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Overview

• ~10% atomic physics theory and radiative opacity

• ~90% astrophysics: gravitational waves, neutron star 
mergers, and an application of radiative opacity
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We have entered the age
of gravitational wave spectroscopy!
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Two years later, a stunning observation: 
gravitational + electromagnetic waves (GW+EM)!
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Stellar evolution chart (simplified)
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First
gravitational
wave
observation
(Sept, 2015)



Stellar evolution chart (simplified)
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First
gravitational
wave
observation
(Sept, 2015)

The focus
of this talk.
Observation:
August, 2017

GW170817



First GW LIGO detection (2015) occurred in LA 
and WA, 0.7 milliseconds apart
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The Hanford, WA detector site
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The Hanford, WA detector site
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4 km
(2.5 mi.)



Diagram of LIGO detector
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Gravitational wave spectrum
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Image:
T. Creighton



Gravitational wave spectrum

Slide 11

Electromagnetic
radiation

Image:
T. Creighton



A brief history of gravitational waves (GWs)
• 1916: Einstein predicted existence of 

GWs based on general relativity

• 1974: Russell Hulse & Joseph Taylor   
provided indirect evidence of GWs 
through observation of first pulsar 
binary

• 1974: Lattimer & Schramm proposed 
that such mergers could produce r-
process elements in the Galaxy

• 1993: Nobel Prize awarded to Hulse & 
Taylor
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A brief history of GWs (continued...)
• 2015-2017: LIGO direct observations 

of GWs (GW150914, GW151226, 
GW170104, GW170814) arising from 
binary BH mergers

• August 17, 2017: LIGO direct 
observation of GWs from neutron star 
merger with electromagnetic (EM) 
counterpart: GW170817 (gamma rays 
through radio frequencies!)

• October 3, 2017: Nobel prize to be 
awarded to Weiss, Barish & Thorne for 
first direct GW observation

• October 16, 2017: Worldwide press 
release of first GW+EM observation 
(Nature, Science, ApJ Letters...)
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Image: Dana Berry, SkyWorks Digital, Inc.



Why study neutron star mergers (NSMs)?

• NSMs are suspected to produce short (< 2 seconds) 
gamma ray bursts (GRBs) [Paczynski (1991)]

• Possibility to observe both gravitational waves (GWs) and 
electromagnetic (EM) signals from a single event

• NSMs are hypothesized to be the site of the r-process, 
i.e. the location where heavy nuclei are created from the 
capture of rapid neutrons (as opposed to s-process for 
the capture of slow neutrons)
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The r-process: nucleosynthesis via the capture 
of rapid neutrons
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n + (Z,A) à (Z,A+1) + γ
à (Z+1,A+1) + e- + ν



Another reason to study neutron star mergers

• We can not yet predict the abundance of neutron-rich 
heavy elements (A = Nprotons+ Nneutrons ≥ 130) that is 
typically observed in the universe (long-standing mystery)
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Don’t believe everything
you read on the internet!

Image: Amanda Bayless



Origin of elements in the universe
(What is the site of the r-process?)
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Origin of elements in the universe
(What is the site of the r-process?)
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Some very basic characteristics
of neutron star mergers...
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A double neutron star
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axis of rotation

courtesy of Stephan Rosswog 

(Δv/c) ~ 0.01

Massive
Doppler
shifts!

Ejecta
composed
of heavy
elements:
lanthanides
and
actinides!



A double neutron star
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angle of inclination

courtesy of Stephan Rosswog 

(Δv/c) ~ 0.01

Massive
Doppler
shifts!

Ejecta
composed
of heavy
elements:
lanthanides
and
actinides!
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What sort of EM signals are expected from NSMs? 
First consider supernova light-curve examples.
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Supernova light-curve examples

Each point represents an
integrated spectrum



Predicted EM signals from a binary neutron star 
merger (pre-GW170817 observation) 
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Image: B. Metzger and E. Berger

• Short gamma ray burst 
(GRB) lasting < 2 seconds

• X-rays produced during the 
afterglow phase

• UV-Optical-IR emission 
produced from the 
“macronova” or “kilonova”
involving dynamical ejecta 
composed of broad range of 
elements; emission 
powered by radioactive 
decay of r-process 
elements, depends on the 
opacity of relevant elements



NSM light-curve (“macronova” or “kilonova”) 
predictions

• Typical modeling predicted a light curve similar in shape 
to that observed for supernovae, but significantly reduced 
in peak brightness (1/10 – 1/100 compared to a typical 
supernova or ~1,000 times brighter than a classical nova)

• Light will be emitted predominantly in the optical-IR range

• We now have one observation of a NSM light curve and 
associated spectrum... (easy to fit in various ways, not yet 
much opportunity for spectroscopy)
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Light curve for GW170817 displays surprising 
monotonic decrease with time. Why?
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Light curve
from GW170817

Image: M.M. Kasliwal, Science (2017)  



First GW+EM multi-messenger observation
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Abbott et al, ApJL (2017): “Multi-messenger Observations of a Binary Star Merger”



Post-GW170817 interpretation of NSM observation
• Short (weak) GRB consistent with ~30o

viewing angle

• X-ray and radio afterglow delayed in 
time due to off-axis observation

• Both a blue (lanthanide-free) and red 
component kilonova resulting from 
dynamical ejecta and ejecta winds
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Image: B. Metzger



Predicted elemental abundances in the ejecta of 
a neutron star merger (NSM)
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Let’s calculate some opacities:
the lanthanides and actinides
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The LANL Suite of Atomic Modeling Codes
[Overview: Fontes et al, JPB 48, 144014 (2015)]

Atomic Physics Codes Atomic Models

fine-structure LTE or NLTE
config-average atomic level

UTAs populations
MUTAs

energy levels spectral modeling
gf-values emission

e- excitation absorption
e- ionization transmission

photoionization power loss
autoionization

CATS: Cowan Code

http://aphysics2.lanl.gov/tempweb

RATS: relativistic

ACE: e- excitation

GIPPER: ionization

ATOMIC



Conditions for neutron star mergers 
• Initial conditions: T ≈ 1 MeV, ρ ≈ 1014 g/cm3

• Light curve approaching peak brightness: T ≈ 1 eV,                 
ρ ≈ 10-20 – 10-10 g/cm3; (if <Z> ≈ 1, then Ne ≈ 10 – 1011 el./cm3)

• The presence of heavy elements at such cold temperatures 
requires the calculation of near-neutral ions with many (> 60) 
bound electrons. (Very complicated and difficult to calculate 
accurately!)

• We calculate radiative opacities for NSM elements under the 
assumption of local thermodynamic equilibrium (LTE)
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Consider the LTE opacity of cold samarium 
(Z=62) as an example (Sm0+ - Sm3+)
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Sm (Z=62) LTE ionization balance
(ρ = 10-13 g/cm3)
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Consider LTE opacity of Sm (Z=62) at T ~ 0.5 eV 
and ρ = 10-13 g/cm3
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• A simple estimate of the 
opacity: assume 
Thomson/Compton 
scattering is the dominant 
mechanism

• Opacity ~ 0.4 <Z>/A (cm2/g)



Consider opacity of Sm (Z=62) at T ~ 0.5 eV and 
ρ = 10-13 g/cm3 (configuration list, assume [Xe] )

• 25 configurations

• Sm0+: 4f6 6s2, 4f5 5d 6s2, 4f6 5d 6s , 4f6 5d2, 4f5 5d 6s 6p, 
4f6 5d 6p , 4f6 6s 6p

• Sm1+: 4f6 6s, 4f6 5d, 4f6 6p, 4f5 5d2, 4f5 5d 6s, 4f5 5d 6p, 4f5
6s 6p

• Sm2+: 4f6, 4f5 6s, 4f5 5d, 4f5 6p, 4f4 5d, 4f4 5d 6s, 4f3 5d2 6s

• Sm3+: 4f5, 4f4 6s, 4f4 5d, 4f4 6p

• ~ 105 energy levels

• ~ 3.3x108 radiative transitions
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Consider LTE opacity of Sm (Z=62) at T ~ 0.5 eV 
and ρ = 10-13 g/cm3
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free-free

bound-bound

scattering

• Next, consider detailed 
bound-electron treatment

• Just 25 configurations leads 
to 100,000 levels and 
330,000,000 lines!



Consider LTE opacity of Sm (Z=62) at T ~ 0.5 eV 
and ρ = 10-13 g/cm3
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• Next, consider detailed 
bound-electron treatment

• Just 25 configurations leads 
to 100,000 levels and 
330,000,000 lines!

• Visible photons have a low 
probability of escape è
infrared spectroscopy is 
required to see these 
objects

optical window



We have calculated LTE opacities
of the lanthanide elements and also uranium
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T = 0.3 eV (3,481 K), ρ = 10-13 g/cm3

Nd (Z=60)

Sm (Z=62) U (Z=92)

Fontes et al (2019) arXiv(2019):1904.08781

Ce (Z=58)



We have calculated LTE opacities
of the lanthanide elements and also uranium

Slide 41

T = 0.3 eV (3,481 K), ρ = 10-13 g/cm3

Nd (Z=60)

Sm (Z=62) U (Z=92)

Fontes et al (2019) arXiv(2019):1904.08781

Ce (Z=58)

homologues
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Z = 57 (4f0) Z = 58 (4f1) Z = 59 (4f3) Z = 60 (4f4)

Z = 61 (4f5) Z = 62 (4f5) Z = 63 (4f7) Z = 64 (4f7)

Z = 65 (4f9)

T = 0.1 eV (~1,100 K); ⍴ = 10-13 g/cm3

Z = 66 (4f10) Z = 67 (4f11) Z = 68 (4f12)

Z = 69 (4f13) Z = 70 (4f14)

(neutral stage is dominant)



Complexity of bound electrons does not 
necessarily lead to high opacity

Slide 43T = 0.1 eV (~1,100 K); ⍴ = 10-13 g/cm3

(neutral stage is dominant)



What does the future hold for observations and 
modeling of neutron star mergers?

• LIGO is scheduled to restart in September 2018 with 
improved sensitivity... What will be observed???

• Current predictions range from 2-30 observations per year, 
based on star formation rate of galaxy NGC4993

• Simulations to explain GW170817 have been carried out, 
but no perfect match: different radiation transport methods, 
opacities, 1-D vs 2-D geometry, wind + dynamical ejecta, 
etc. (Need more observations!)

• Important to make opacities available to NSM modeling 
community; Exploring the creation of an online database 
with NIST colleagues
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April 1, 2019



Thank you for your attention!
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