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Kuramoto-Battogtokh model as a
set of partial differential equations

Original KB model: Integral equation

0@ L
o T J G(x — X)sin(@(x, 1) — (X, 1) — a)dX
0

Step 1: introduce a coarse-grained complex order parameter

Z(x, 1) = (e9®D) |

x—A<x<x+A

Step 2: Apply the Ott-Antonsen ansatz for the dynamics of the
order parameter

0z 1, S g I
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Step 3: Exponential kernel corresponds to a differential operator
(cf. Lecture of C. Laing)

o0 2
~ ~ ~ o°H 2 2
H = exp[—«x|x —X|]Z(X,Hdx & k‘H=—«k"Z
o 0x?
Step 4: Apply this to a periodic domain (this slightly modifies the
kernel)

k coshk(|x| — L/2))
HQO)=H(L),0 HO)=0H(L) <& Gk =

2 sinh(xL/2)
Result: a system of PDEs with periodic boundary conditions
Z | . o°H ,
—=la)Z+—(He ’“—H*Zew‘) K°H=—«x“Z
ot 2 0x?

We do not solve the consistency equation

(nonlinear eigenvalue problem) for fixed length of the domain L,

but find periodic in space and time solutions (standing waves)
of the system of PDEs



ODE for the chimera patterns

0z | . O°H ,
—=la)Z+—(He ’“—H*Ze’“) K‘H=—x“Z
ot P Ox?2

Rotating wave ansatz:  Z(x, 1) = z(x)e"“*d.  H(x, 1) = h(x)e" @+

Quadratic equation for z: giah*zz + 217 — e~ %h = ()

Second-order ordinary differential equation for complex field h

72 Q + \/ Q% — |h|’
h—h=
dx? h* expl—ip]
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Fourth-order complex ODE can be reduced, due to phase-
rotation invariance, to a three-dimensional real system

h(x) = r(x)e™,  g(x) = r*(x)f'(x)

7; qz Q \/rz B Qz 1
r=r+— Cos f} sin 5
reer 4 <-synchronous domain
q' = Qsinﬁ+\/r2—£22<:osﬂ
if || > |Q]
2 Q+VQE -7
=L v COS f

r3 r

asynchronous domain -> g’ = (Q + \/ Q? — r2> sin f3

if || < |Q]



Analytic solutions: one- and two-point chimeras,

chimera soliton
Case a = nl2, ,3 = 0 Is integrable!

Dynamics only in the asynchronous domain, but synchrony can
be achieved at one or two points

d*r dU(r 2
ar_ 400 o = \/Qz—rz—an(\/Qz—rz—Q>
dx? dr 2
G | -
170 (a), /‘ Potential for two-point chimera
0.05 1 A\l }/
N 7 Potential for homoclinic one-

point chimera

Potential for one-point chimera




Period-frequency dependencies of singular one-
and two-point chimeras

solitary (homoclinic) chimera

One-point chimera Two-point chimera



Perturbation theory close to 7

the integrable case: 5o a=p<1

Synchronous domain now is not a point but has finite length:

Loy & % <Jg(R >+ R*)dx
ﬂNSR\/‘Ql(l — [Q])

Lsyn _

Here R is the solution at / =0 1,2_;
and Ngr is the number of ;
synchronous regions (1 or 2) 0-9-

0.6 1

0.3 1




Chimera patterns as periodic orbits of ODE

The system of ODEs for r(x) and g(x) is a reversible third-order
system of ODEs with a plethora of solutions, including chaotic
onhes.

Poincare map Examples of chimera patterns
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Four simple

. chimera patterns
. coexist for a

- particular domain
. length




Stability properties

Essential and discrete spectra [according to O.E. Omel'’chenko
Nonlinearity 26, 2469 (2013); J. Xie et al. PRE 90, 022919 (2014)]
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Only the “standard” Kuramoto-Battogtokh chimera is stable
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Direct numerical simulations
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Conclusions to this part

e Many chimera patterns can be found as periodic
orbits of an ODE (potentially easier than solving a
self-consistency problem)

e For neutral coupling, one-point and two-point
chimera can be found analytically (represented as
integrals), for nearly neutral coupling a
perturbation theory on top of these solutions is
developed

e No stable complex chimera patterns found, the
only stable one is the KB chimera
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Part 2: Solitary
synchronyzation waves



Oscillatory medium with Laplacian
coupling

Start with the KB-type model (1-d medium with non-local coupling)

0 . -
a—? =Im (He ™), H(x,1) = e‘“JG(x — 0)e'"*dx

With Ott-Antonsen ansatz and coarse-grained order parameter Z

oz 1, . S o
o = > (e ‘““H— H*/ ew‘), H(x,t) = | G(x — X)Z(X, t)dx
We assume a kernel with vanishing mean value (Laplacian coupling)

2

JG(x)dx =0 forexample G(x)~ (x*—0%e 22
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Exponential kernel - like mean field coupling, enables synchrony

Laplacian coupling - allows for any constant level of synchrony



Lattice with Laplacian coupling

OO
ng@ ) Q%}Q - Oéﬁg

Local dynamics at site n is described by the local order parameter Zn

Coupling with nearest neighbours: H, = ¢~ (Zn_l +Z, 1 — 2Zn)

dZn —ia 104
2 = (Zyoy + Zyy = 22,) — 92"+ Z* | = 27)7,

A lattice with linear and nonlinear coupling of “complex
Ginzburg-Landau” or of “nonlinear Schroedinger” type
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Conservative coupling

We choose o = — 71/2 and obtain a conservative lattice

dz, o . -
2 = Ty + By = 22) +HZE + 2 = 2202,

Spatially uniform solutions: Z = Qeie withany0<o¢o <1

Linear waves on top of this background have dispersion

w(k) = \/1 — 0*(1 — cos k)

Phase and group velocities:

41—cosk 2 .
/Iph=\/l—Q P /Ig,,=\/1—g sin k
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Solitary waves in the limit of full synchrony

If all oscillators on a site a synchronised, the problem reduces
to a lattice of phase oscillators

Coupled
oscillators ) =)

Coupleo! OO
i OO0 = S0 - @538
The order parameter can be represented as Z = e

For the phase difference V, = 0, — ®,_; we obtain

dV,
dt

=cosV,,,—cosV _,
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Compactons and kovatons
av,

Equation dt has been studied In
P. Rosenau, A.P.,, PRL (2005); Physica D (2006)

n
Traveling wave ansatz Vn(t) — V4 ( { — I)

=cosV, . —cosV, _;

Compactons
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Solitary waves close to compactors

_ 0, _n _
Full equations for the lattice: Z,=per v,=0,-0,_,

Traveling wave ansatz:

dpn _ 1 - pr% : :

PR (PpetSinV, = poyrsin,, ) p,(t) = p(1), 0.(¢) = O(7)
o, 1+p? =0

dt — zpn (pn—l COS Vn —+ pn_|_1 COS Vn_|_1 — 2pn) ﬂ

Perturbation approach close to full synchrony (close to true compactons)

e=1—-ox1 pr)y=90+eri(t)+... vir)=V(@)+evi(r)+...

Analytic expression for the 1st correction:
T
ri(z) =1-—exp J (sin V(7 —1/4) — sin V(%)) dz
— QOO0
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Comparison of approximate and exact solitary waves forQ = 0.9
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Dashed red curves: approximate solution
Blue curves: exact solution

Exact solitary wave is not compact, but has exponentially
decaying, oscillating tails
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Examples of compactor-like and kovaton-like solitary waves and
the domain on their existence on (Q, ,1) plane
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lllustration of solitons in lattice equations

dz, o . -
2 = Ty + By = 22,) +HZE + 2 = 2202,
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lllustration of solitons in phase equations
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Nonconservative system: dissipative solitons

dz,
dt

Heterogeneity of oscillators Local attractive coupling

1
=[_ }’Zn]+ E(Hn - H,TZ,%) H, = i(Zn—l + Zn+1 - 2Zn) HZy J

Spatially homogeneous stable level of synchrony ¢« =+/(i, — 2y)/u,
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Dissipative soliton in a chain of phase
populations
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Continuous medium with Laplacian coupling

Medium of phase oscillators:

0 . . o
6_(p = Im (He‘“”), H(x,t) = e"“[G(x — e D dx
[
Order parameter field (coarse-grained):
o/ 1 N - o 3
— = (H—H*Z*), H(x,1)=e"|G(x — H)ZEX, )dx

Laplacian kernel coupling:

2

G(x) = A(x% = 6d)e 27

Solitary waves can be found numerically (Newton’s method)



Conservative soliton in a medium with
Laplacian coupling
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Conclusions to this part

e Laplacian (local) coupling can be formulated for
a medium or for a lattice

e Lattice equations for the complex order
parameter resemble nonlinear Schroedinger
|attice (for conservative case) or complex
Ginzburg-Landau lattice

e Solitary waves can be traced from compactons
and kovatons, existing in full synchrony limit
 No theory yet for dissipative solitons
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