)
AF {?‘) 1t e
0.1
a . y
Mean-field dynamics
NAF(r) o 7000 14000
T X exp ? System size N



Relaxation dynamics

For m =20, T = 0.25, o'"¢ ~ 0.10076...

Let us choose o > o™¢

- < o <o <o,
m=20,T=0.25,0=0.12
(i) (ii) (iif)
s -
(iv)
0 1
,
g < 0 < o — goh o> gt

) /\/ (vi) / (vii) /
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Summary

» Kuramoto model as an overdamped limit of a long-range
interacting system.
» General dynamics: (1) External drive, (2) Quenched vs.
annealed randomness.
» No quenched randomness = Equilibrium.

Kuramoto model
critical point

> Prob. distr. ~ exp [—5(K.E. + P.E.)];
Product measure.

» Phase transition given by P. E., same for
underdamped and overdamped /
dynamics. ,

» Quenched randomness = Noneqlbm. )
stat. state. ny
» Prob. distr. # exp {—5(K.E. + P.E.)};
In general, Not product measure.
» Dynamics matters: Phase transitions
different for underdamped and
overdamped dynamics.

Critical line



More general situations
1. Distr. of moment of inertia, G(m).
2. More general g(w).

An analytically exact self-consistent approach predicts complex and
non-trivial phase diagrams with reentrant transitions.

0.8 ‘
0.7,
os
R04
0.3
0.2
0.1 /_—\
095 20 100 2 40

0.035

0.030
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R 0.020
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(Komarov, Gupta, Pikovsky (2014))
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