
Coupled oscillators: symmetries, dynamics and dead
zones

Peter Ashwin

University of Exeter, U.K.

Trieste ICTP, May 2019

Peter Ashwin (University of Exeter, U.K.) Symmetries, dynamics and dead zones Trieste ICTP, May 2019 1 / 69



1 Oscillator networks and weak chimeras
Modular network examples

2 Weak chimeras for a six oscillator network: existence and stability
Integrability and persistence of solutions for a six oscillator system
Weak chimera chimera solutions near integrability
Other weak chimeras for the six-oscillator system

3 Dead zones for phase oscillators
Restrictions on the effective coupling graph
Coupling functions for an interaction graph
Effective coupling and dynamic stability
Effective coupling graphs for networks of two and three oscillators

4 Discussion

Peter Ashwin (University of Exeter, U.K.) Symmetries, dynamics and dead zones Trieste ICTP, May 2019 2 / 69



Oscillator networks and weak chimeras

We will consider systems of N coupled phase oscillators described as an ODE on
the torus θ ∈ TN = [0, 2π)N :

θ̇i = ωi +
N∑
j=1

Aijg(θi − θj) (1)

where Aij is the strength of coupling, ωi is the natural frequency of the ith
oscillator and g(ϕ) is a smooth 2π-periodic coupling function.
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Chimera states have been described in various ways:

“an array of identical oscillators splits into two domains: one coherent and
phase locked, the other incoherent and desynchronized” [Abrams and
Strogatz]

“ some fraction of the oscillators perfectly synchronized, while the remainder
are desynchronized” [Laing]

“two coexisting subpopulations, one with synchronized oscillations and the
other with unsynchronized oscillations, even though all of the oscillators are
coupled to each other in an equivalent manner” [Tinsley et al]

“a hybrid spatial structure, partially coherent and partially incoherent, which
can develop in networks of identical oscillators without any sign of
inhomogeneity.” [Omelchenko et al]

(add your own favourite definition from last week here)
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Small chimera questions

Q0 What exactly is a chimera state?

Q1 What are the limits on how small a network can be to have chimeras?

Q2 Are there limits on the stability of chimeras in small networks?
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We say oscillators i and j on a trajectory of the system (1) are frequency
synchronized if

Ωij := lim
T→∞

1

T
[θi (T )− θj(T )] = 0.

We say A ⊂ TN is a weak chimera state for a coupled indistinguish-
able phase oscillator system if it is a connected chain-recurrent
flow-invariant set such that on each trajectory within A there are
i , j and k such that Ωij 6= 0 and Ωik = 0.

(Franke & Selgrade (1976) show that any ω-limit set of a flow is flow-invariant,
connected and chain-recurrent.)

A, Burylko [2015]
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Theorem

For global coupling of N identical phase oscillators with Aij = K, all trajectories of
(1) are frequency synchronized. Hence no weak chimera states are possible in
such a system, for any N or g(ϕ).

Chimeras can be found in globally coupled systems of higher dimension.
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Modular network examples

Figure: Example modular networks of (a) four, (b) six and (c) ten indistinguishable
oscillators that permit robust weak chimera states.
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A four oscillator example

θ̇1 = ω + (g(θ1 − θ3) + g(0)) + ε(g(θ1 − θ2) + g(θ1 − θ4))

θ̇2 = ω + (g(θ2 − θ4) + g(0)) + ε(g(θ2 − θ3) + g(θ2 − θ1))

θ̇3 = ω + (g(θ3 − θ1) + g(0)) + ε(g(θ3 − θ2) + g(θ3 − θ4)) (2)

θ̇4 = ω + (g(θ4 − θ2) + g(0)) + ε(g(θ4 − θ1) + g(θ4 − θ3))

For this system and a particular coupling function g(ϕ) considered by Hansel,
Mato and Meunier [1991]:

g(ϕ) := − sin(ϕ− α) + r sin(2ϕ)

= cos(ϕ+ β) + r sin(2ϕ) (3)

where α := π/2− β.
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Theorem

For Hansel-Mato-Meunier coupling (3) there is an open set of (r , α) such that the
four-oscillator system (2) has an attracting weak chimera state for ε = 0 that
persists for all ε with |ε| sufficiently small.
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Weak chimeras for a six oscillator network: existence and
stability
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Figure: (a) Six oscillators with nearest and next-nearest neighbour coupling. (b) Six
oscillators with nearest neighbour coupling only. (c) Six oscillator system with three
inputs to each oscillator; each of these networks has six indistinguishable oscillators and
supports weak chimera states.
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Consider the system
dθi
dt

= ω +
∑

|j−i|=1,2

g(θi − θj). (4)

for i = 1, . . . , 6 where indices are considered modulo N = 6. For coupling (3) this
supports a number of weak chimera solutions

A, Burylko [2015]: numerical exploration

Mary Thoubaan, PhD thesis [2018]: existence and stability
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Subspace Typical point Dim Reduced system
Σ (θ1, . . . , θ6)
D6 (a, a, a, a, a, a) 1

D−
6 (a, a + π, a, a + π, a, a + π) 1

Z1
6 (a, a + ζ, a + 2ζ, a + 3ζ, a + 4ζ, a + 5ζ) 1

Z2
6 (a, a + 2ζ, a + 4ζ, a, a + 2ζ, a + 4ζ) 1

D3 (a, b, a, b, a, b) 2
Z3 (a, b, a + 2ζ, b + 2ζ, a + 4ζ, b + 4ζ) 2
D2 (a, b, a, a, b, a) 2

D−
2 (a, b, a, a + π, b + π, a + π) 2

Z1
2 (a, b, c, a, b, c) 3 I

Z2
2 (a, b, c, a + π, b + π, c + π) 3 II

A0 (a, b, c, a, d , e) 5
A1 (a, b, c, a, c, b) 3 III
A2 (a, b, b, a, c, c) 3 III
A3 (a, b, c, a + π, c + π, b + π) 3 IV
A4 (a, b, b + π, a + π, c + π, c) 3 IV
A5 (a, a + π, b, a, a + π, b) 2
A6 (a, a + π, b, a, a + π, b + π) 2
A7 (a, a + π, b, a + π, a, b) 2

Table: Invariant subspaces for the six oscillator system (a) where ζ := π/2 and
a, b, c, d , e, f are arbitrary phases.
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Figure: Three-cell quotient networks of the network (a). Dashed arrows indicate an input
that includes a phase shift of the phase by π. Note that I, II have a quotient symmetry
of D3. III, IV have only Z2 symmetry but nonetheless fully synchronized solutions.

Peter Ashwin (University of Exeter, U.K.) Symmetries, dynamics and dead zones Trieste ICTP, May 2019 14 / 69



Reduction to dynamics in A1: set

ξ = φ1 − φ3, η = φ2 − φ3, ξ − η = φ1 − φ2

and write in terms of phase differences:

ξ̇ = 2g(ξ − η) + 2g(ξ)− 2g(−ξ)− g(−η)− g(0)

η̇ = 2g(η − ξ) + g(η)− 2g(−ξ)− g(−η).
(5)
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Phase portraits in A1 for ξ, η ∈ [0, 2π) plane. (a) r = 0, α = 0.5, (b) r = 0,
α = 1.3, (c) r = 0, α = 1.5, (d) r = 0, α = π/2, (e) r = 0, α = 1.64, (f) r = 0,
α = 1.84, (g) r = 0, α = 2.16205, (h) r = 0, α = 2.22, (i) r = −0.01, α = 1.561,
(j) r = −0.01, α = 1.558, (k) r = −0.01, α = 1.5517, (l) r = −0.01,
α = 1.97794.
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Integrability and persistence of solutions for a six oscillator
system

Changing to coordinates x , y such that ξ = x + y , η = 2y gives a more convenient
way to represent the system on A1.

We use β = π/2− α.
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In these coordinates:

ẋ = 24r sin x cos x cos2 y − 6 sin x cos y sinβ

+ 2 cos x cos y cosβ − 12r sin x cos x − 2 cosβ cos2 y ,

ẏ = 2 sin y(4r cos2 x cos y + 4r cos3 y + sin x cosβ

− cos x sinβ − cos y sinβ − 4r cos y). (6)

There is an integrable structure in the invariant subspace A1 for the special case
r = β = 0: we use this to prove existence of weak chimeras.
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For r = β = 0 we have

ẋ = 2 cos x cos y − 2 cos2 y ,

ẏ = 2 sin y sin x . (7)

Lemma
This system within A1 has an integral of motion

E (x , y) := y + cos y sin y − 2 sin y cos x . (8)

for r = β = 0.
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Level curves
C (E0) = {(x , y) : E (x , y) = E0}

as preserved by the flow for r = β = 0:

Centres at Q2, Q5. Degenerate saddles at Q6, Q3.
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We describe the motion of trajectories by considering monotonicity and limiting
behaviour of trajectories on M1, M2, M3 and M4.

Lemma

For any 0 < E0 < π there is an initial condition (x(0), y(0)) ∈ C (E0) and a
T = T (E0) > 0 such that if (x(t), y(t)) is a trajectory of the system on A1

for β = r = 0 then x(T ) = x(0)− 2π and y(T ) = y(0).

For E0 = 0 or π then C (E0) consist of the nonhyperbolic saddle Q6 or Q3,
and homoclinic orbits to these saddles.
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Lemma

For any 0 < E0 < π, then the level curve C (E0) of the system on A1 for
β = r = 0 contains a trajectory (x , y) ∈ R2 such that x(T ) = x(0)− 2π and
y(T ) = y(0) for some T = T (E0) > 0. More precisely, if (x , y) ∈ C (E0) then

lim
t→∞

1

t
y(t) = 0 and lim

t→∞

1

t
x(t) =

2π

T
6= 0.

This can be used to show:

Theorem

The system (4, 3) of six oscillators with β = r = 0 has an infinite number of
chimera states within A1 that are neutrally stable.
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The period of the integrable chimera solution T (E0) can be computed as∫ T (E0)

t=0

dt = 2

∫ T (E0)/2

t=0

(
dy

dt

)−1

dy .

(9)

Note that for 0 < y < π and 0 < E0 < π there is a unique x such that
E (x , y) = E0, namely:

x = ∆E0 (y) := 2π − arccos

[
cos y sin y + y − E0

2 sin y

]
(10)
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Writing x = ∆E0 (y) and changing coordinates gives

T (E0) = 2

∫ ymax (E0)

ymin(E0)

1√
4 sin(y)2 − (cos(y) sin(y) + y − E0)2

dy (11)

where ymin(E0) and ymax(E0) are upper and lower limits of the level curve E0.

Period T (E0) of the weak chimera solution for E0 ∈ (0, π) in the integrable case
β = r = 0: the period tends to infinity as the level curve approaches the
heteroclinic orbits at E0 = 0 and π
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Weak chimera chimera solutions near integrability

To understand the near integrable case, consider a Poincaré section

Σp = {(x , y) ∈ T2 : x = 2π and y ∈ (0, π)}.

parametrized by E0 and define a first return map P̃ : (0, π)→ (0, π),

En+1 = P̃(En). (12)

For r = β = 0 note that each 0 < E0 < π is a fixed point with return time T (E0).
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We consider (r , β) = ε(r̃ , β̃) which gives a near integrable system for 0 < ε� 1.

We parametrize the dynamics by (x , y) = (∆Ẽ (y), y): if E0 ∈ (0, π) and
(x(0), y(0)) = (2π, ymax(E0)) then for small t we have

dE

dt
(∆Ẽ(t)(y(t)), y) = ε[GE0 (y)β̃ + FE0 (y)r̃ ] + O(ε2). (13)

The next intersection is at (0, ymax(E1)) after time T = T (E0) + O(ε) and

P̃(E0) = E0 + εΛ(E0)) + O(ε2)

where
Λ(E0) = −2ε(Λ1(E0)β̃ + Λ2(E0)r̃)

for some integrals Λ1 and Λ2 depending only on E0.
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There is a symmetric weak chimera state near E0 = π/2 and (β, r) 6= (0, 0):

Theorem

For almost all (β̃, r̃), if ε is small enough then (β, r) = (εβ̃, εr̃) has a weak
chimera periodic orbit that is close to the level curve C (π/2).
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Graph of Λ(E ) = −2[Λ1(E )β̃ + Λ2(E )r̃ ] for various values of β̃ and r̃ = −0.01.
Zeros correspond to fixed points of the approximate Poincaré map:
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Bifurcation digrams (A) β̃ against E0 for system within A1 when r̃ = −0.01
approximated (using Maple) from limit Poincare map for ε→ 0, (B) β against y
computed numerically (using XPPAUT) for r = −0.01.
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Bifurcation curves for chimeras in the parameter space (β, r) close to the
integrable case (0, 0)
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Bifurcation diagram within A1 for (a) r = 0 and (b) r = −0.01. Red: stable
equilibria, black: unstable equilibria. Green/blue/cyan lines: periodic orbits.
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Close-up of branches for r = −0.01.
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Other weak chimeras for the six-oscillator system

There are other weak chimeras in this six-oscillator system, within the invariant
subspace

A6 = (θ1, θ2, θ3, θ4, θ5, θ6) = (φ1, φ1 + π, φ2, φ1, φ1 + π, φ2 + π).

In these coordinates we have

φ̇1 = w − 2 sin(α) + 2r sin(2φ1 − 2φ2),

φ̇2 = w − 4r sin(2φ1 − 2φ2), (14)

and in term of phase difference ψ := φ1 − φ2 we have

ψ̇ = −2 sin(α) + 6 r sin(2ψ). (15)
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Eigenvalues (a,c) and bifurcation diagram (b) for weak chimeras in A6.

Peter Ashwin (University of Exeter, U.K.) Symmetries, dynamics and dead zones Trieste ICTP, May 2019 35 / 69



Weak chimeras within A6 at parameter point w∗.
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Dead zones for phase oscillators

Suppose that θk ∈ T := R/(2πZ) for k ∈ {1, . . . ,N} evolves according to

θ̇k = ω +
N∑
j=1

Ajkg(θj − θk), (16)

where ω is the fixed intrinsic frequency of all oscillators, Ajk ∈ {0, 1} gives the
coupling topology between oscillators (we assume Akk = 0), and the
(non-constant) coupling function g : T→ R determines how the oscillators
influence each other.
The adjacency matrix (Ajk)— defines a structural network graph A encodes these
connections.

[A, Bick, Poignard, arXiv:1904.00626]
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Suppose the coupling function g has dead zones, i.e., if it is zero over some
interval of phase differences. In the presence of dead zones, we will define an
effective coupling graph of (16) as a subgraph of A, which encodes the effective
interactions between oscillators at a particular point in phase space.

Such coupling will appear in neural systems where “pulsatile coupling” hits a
“refactory zone”.

We mostly restrict (16) to the case where the coupling is all-to-all (and thus fully
symmetric), i.e. Akj = 1 for all j 6= k , and the phase θk ∈ T evolves according to

θ̇k = ω +
N∑

j=1,j 6=k

g(θj − θk) (17)

for k = 1, . . . ,N.
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Some dead zone questions:

Q0: Given any subgraph of the structural network graph, is there a coupling
function such that this subgraph is realised as the effective coupling graph for
some point in the phase space?

Q1: What is the relation between the coupling function, the set of possible
subgraphs that can be realised, and the points where these realisations
happen?

Q2: How do the dynamics and effective couplings influence each other?
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Figure: (a) Coupling for the graph K5 corresponding to the fully connected network (17)
with N = 5. (b-f) show five examples of the 25×4 = 1048576 possible embedded
subgraphs of (a), i.e., having the same number of nodes as (a): all of these can be
realised as effective coupling graphs for a coupling function g with dead zones.
Panels (b) and (d) shows graphs with more than one component: (b) the “empty” graph
with no edges, (c) a cycle of length 5, (d,e,f) have nontrivial structure. While (e) and (f)
are similar, only (e) can be realised in a dynamically stable manner as it contains a
spanning diverging tree.

Peter Ashwin (University of Exeter, U.K.) Symmetries, dynamics and dead zones Trieste ICTP, May 2019 40 / 69



Let G be a graph with V (G) = VN and let SN be the symmetric group of all
permutations of VN = {1, . . . ,N}. The automorphisms of G, denoted by

Γ(G) =
{
γ ∈ SN

∣∣ Aγ(k)γ(j) = Ajk for all j , k ∈ VN

}
,

form a subgroup of SN under composition. Define the set of embedded subgraphs

H(G) = {H = (VN ,E
′) | H ⊂ G}

and write HN = H(KN). Note that the group Γ(G) naturally acts on H(G): For
H ∈ H(G) and γ ∈ Γ the image γH is the graph with vertices VN and edges

E (γH) = { (γj , γk) | (j , k) ∈ E (H)}

for γ ∈ Γ. For this action, the isotropy group of the graph H ⊂ G is

ΣH = { γ ∈ Γ | γH = H} .
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Let the group SN act on TN by permuting components. Consider some G ∈ HN

and let Γ = Γ(G) be automorphisms of G. For Σ ⊂ Γ ⊂ SN we define the fixed
point space Fix(Σ) =

{
θ ∈ TN | γ(θ) = θ for all γ ∈ Σ

}
. For a given θ ∈ TN ,

the isotropy subgroup of θ is the group action is Σθ = { γ ∈ Γ | γ(θ) = θ}.

Note that (16) is equivariant with respect to the action of Γ×T ia permutation of
the oscillators and phase shifts

(θ1, . . . θN) 7→ (θ1 + φ, . . . θN + φ). (18)

The fixed point space of any isotropy subgroup of Γ× T is dynamically invariant.
It is often useful to consider behaviour of (16) in terms of the group orbits of T.

The quotient by T corresponds to considering the dynamics in phase difference
coordinates, and relative equilibria (equilibria for the quotient system) typically
correspond to periodic orbits for the original system.
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The all-to-all coupled oscillator network (17) has structural coupling
graph A = KN , and is Γ(KN)× T = SN × T equivariant. In this case, the
dynamics on the full phase space TN are completely determined by the dynamics
on the canonical invariant region (CIR)

C = { θ = (θ1, . . . , θN) | θ1 < θ2 < · · · < θN < 2π } . (19)

The full synchrony and splay phase configurations

Θsync = (φ, . . . , φ), Θsplay =

(
φ, φ+

2π

N
, . . . , φ+

(N − 1)2π

N

)
∈ C

are relative equilibria of the dynamics. There is a residual action of ZN = Z/NZ
on the canonical invariant region and Θsplay is the fixed point of this action.
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Definition
Suppose that g : T→ R is a smooth 2π-periodic function.

A coupling function g is locally constant at θ0 ∈ T with value c ∈ R if there
is an open set U with θ0 ∈ U ⊂ T such that g(U) ≡ c . Define LC(g) to be
the set of locally constant points of g.

A coupling functions g is locally null at θ0 ∈ T if it is locally constant with
c = 0. Let DZ(g) ⊂ LC(g) denote the set of locally null points of g.

A coupling function g has simple dead zones if DZ(g) has finitely many
connected components and LC(g) = DZ(g), i.e., if there is a finite set of
locally constant regions, and all are locally null.

Let g be a coupling function with simple dead zones. Any connected
component of DZ(g) is a dead zone of g. Connected components of the
complements LZ(g) = T \DZ(g) are interaction or live zones.

Here, we will only consider the case of simple dead zones.
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Definition

The effective coupling graph Gg(θ) of (16) with coupling function g at θ ∈ TN is
the graph on N vertices with edges

E (Gg(θ)) = { (j , k) | Ajk 6= 0 and θj − θk 6∈ DZ(g)} .

Conversely, an edge (j , k) 6∈ E (Gg(θ)) if Ajk = 0 (the edge is not contained in A)
or θj − θk ∈ DZ(g) (the phase difference is in a dead zone).

Note that for the special case (17) the edges of the effective coupling graph are
simply given by E (Gg(θ)) = { (j , k) | θj − θk 6∈ DZ(g)}.
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Clearly Gg(θ) ⊂ A ⊂ KN , and this will be a proper subgraph (that is, it differs
from A by at least one edge) for some θ ∈ TN if g has at least one dead zone. For
the system (16) with coupling function g and given H ⊂ KN , define

Θg(H) =
{
θ ∈ TN | Gg(θ) = H

}
. (20)

Definition

If Θg(H) is not empty, then H is realised as an effective coupling graph for (16)
with coupling function g. Moreover, a graph H can be realised as an effective
coupling graph if there exists a coupling function g for which Θg(H) is not empty.

For particular structural network graphs A of (16) there are a large number of
symmetries, i.e., the automorphism group Γ(A) may be large. At the same
time, Γ(A) acts on the underlying phase space.
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We now show how the symmetry of a point θ ∈ TN relates to the symmetries of
the effective coupling graph at θ.

Lemma

Consider the system (16) with structural network graph A and any coupling
function g. For any θ ∈ TN , we have Gg(γθ) = γGg(θ) for all γ ∈ Γ(A).

Corollary

Consider the system (16) with structural network graph A and any coupling
function g. For any θ ∈ TN , we have

Σθ ⊂ ΣGg(θ) ⊂ Γ(A).

Proof.

To see this, note that if γ ∈ Σθ then γθ = θ and so Gg(θ) = Gg(γθ) = γGg(θ)
which implies that γ ∈ ΣGg(θ).

Note that the reverse containment of Corollary 1 does not necessarily hold, for
example if there are no dead zones (i.e., if DZ(g) is empty) then clearly
Σθ = Γ(A) for all θ.
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We consider two special cases of Q1:

Q1a Given a point θ ∈ TN and a graph H ∈ HN , is there a coupling function g
such that Gg(θ) = H?

Q1b Is there a coupling function that realises all graphs for appropriate choice of
θ? That is, is there a g such that Gg(TN) = HN?

For almost all θ, the answer to Q1a, while answer to Q1b is ”yes”.

One can also consider what possible effective coupling graphs will be realised for a
coupling function g: this is important if we wish to understand the dynamics
of (17) with a fixed coupling function.
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Restrictions on the effective coupling graph

Given θ ∈ TN , what do the properties of θ impose on the effective coupling graphs
of (17)? The isotropy of θ ∈ TN has some important consequences on the
possible effective coupling graphs realised at θ:

Proposition

Consider the system all-to-all coupled oscillator network (17) with coupling
function g. Assume that θ ∈ C ⊂ TN :

(i) If θ has isotropy Σθ then Gg(θ) must have at least the same isotropy.

(ii) For full synchrony Θsync = (a, . . . , a) we have Gg(Θsync) ∈ {∅N ,KN}.
(iii) Suppose there exists 0 < a < 2π/N such that θk+1 − θk = a for any

k ∈ {1, . . . ,N − 1}. Then one of the following cases occurs:
(1) The directed path PN,N−1,...,1 is a subgraph of Gg(θ) but P1,2,...,N is not.
(2) The directed path P1,2,...,N is a subgraph of Gg(θ) but PN,N−1,...,1 is not.
(3) The undirected path P̄1,2,...,N is a subgraph of Gg(θ).
(4) Gg(θ) is a n-partite graph (with n = [N/2] if N is even or n = [N/2] + 1 if

not).
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Figure: Illustration of the case (4)(iii) for N = 6 oscillators: the coupling function g
shown in Panel (a) has two live zones centered at 2a and 3a, the remainder consists of
two dead zones. The diagram in Panel (b) shows the phases θk at one instant in time
such that θj − θi = a(j − i) for all j > i . This coupling graph is tripartite as indicated by
the node colouring.
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Proposition

For a generic choice of θ ∈ TN , and for any subgraph H ∈ HN , there exists a
coupling function g such that Gg(θ) = H.

Corollary

There exists a coupling function g for (17) such that for any subgraph H ∈ HN

we have Gg(θ) = H for some θ.
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Coupling functions for an interaction graph

Given a coupling function g, which properties of g imply certain effective
coupling graphs realised by g?

Given θ ∈ C and H, how can one construct a coupling function g such that
H = Gg(θ)?

Clearly, the number of dead zones plays a major role in these questions, since it
constrains the resulting effective coupling graphs.

Definition

Let n ∈ N. We denote by F(n) the set of coupling functions having n dead zones.

Note that if there are n > 1 dead zones there must also be n live zones, while for
n = 1 there can be 0 or 1 live zones, and for n = 0 there is necessarily one live
zone.
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Proposition

Consider system (17) with coupling function g.

(i) The coupling function g is dead zone symmetric if and only if all effective
coupling graphs for g are undirected.

(ii) Assume that g ∈ F(1) is dead zone symmetric with LZ(g) = [−a, a]. If
a < 2π/N, then for any 1 ≤ k ≤ N and any sequence k , . . . , k + p in
{1, . . . ,N} we have that ∅N ,KN and the embeddings of P̄k,...,k+p

and Kk,...,k+p can be realised as effective coupling graphs for g. If a = 2π/N,
then KN , P̄1,...,N , C̄1,...,N , and the embeddings of graphs P̄k,...,k+p and
Kk,...,k+p can be realised as effective coupling graphs for g.

(iii) Assume that g ∈ F(1) is dead zone symmetric with LZ(g) = [π − a, π + a]
and a ≤ 2π/N. Then ∅N and KN can be realised as effective coupling graphs
for g.
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Figure: An example of directed graph (b) within K5 with 7 edges realised as an effective
coupling graph with a coupling function g in F(7)

Peter Ashwin (University of Exeter, U.K.) Symmetries, dynamics and dead zones Trieste ICTP, May 2019 54 / 69



Effective coupling and dynamic stability

We say a graph H can be stably realised if there is an asymptotically stable
invariant open set A with A ⊂ Θg(H).

Proposition

For any H ∈ HN admitting a spanning diverging tree, there is a coupling
function g such that the oscillator network (17) has a locally asymptotically stable
relative equilibrium (Ωt + θo1 , . . . ,Ωt + θoN) satisfying Gg(θo) = H.

In other words, in the all-to-all coupled case, for any H there exists a coupling
function g that stably realises H.
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Proof (Sketch).

Choose a θo with trivial isotropy and set dead zones such that Gg(θ0) = H
for all g with these dead zones.

Choose values of g(θoi − θoj ) in the live zones such that
(Ωt + θo1 , . . . ,Ωt + θoN) is a relative equilibrium.

Show that all eigenvalues of θo can be made negative by suitable choice of
g′(θoi − θoj ).

Uses:

Proposition (Agaev et al 2009)

Let H be a graph admitting a spanning diverging tree. Consider the Laplacian
matrix LH with coefficients

LH
jk =

{
−AH

jk if j 6= k ,∑N
`=1, 6̀=k A

H
`k if k = j .

Then the multiplicity of the eigenvalue 0 in the spectrum of LH is one.
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Corollary

Assume that H ∈ H(A) admits a spanning diverging tree. Then there is a
coupling function g such that (16) has an asymptotically stable relative
equilibrium (Ωt + θo1 , . . . ,Ωt + θoN) satisfying Gg(θo) = H.

In other words, also in the non-symmetric case, for any H there exists a coupling
function g that stably realises H.
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Effective coupling graphs for networks of two and three
oscillators

Two oscillators
One can easily demonstrate that a single dead zone and a single live zone is
sufficient to realise all effective coupling graphs for (17) with N = 2 oscillators.
More precisely, choose any g ∈ F(1) with LZ(g) = [−a, 2a] for a < π/2, where all
inequalities are understood in the interval [−π, π]. Then

Gg(0, c) =


K2 if c ∈ (−a, a),

P1,2 if c ∈ (a, 2a),

P2,1 if c ∈ (−2a,−a),

∅2 if c ∈ (−π,−2a) ∪ (2a, π).

This shows that there is a single coupling function that realises all four subgraphs
of K2. Note that if g is dead zone symmetric then only the undirected graph K2

and ∅2 can be realised.
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Three oscillators

(a)

1 2

3

(b)
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3

1 2

3

1 2
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3

1 2

363

1 2

338

1 2

325

1 2

30

12

51

3

60

48

15

Figure: We use a colour scheme to identify the graphs in H3. Panel (a) shows the shades
of cyan, magenta, and yellow identified with each directed edge of K3. If multiple edges
are present, the colours are added. Examples of graphs H ∈ H3 in their associated
colours, as well as the corresponding graph numbers ν(H),are shown in Panel (b). The
subgraphs where all edges to/from a given node are present (and no others) are
associated with the colours red, green, and blue. Any symmetry that permutes the three
nodes acts on the colour scheme by permuting the colour channels. Note that white
corresponds to ∅3, black to K3, and shades of gray for the directed cycles C1,2,3,C3,2,1.
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Define the graph number

ν(H) = AH
12 + 2AH

21 + 4AH
13 + 8AH

31 + 16AH
23 + 32AH

32 ∈ {0, . . . , 63} , (21)

which uniquely encodes the realised effective coupling graph as an integer. In
particular, we have ν(∅3) = 0 and ν(K3) = 63.
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(a)

θ1 = θ3

θ 1
=
θ 2

θ
2 =

θ
3τ

(b) (c)

Figure: The sets Θg partition the canonical invariant region C for the fully symmetric
system of N = 3 oscillators. The CIR is sketched in Panel (a): Its boundary is given by
the sets θ1 − θ2 = 0, θ2 − θ3 = 0, and θ3 − θ1 = 0 (black lines) which intersect in Θsync

(black dot, •). The splay phase Θsplay is the centroid (hollow dot, ◦) and is the fixed
point of the residual Z3 = 〈τ〉 symmetry which rotates the CIR (indicated by gray lines).
Dashed lines indicate phase configurations where one phase difference is equal to π. For
a dead zone symmetric coupling function g ∈ F(1) only the undirected subgraphs of K3

can be realised. Panel (b) shows the partition of the CIR for DZ(g) =
(
π
3
, 5π

3

)
. Panel (c)

shows the partition for a dead zone symmetric coupling function with DZ(g) =
(

5π
6
, 7π

6

)
.
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(a) (b) (c)

Figure: Many effective coupling graphs are possible for N = 3 oscillators and a general
coupling function g ∈ F(1) with one dead zone. We have DZ(g) =

(
π
3
, 3π

2

)
in Panel (a),

DZ(g) =
(
− π

3
, 11π

12

)
in Panel (b) and DZ(g) =

(
π
3
, 11π

12

)
in Panel (c).
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We now look at examples of the system’s dynamics and explore how the effective
coupling graph changes along trajectories. To this end, we examine the dynamics
of (17) with N = 3 and the coupling function

g(ψ) = − sin(ψ + α)h(ψ) where h(ψ) =
1

2

(
tanh(ε−1(cos b − cos(a− ψ)) + 1

)
(22)

for constants a ∈ [0, 2π), b ∈ [0, π), ε > 0 and α ∈ [0, 2π). This coupling function
is a modulated Kuramoto–Sakaguchi coupling with phase-shift parameter α.
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We call
DZε(g) =

{
θ
∣∣ ∣∣θ − a

∣∣ < b
}

(23)

the approximate dead zone of the coupling function (22) since in the limit ε→ 0
the coupling function (22) has a single dead zone DZ(g) = { θ | |θ − a| < b }
centred at a of half-width b; here the inequality is to be understood modulo 2π.
In the following we fix ε = 10−2 and α = 1.3.
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Figure: The coupling functions (22) provide examples of coupling functions g ∈ F(1)
with one dead zone; here ε = 10−3 and α = 1.3. The shaded area indicates the dead
zone of the coupling function. In Panel (a) we have a dead zone symmetric coupling
function with DZ(g) ≈

(
5π
6
, 7π

6

)
; In Panel (b) we have DZε(g) =

(
π
3
, 3π

2

)
; In Panel (c)

we have DZε(g) =
(
− π

3
, 11π

12

)
In Panel (d) we have DZε(g) =

(
0.5, 1.5

)
.
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Figure: The phase space for (17) with N = 3 oscillators and coupling function g with one
dead zone as in (22) and parameters as in Figure 10(a-d) respectively. As in Figures 8
and 9, black lines indicate the sets θ1 − θ2 = 0, θ2 − θ3 = 0, and θ3 − θ1 = 0 which
intersect in Θsync (black dot, •) that bound C and its symmetric image. The splay
phases are indicated by hollow dots (◦) and dashed lines indicate phase configurations
where one phase difference is equal to π. As above, the colouring indicates the effective
coupling graph overlaid by trajectories started on a regular grid, shown in white—a very
wide range of effective coupling graphs are realised; see Figure 12. For (b) and (c) there
are white regions of trivial dynamics where no trajectories are present: these correspond
to the effective coupling graph ∅3. Finally, note that for (a) and (c) there are trajectories
that visit Θg(H) for multiple H ∈ H3 as time evolves.
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Figure: The possible effective coupling graphs realised using N = 3 and (22) for
parameters as in Figure 10 and some θ. Black indicates Θg(H) 6= ∅ for H ∈ H3 with a
given graph number, and white indicates Θg(H) = ∅. Since (a) is a dead zone symmetric
coupling function, only undirected subgraphs are realised. By contrast, the general
coupling functions with one dead zone in (b) and (c) between them together realise all
possible subgraphs H = Gg(θ) for some choice of θ.
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There several natural questions that relate to the number, location and lengths of
the dead zones to the set of realisable effective coupling graphs. For example, the
coupling functions (b,c) above together can realise all possible (embedded)
subgraphs of K3. Two specific questions in this direction are:

What is the minimum number of dead zones n = n(N) such that there is a
g ∈ F(n) that realises all H ∈ HN?

For any ` < n(N), what is the minimum m such that there exists
{g1, . . . , gm} ⊂ F(`) between them realise any given H ∈ HN?
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Discussion

Summary:

A definition for weak chimera states and identification of weak chimera states
small networks of oscillators

Six oscillators: Proof of existence of continuum of weak chimeras for
r = β = 0. Some understanding of persistence and bifurcations nearby.

”Dead zones” can modulate the effective coupling and dynamics in a
nontrivial manner.

Further questions:

Scaling of weak chimeras to chimeras in the continuum limit.

Detailed dynamics of weak chimeras in medium-sized networks?

Implications for effective coupling in applications?

Refs:

PA, Oleksandr Burylko, Chaos, 2015

Mary Thoubaan, PA, Chaos, 2018

PA, Chris Bick, Camille Poignard, arXiv:1904.00626 2019
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