

Nonlinear phase coupling functions: a numerical study

Michael Rosenblum and Arkady Pikovsky

Institute of Physics and Astronomy, Potsdam University, Germany URL: <u>www.stat.physik.uni-potsdam.de/~mros</u>

Trieste, 9 May 2019

Contents of the talk

- An introduction: phase of a limit cycle oscillator
 models of phase dynamics
 - linear and nonlinear coupling functions
- 2. Nonlinear coupling functions: a numerical approach
- 3. A simple case: forced Stuart-Landau oscillator
- 4. A less simple case: forced Rayleigh oscillator
 forced Rössler oscillator
- 5. Conclusions

Phase dynamics: brief summary

Consider general *N*-dimensional self-sustained oscillator

$$\dot{\mathbf{x}} = \mathbf{G}(\mathbf{x}), \mathbf{x} = (x_1, x_2, \dots, x_N)$$

with a stable limit cycle \mathbf{X}_T

Phase is defined from the condition $\dot{\varphi} = \omega = 2\pi/T$

and can be introduced in two steps:

1. phase on the limit cycle

2. phase in the basin of attraction of the limit cycle

Phase on the limit cycle

A remark: phase can be defined either on $[0,2\pi)$ interval or on the real line

Phase in the vicinity of the cycle: Isochrons

 $\varphi(\mathbf{x}(t)) = \varphi(\mathbf{x}^*)$ where $\mathbf{x}^* = \lim_{m \to \infty} \mathbf{x}(t + mT)$

Thus, we have $\varphi = \varphi(\mathbf{x})$

Phase reduction

Perturbation technique for weak coupling, Malkin 1956, Kuramoto 1984

The forced system $\dot{\mathbf{x}} = G(\mathbf{x}) + \varepsilon \mathbf{p}(\mathbf{x}, t)$

coupling strength, small parameter $arepsilon \ll |\lambda_-|$

Negative Lyapunov exponent (determines the stability of the limit cycle)

Phase reduction

Perturbation technique for weak coupling, Malkin 1956, Kuramoto 1984

The forced system $\dot{\mathbf{x}} = G(\mathbf{x}) + \varepsilon \mathbf{p}(\mathbf{x}, t)$

coupling strength, small parameter

 \rightarrow in the first approximation in ε one writes

$$\dot{\varphi}(\mathbf{x}) = \frac{\partial \varphi}{\partial \mathbf{x}} \dot{\mathbf{x}} = \frac{\partial \varphi}{\partial \mathbf{x}} \left[\mathbf{G}(\mathbf{x}) + \varepsilon \mathbf{p}(\mathbf{x}, t) \right]$$
$$= \omega + \frac{\partial \varphi}{\partial \mathbf{x}} \varepsilon \mathbf{p}(\mathbf{x}, t) \approx \omega + \frac{\partial \varphi}{\partial \mathbf{x}} \bigg|_{\mathbf{x}_{T}} \varepsilon \mathbf{p}(\mathbf{x}_{T}, t)$$

where we 1. use the phase definition for the unperturbed system 2. we compute the r.h.s. on the cycle

Phase reduction

The forced system
$$\dot{\mathbf{x}} = G(\mathbf{x}) + \varepsilon \mathbf{p}(\mathbf{x}, t)$$

$$\dot{\varphi}(\mathbf{x}) = \omega + \frac{\partial \varphi}{\partial \mathbf{x}} \bigg|_{\mathbf{x}_T} \varepsilon \mathbf{p}(\mathbf{x}_T, t)$$

Let force be periodic \longrightarrow we characterise it by its phase $\psi, \dot{\psi} = \nu$ Then $\mathbf{p}(\mathbf{x}_T, t) \rightarrow \mathbf{p}(\psi, t)$

Points on the limit cycle are in a one-to-one correspondence to φ , i.e. $\mathbf{X}_T = \mathbf{X}_T(\varphi) \longrightarrow$ we obtain a closed equation for the phase:

$$\dot{\varphi} = \omega + \varepsilon Q(\varphi, \psi)$$

Phase reduction: the coupling function The forced system $\dot{\mathbf{x}} = G(\mathbf{x}) + \varepsilon \mathbf{p}(\mathbf{x}, t)$ Phase equation $\dot{\varphi} = \omega + \varepsilon Q(\varphi, \psi)$ where $Q(\varphi, \psi) = \frac{\partial \varphi}{\partial \mathbf{x}} \begin{vmatrix} \mathbf{p}(\mathbf{x}_T(\varphi), \psi) \\ \mathbf{x}_T \end{vmatrix}$

Phase reduction: the Winfree form The forced system $\dot{\mathbf{x}} = G(\mathbf{x}) + \varepsilon \mathbf{p}(\mathbf{x}, t)$ coupling function Phase equation $\dot{\varphi} = \omega + \varepsilon Q(\varphi, \psi)$ where $Q(\varphi, \psi) = \frac{\partial \varphi}{\partial \mathbf{x}} | \mathbf{p}(\mathbf{x}_T(\varphi), \psi)$ Notice: if the forcing is scalar, $\mathbf{p}(\mathbf{x}, \psi) = p(\psi)$ then $Q(\varphi, \psi) = Z(\varphi)p(\psi)$ Phase Sensitivity Curve, or Phase Response Curve (PRC) $\dot{\varphi} = \omega + \varepsilon Q(\varphi, \psi) = \omega + \varepsilon Z(\varphi) p(\psi)$ Thus, we have the Winfree form Phase reduction: the Kuramoto-Daido form The forced system $\dot{\mathbf{x}} = G(\mathbf{x}) + \varepsilon \mathbf{p}(\mathbf{x}, t)$ coupling function

Phase equation $\dot{\varphi} = \omega + \varepsilon Q(\varphi, \psi)$

If norm $\| \varepsilon Q \| \ll \omega$ the phase equation can be averaged, keeping the resonance terms

If $\omega/\nu \approx m/n$ then averaging yields

$$\dot{\varphi} = \omega + \varepsilon h(n\varphi - m\psi)$$

the Kuramoto-Daido form

Phase reduction: beyond first approximation

Thus, for weak coupling, i.e. in the first approximation one obtains

$$\dot{\varphi} = \omega + \varepsilon Q(\varphi, \psi)$$

Let us denote this explicitly:

$$\dot{\varphi} = \omega + \varepsilon Q_1(\varphi, \psi)$$

order of approximation

Phase reduction: beyond first approximation

Thus, for weak coupling, i.e. in the first approximation we obtained

$$\dot{\varphi} = \omega + \varepsilon Q(\varphi, \psi)$$

Let us denote this explicitly:

$$\dot{\varphi} = \omega + \varepsilon Q_1(\varphi, \psi)$$

- order of approximation

Generally, one expects

$$\dot{\varphi} = \omega + \varepsilon Q_1 + \varepsilon^2 Q_2 + \varepsilon^3 Q_3 + \dots = \omega + Q(\varphi, \psi)$$

... but it is unknown, how to compute Q_2, Q_3, \ldots

Phase reduction: problems

- 1. Even computation of Q_1 is difficult if the isochrons are not known analytically
- 2. Power series representation remains a conjecture; there no algorithms for computation of Q_2, Q_3, \ldots

Phase reduction: problems

- 1. Even computation of Q_1 is a problem if the isochrons are not known analytically
- 2. Power series representation remains a conjecture; there no algorithms for computation of Q_2, Q_3, \ldots

... and approaches

- Extension to the case of strong coupling with account of deviations from the limit cycle: a number of attempts, see e.g. recent review B. Monga et al, Biol. Cybern., 2019
- 2. We suggest a numerical approach

The simplest model: the Stuart-Landau system

$$\dot{A} = (\mu + i\eta)A - (1 + i\alpha)|A|^2A + \varepsilon p(\psi), \quad \psi = \nu t$$

In polar coordinates, with $A = Re^{i\theta}$:

$$\dot{R} = \mu R - R^3 + \varepsilon p(\psi) \cdot \cos \theta$$

$$\dot{\theta} = \eta - \alpha R^2 - \varepsilon p(\psi) \cdot \sin \theta / R$$
(*)

Isochrons are known analytically:

$$φ = θ - α \ln(R/R_0)$$
 with $R_0 = \sqrt{μ}$

Derivation with account of (*) yields

$$\dot{\varphi} = \omega - \frac{\alpha \cos \theta + \sin \theta}{R} \epsilon p(\psi)$$
 with $\omega = \eta - \alpha \mu$

The Stuart-Landau system: PRC and coupling functions $\dot{\varphi} = \omega - \frac{\alpha \cos \theta + \sin \theta}{R} \varepsilon p(\psi)$ with $\omega = \eta - \alpha \mu$

For weak force $R \approx R_0 = \sqrt{\mu}, \theta \approx \varphi$ —> well-known results

PRC:
$$Z(\varphi) = -\mu^{-1/2}(\alpha \cos \varphi + \sin \varphi)$$

Linear coupling function for harmonic forcing $p(\psi) = \cos \psi$: $Q_1(\varphi, \psi) = -\mu^{-1/2}(\alpha \cos \varphi + \sin \varphi) \cos \psi$

Averaging Q_1 for $\nu \approx \omega$ yields the Kuramoto-Daido function

$$h(\varphi - \psi) = -0.5\mu^{-1/2}[\alpha\cos(\varphi - \psi) + \sin(\varphi - \psi)]$$

Computing nonlinear coupling functions

$$\dot{\varphi} = \omega + \varepsilon Q_1 + \varepsilon^2 Q_2 + \varepsilon^3 Q_3 + \dots = \omega + Q(\varphi, \psi)$$

$$Q(\varphi,\psi)=\varepsilon Q_1+Q_{nlin}$$
 known from the theory — shall be obtained numerically

We simulate the forced Stuart-Landau system to obtain $\varphi(t)$, $\dot{\varphi}(t)$ and fit the rest term $\dot{\varphi}_r = \dot{\varphi} - \omega - \varepsilon Q_1$ by a function of φ, ψ

Practically: we use kernel density estimation on an 100x100 grid

Fitting the coupling function

we **fit** the equation
$$\dot{\varphi}_r = Q_{nlin}(\varphi, \psi)$$

We use kernel density estimation on an $n \times n$ grid

with kernel
$$K(x, y) = \exp\left[\frac{n}{2\pi}(\cos x + \sin y)\right]$$

We start with time series $\varphi_{r,k}, \varphi_k, \psi_k$

and for each point φ, ψ on the equidistant grid compute

$$Q(\varphi, \psi) = \frac{\sum_{k} \dot{\varphi}_{r,k} K(\varphi - \varphi_{k}, \psi - \psi_{k})}{\sum_{k} K(\varphi - \varphi_{k}, \psi - \psi_{k})}$$

Notice: the fitting works in the absence of locking!

Computing nonlinear coupling functions

$$\dot{\varphi} = \omega + \varepsilon Q_1 + \varepsilon^2 Q_2 + \varepsilon^3 Q_3 + \dots = \omega + Q(\varphi, \psi)$$

$$Q(\varphi, \psi) = \varepsilon Q_1 + Q_{nlin}$$
known from the theory shall be obtained numerically
We simulate the forced Stuart-Landau system to obtain $\varphi(t), \dot{\varphi}(t)$
and fit the rest term $\dot{\varphi}_r = \dot{\varphi} - \omega - \varepsilon Q_1$ by a function of φ, ψ
Practically: we use kernel density estimation on an 100x100 grid

We compute Q_{nlin} for $\nu = \text{CONST}$ and different values of ε and obtain $Q_{2,3,4}$ performing a polynomial fit in ε

Stuart-Landau oscillator: nonlinear coupling functions $\varepsilon = 0.05$ $\nu = 0.3$ $\varepsilon = 0.55$

amplitudes of the Fourier modes

Stuart-Landau oscillator: nonlinear coupling functions $\nu = 0.3, \alpha = 0$ $Q_{nlin} \approx \varepsilon^2 Q_2 + \varepsilon^3 Q_3 + \varepsilon^4 Q_4$

Description via nonlinear function is valid for coupling as strong as $\varepsilon = 0.55!$

Nonlinear coupling functions: frequency dependence

 Q_1 does not depend on the frequency of the force Q_{nlin} depends on the frequency of the force

Nonlinear coupling functions: *µ*-scaling

Parameter μ determines stability of the limit cycle

Norm of Q_{nlin} scales as $\mu^{-2.15}$ Norm of Q_1 scales as $\mu^{-0.5}$ Norm of $\mu \to \infty$

The Winfree form for strong forcing

In the first approximation: $\dot{\varphi} = \omega + \varepsilon Z(\varphi) \cos(\nu t)$

For large ε we obtain "effective" $Z(\varphi)$ by plotting

Generally, the nonlinear coupling function cannot be represented as a product!

Predicting synchronization regions with nonlinear coupling functions

First order approximation for the Stuart-Landau system, for

$$\alpha = 0, \mu = 1, \nu \approx \omega$$

$$\dot{\varphi} = \omega - \varepsilon \sin \varphi \cos \psi$$

$$= \omega - \frac{\varepsilon}{2} \sin(\varphi + \psi) + \frac{\varepsilon}{2} \sin(\psi - \varphi)$$
Averaged equation $\dot{\varphi} = \omega - \frac{\varepsilon}{2} \sin(\psi - \varphi)$

This term determines 1:1 locking

Other locked state do not appear in the averaged equation!

Beyond the linear approximation: many Fourier terms,

many locking regions!

Beyond the linear approximation: many Fourier terms,

Can a nonlinear phase model describe high-order locking?

Can a nonlinear phase model describe high-order locking?

We use a model reconstructed for $\nu = 0.3$, $\varepsilon \le 0.55$ to make a prediction for $\varepsilon = 0.7$

(for $\varepsilon > 0.55$ model reconstruction fails because of synchrony)

We solve this equation numerically for **different** ν and $\varepsilon = 0.7$

28

Can a nonlinear phase model describe high-order locking?

We use a model reconstructed for $\nu = 0.3$, $\varepsilon \le 0.55$ to make a prediction for $\varepsilon = 0.7$

Nonlinear phase model describes high-order locking better than integration of the first-order Winfree approximation

How good is the Kuramoto-Daido model?

This model is obtained by averaging for weak forcing, but we can formally exploit it for large amplitudes as well

$$\dot{\varphi} = \omega + h_{n,m}(n\varphi - m\psi)$$

We construct the model either via Fourier modes of the full model,

$$h_{n,m}(n\varphi - m\psi) = \sum_{k} F_{(kn,-km)} \exp(ikn\varphi - ikm\psi)$$

or by a direct fit of $\dot{\varphi} = \varphi$ vs. $n\varphi = m\psi$ MOD 2π

How good is the Kuramoto-Daido model?

The model $h_{1,1}$ yields a good prediction of the 1:1 locking domain

Prediction by the $h_{1,3}$ model is bad

The Stuart-Landau oscillator is a good model: here the isochrons are known analytically

What to do in a general case?

Computing true phases on the fly

Consider a forced system: $\dot{\mathbf{x}} = \mathbf{G}(\mathbf{x}) + \varepsilon \mathbf{p}(\mathbf{x}, t)$

Let us solve it numerically to obtain $\mathbf{x}_k = \mathbf{x}(t_k) = \mathbf{x}(k\Delta t)$

Recall that the perturbation approach operates with phases *defined for the autonomous, unperturbed system*

to obtain phase for each \mathbf{x}_k we integrate a copy of the autonomous system, $\dot{\mathbf{y}} = \mathbf{G}(\mathbf{y})$, with initial condition $\mathbf{y}(0) = \mathbf{x}_k$ and integration time $NT, N \in \mathbb{N}$

for sufficiently large N, $\mathbf{y}(NT)$ is on the limit cycle Hence, we can easily compute phase of $\mathbf{y}(NT)$ and therefore phase φ_k of \mathbf{x}_k

(*N* is the only parameter of the algorithm)

Computing true phases on the fly II

→ for sufficiently large N, $\mathbf{y}(NT)$ is *on the limit cycle* Hence, we can easily compute phase of $\mathbf{y}(NT)$ and therefore phase φ_k of \mathbf{x}_k

Numerical phase reduction

Thus, for a forced system: $\dot{\mathbf{x}} = \mathbf{G}(\mathbf{x}) + \varepsilon \mathbf{p}(\mathbf{x}, t)$ we obtain φ_k for each \mathbf{x}_k , and numerically $\dot{\varphi}_k$ Suppose we know the phase of the force, ψ_k Natural frequency ω is also known

 \rightarrow we can **fit** the equation $\dot{\varphi} = \omega + Q(\varphi, \psi)$

Practically: we use Savitzky-Golay smoothing filter for derivation

we use kernel density estimation on an $n \times n$ grid

$$K(x, y) = \exp\left[\frac{n}{2\pi}(\cos x + \sin y)\right]$$

Numerical phase reduction: Example I

Rayleigh oscillator $\ddot{x} - 4(1 - \dot{x}^2)\dot{x} + x = \varepsilon \cos(\nu t)$

Strong stability of the limit cycle: phase approximation shall work

Phase equation works very well even for strong coupling!

Coupling function: power series representation

Generally, one expects

$$\dot{\varphi} = \omega + \varepsilon Q_1 + \varepsilon^2 Q_2 + \varepsilon^3 Q_3 + \ldots = \omega + Q(\varphi, \psi)$$

Since we have computed $Q(\varphi, \psi, \varepsilon)$ for many different ε we can fit $Q(\varphi, \psi, \varepsilon)$ by a polynomial in ε

Quality of the power series representation

For 3rd-order approximation the error is below 1%

$$\gamma_n(\varepsilon) = \operatorname{std}\left(Q(\varepsilon) - \sum_{i=1}^m \varepsilon^i Q_i\right) / \operatorname{std}[Q(\varepsilon)]$$

Intermediate summary

Phase approximation works well even for quite strong coupling when the deviation from the limit cycle is large

Numerical phase reduction: Example II

Rössler oscillator in a periodic state:

$$\dot{x} = -y - z$$

$$\dot{y} = x + 0.34y$$

$$\dot{z} = 0.8 + z(x - 2)$$

Weak stability of the limit cycle: complex multiplicators $\mu = (-8.7 \pm 12.4i) \cdot 10^{-3}$

Numerical phase reduction: Example II

Poincare section $\nu t \mod 2\pi = \text{const}$

Example II: coupling functions

Example II: coupling functions

When the technique fails?

- If coupling is so strong that the system gets locked to the force; the inference via fit does not work anymore (this happened in the first example)
- 2. If the torus becomes too "thick" and trajectories start to cross "wrong isochrones (second example)

3. If strong forcing destroys smooth attractive torus (see Afraimovich, Shilnikov 1983)

Conclusions

- Phase description works for quite strong coupling, but
 - coupling function is amplitude- and frequency dependent
 - description in terms of phase response curve generally fails
- Phase dynamics equations can be inferred numerically

