Molecular Spectroscopy 3

Christian Hill
Joint ICTP-IAEA School on Atomic and
Molecular Spectroscopy in Plasmas

$$
\begin{array}{r}
6-10 \text { May } 2019 \\
\text { Trieste, Italy }
\end{array}
$$

Electronic spectroscopy

The electronic structure of diatomics

- A molecular configuration is a specification of the occupied molecular orbitals in a molecule

The electronic structure of diatomics

- A molecular configuration is a specification of the occupied molecular orbitals in a molecule

The electronic structure of diatomics

- A configuration may have one or more states, labelled as molecular term symbols:

$$
2 S+1|\Lambda|_{(g / u)}^{(+/-)}
$$

The electronic structure of diatomics

- A configuration may have one or more states, labelled as molecular term symbols:
Total electronic spin angular
momentum: $\underline{S}=\sum_{i} \underline{\boldsymbol{s}}_{i}$

$$
{ }^{2 S+1}|\Lambda|_{(g / u)}^{(+/-)}
$$

The electronic structure of diatomics

- A configuration may have one or more states, labelled as molecular term symbols:

$$
2 S+1 \Omega \Lambda{ }_{(g / u)}^{(+/-)}
$$

Total electronic orbital angular momentum about internuclear axis:

$$
|\Lambda|=\left|\sum_{i} \lambda_{i}\right|=0,1,2, \cdots=\Sigma, \Pi, \Delta, \cdots
$$

The electronic structure of diatomics

- A configuration may have one or more states, labelled as molecular term symbols:

The electronic structure of diatomics

- A configuration may have one or more states, labelled as molecular term symbols:

$$
2 S+1 \perp \underbrace{(s / u))}_{\substack{\text { Inversion symmetry of } \\ \text { electronic wavefunction (for } \\ \text { homonuclear diatomics) }}}
$$

The electronic structure of diatomics

- Example 1: a closed-shell configuration

$$
\mathrm{F}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{4}
$$

The electronic structure of diatomics

- Example 1: a closed-shell configuration

$$
\mathrm{F}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{4}
$$

- Easiest case: all electrons paired off in their orbitals
- No net spin or orbital angular momentum: $S=\Lambda=0$
- Electronic wavefunction is totally symmetric:

$$
{ }^{1} \Sigma_{g}^{+}
$$

The electronic structure of diatomics

- Example 2: one unnaired σ-electron

$$
\mathrm{N}_{2}^{+}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 1 \pi_{u}^{4} 3 \sigma_{g}^{1}
$$

The electronic structure of diatomics

- Example 2: one unpaired σ-electron

$$
\mathrm{N}_{2}^{+}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 1 \pi_{u}^{4} 3 \sigma_{g}^{1}
$$

- Only contribution is from the partially-filled orbital
- $\Lambda=0$ and $S=1 / 2$, so $2 S+1=2$ (a doublet state):

$$
{ }^{2} \sum_{g}^{+}
$$

The electronic structure of diatomics

- Example 3: one or three unpaired π-electrons

$$
\mathrm{B}_{2}^{+}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 1 \pi_{u}^{1}
$$

- $\Lambda= \pm 1$ and $S=1 / 2$, so $2 S+1=2$ (a doublet state):

$$
{ }^{2} \Pi_{u}
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons

$$
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2}
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons

$$
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2}
$$

- Label the valence orbitals $\pi_{\text {- }}$ and π_{+}. Consider some possible spatial wavefunctions:

$$
\left.\begin{array}{l}
\psi_{\text {spatial }}^{\left(\mathrm{a}_{1}\right)}=\pi_{+}(1) \pi_{+}(2) \\
\psi_{\text {spatial }}^{\left(\mathrm{a}_{2}\right)}=\pi_{-}(1) \pi_{-}(2)
\end{array}\right\} \Lambda=2 \Rightarrow \Delta
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons

$$
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2}
$$

- Label the valence orbitals $\pi_{\text {- }}$ and π_{+}. Consider some possible spatial wavefunctions:

$$
\left.\begin{array}{l}
\psi_{\text {spatial }}^{\left(\mathrm{a}_{1}\right)}=\pi_{+}(1) \pi_{+}(2) \\
\psi_{\text {spatial }}^{\left(\mathrm{a}_{2}\right)}=\pi_{-}(1) \pi_{-}(2)
\end{array}\right\} \Lambda=2 \Rightarrow \Delta \Delta
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons

$$
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2}
$$

- Label the valence orbitals $\pi_{\text {- }}$ and π_{+}. Consider some possible spatial wavefunctions:

$$
\left.\begin{array}{l}
\psi_{\text {spatial }}^{(\mathrm{a})}=\pi_{+}(1) \pi_{+}(2) \\
\psi_{\text {spatial }}^{(\mathrm{a})}=\pi_{-}(1) \pi_{-}(2)
\end{array}\right\} \Lambda=2 \Rightarrow \Delta \text {, } \begin{aligned}
& \left.\psi_{\text {spatial }}^{(\mathrm{b})}=\frac{1}{\sqrt{2}}\left[\pi_{+}(1) \pi_{-}(2)+\pi_{-}(1) \pi_{+}(2)\right]\right\} \Lambda=0 \Rightarrow \Sigma \\
& \left.\psi_{\text {spatial }}^{(\mathrm{c})}=\frac{1}{\sqrt{2}}\left[\pi_{+}(1) \pi_{-}(2)-\pi_{-}(1) \pi_{+}(2)\right]\right\} \Lambda=0 \Rightarrow \Sigma
\end{aligned}
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons
- Combine with suitable spin wavefunctions:

$$
\left.\begin{array}{l}
\psi_{\text {spatial }}^{\left(\mathrm{a}_{1}\right)}=\pi_{+}(1) \pi_{+}(2) \\
\psi_{\text {spatial }}^{\left(\mathrm{a}_{2}\right)}=\pi_{-}(1) \pi_{-}(2)
\end{array}\right\} \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)]
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons
- Combine with suitable spin wavefunctions:

$$
\begin{array}{ll}
\left.\begin{array}{l}
\psi_{\text {spatial }}^{\left(\mathrm{a}_{1}\right)}=\pi_{+}(1) \pi_{+}(2) \\
\psi_{\text {spatial }}^{\left(\mathrm{a}_{2}\right)}=\pi_{-}(1) \pi_{-}(2)
\end{array}\right\} \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)] & \\
\psi_{\text {spatial }}^{(\mathrm{b})}=\frac{1}{\sqrt{2}}\left[\pi_{+}(1) \pi_{-}(2)+\pi_{-}(1) \pi_{+}(2)\right] \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)] & { }^{1} \Sigma
\end{array}
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons
- Combine with suitable spin wavefunctions:

$$
\begin{aligned}
& \left.\begin{array}{l}
\psi^{\left(\mathrm{a}_{1}\right)}=\pi_{+}(1) \pi_{+}(2) \\
\psi^{\left(\mathrm{a}_{2}\right)}=\pi_{-}(1) \pi_{-}(2)
\end{array}\right\} \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)] \\
& \psi^{(\mathrm{b})}=\frac{1}{\sqrt{2}}\left[\pi_{+}(1) \pi_{-}(2)+\pi_{-}(1) \pi_{+}(2)\right] \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)-\beta(1) \alpha(2)] \\
& \psi^{(\mathrm{c})}=\frac{1}{\sqrt{2}}\left[\pi_{+}(1) \pi_{-}(2)-\pi_{-}(1) \pi_{+}(2)\right] \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)]
\end{aligned}
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons
- \pm-reflection symmetry (molecular axis system):

$$
\hat{\sigma} e^{i \Lambda \hbar \phi}=e^{-i \Lambda \hbar \phi} \Rightarrow \hat{\sigma} \pi_{ \pm}(i)=\pi_{\mp}(i)
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons
- \pm-reflection symmetry (molecular axis system):

$$
\hat{\sigma} e^{i \Lambda \hbar \phi}=e^{-i \Lambda \hbar \phi} \Rightarrow \hat{\sigma} \pi_{ \pm}(i)=\pi_{\mp}(i)
$$

- e.g. $\hat{\sigma} \psi_{\text {spatial }}^{(\mathrm{c})}=\hat{\sigma} \frac{1}{\sqrt{2}}\left[\pi_{+}(1) \pi_{-}(2)-\pi_{-}(1) \pi_{+}(2)\right]$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left[\pi_{-}(1) \pi_{+}(2)-\pi_{+}(1) \pi_{-}(2)\right] \\
& =-\psi_{\text {spatial }}^{(\mathrm{c})}
\end{aligned}
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons

$$
\begin{gathered}
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2} \\
X^{3} \Sigma_{g}^{-}, \quad a^{1} \Delta_{g}, \quad b^{1} \Sigma_{g}^{+}
\end{gathered}
$$

The electronic structure of diatomics

- Example 4: two identical π-electrons

$$
\begin{gathered}
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2} \\
X^{3} \Sigma_{g}^{-}, \quad a^{1} \Delta_{g}, \quad b^{1} \Sigma_{g}^{+}
\end{gathered}
$$

- NB Hund's rules predict energy ordering
- Labelling:
- $X=$ ground state
- $A, B, C, \ldots=$ excited states with the same spin multiplicity
- $a, b, c, \ldots=$ excited states with different spin multiplicity

The electronic structure of diatomics

- Example 4: two identical π-electrons

$$
\begin{gathered}
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2} \\
X^{3} \Sigma_{g}^{-}, \quad a^{1} \Delta_{g}, \quad b^{1} \Sigma_{g}^{+}
\end{gathered}
$$

- Labelling:
- $X=$ ground state
- $A, B, C, \ldots=$ excited states with the same spin multiplicity
- $a, b, c, \ldots=$ excited states with different spin multiplicity

The electronic structure of diatomics

- Example 4: two identical π-electrons

$$
\begin{gathered}
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2} \\
X^{3} \Sigma_{g}^{-}, \quad a^{1} \Delta_{g}, \quad b^{1} \Sigma_{g}^{+}
\end{gathered}
$$

- Labelling:
- $X=$ ground state
- $A, B, C, \ldots=$ excited states with the same spin multiplicity
- $a, b, c, \ldots=$ excited states with different spin multiplicity
- No \pm label for states with $|\Lambda|>0$

The electronic structure of diatomics

- Hind's rules predict energy ordering

$$
\begin{gathered}
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2} \\
X^{3} \Sigma_{g}^{-}<a^{1} \Delta_{g}, \quad b^{1} \Sigma_{g}^{+}
\end{gathered}
$$

- State with highest multiplicity is lowest in energy: - "Fermi hole":

$$
\psi^{(\mathrm{c})}=\frac{1}{\sqrt{2}}\left[\pi_{+}(1) \pi_{-}(2)-\pi_{-}(1) \pi_{+}(2)\right] \frac{1}{\sqrt{2}}[\alpha(1) \beta(2)+\beta(1) \alpha(2)]
$$

The electronic structure of diatomics

- Hund's rules predict energy ordering

$$
\begin{gathered}
\mathrm{O}_{2}: 1 \sigma_{g}^{2} 1 \sigma_{u}^{2} 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2} \\
X^{3} \Sigma_{g}^{-}<a^{1} \Delta_{g}<b^{1} \Sigma_{g}^{+}
\end{gathered}
$$

- Then, state with highest electronic orbital angular momentum, IMI

The electronic structure of diatomics

- Example 4: two identical π-electrons

Electronic transitions for diatomics

Electronic transitions for diatomics

- Transition probability

$$
\begin{aligned}
I_{f i} & \left.\propto\left|\left\langle\psi_{f}\right| \hat{\boldsymbol{\mu}}\right| \psi_{i}\right\rangle\left.\right|^{2} \\
& \left.=\left|\left\langle\chi_{f, m} \phi_{f, n}\right| \hat{\boldsymbol{\mu}}\right| \chi_{i, m} \phi_{i, n}\right\rangle\left.\right|^{2} \\
& \left.\approx\left|\left\langle\chi_{f, m} \mid \chi_{i, m}\right\rangle\right|^{2}\left|\left\langle\phi_{f, n}\right| \hat{\boldsymbol{\mu}}\right| \phi_{i, n}\right\rangle\left.\right|^{2}
\end{aligned}
$$

Electronic transitions for diatomics

- Transition probability

$$
\begin{aligned}
I_{f i} & \left.\propto\left|\left\langle\psi_{f}\right| \hat{\boldsymbol{\mu}}\right| \psi_{i}\right\rangle\left.\right|^{2} \\
& \left.=\left|\left\langle\chi_{f, m} \phi_{f, n}\right| \hat{\boldsymbol{\mu}}\right| \chi_{i, m} \phi_{i, n}\right\rangle\left.\right|^{2}
\end{aligned}
$$

Electronic transitions for diatomics

- Franck-Condon Principle

$$
\begin{aligned}
I_{f i} & \left.\propto\left|\left\langle\psi_{f}\right| \hat{\boldsymbol{\mu}}\right| \psi_{i}\right\rangle\left.\right|^{2} \\
& \left.=\left|\left\langle\chi_{f, m} \phi_{f, n}\right| \hat{\boldsymbol{\mu}}\right| \chi_{i, m} \phi_{i, n}\right\rangle\left.\right|^{2} \\
& \left.\approx\left|\left\langle\chi_{f, m} \mid \chi_{i, m}\right\rangle\right|^{2}\left|\left\langle\phi_{f, n}\right| \hat{\boldsymbol{\mu}}\right| \phi_{i, n}\right\rangle\left.\right|^{2}
\end{aligned}
$$

Electronic transitions for diatomics

- Franck-Condon Principle

$$
\begin{aligned}
I_{f i} & \left.\propto\left|\left\langle\psi_{f}\right| \hat{\boldsymbol{\mu}}\right| \psi_{i}\right\rangle\left.\right|^{2} \\
& \left.=\left|\left\langle\chi_{f, m} \phi_{f, n}\right| \hat{\boldsymbol{\mu}}\right| \chi_{i, m} \phi_{i, n}\right\rangle\left.\right|^{2} \\
& \left.\approx\left|\left\langle\chi_{f, m} \mid \chi_{i, m}\right\rangle\right|^{2}\left|\left\langle\phi_{f, n}\right| \hat{\boldsymbol{\mu}}\right| \phi_{i, n}\right\rangle\left.\right|^{2}
\end{aligned}
$$

Electronic selection rules

$$
\begin{gathered}
\Delta \Lambda=0, \pm 1 \\
g \leftrightarrow u
\end{gathered}
$$

$$
\Sigma^{+} \leftrightarrow \Sigma^{+}, \quad \Sigma^{-} \leftrightarrow \Sigma^{-}
$$

Electronic transitions for diatomics

- Franck-Condon Principle

$$
\begin{aligned}
I_{f i} & \left.\propto\left|\left\langle\psi_{f}\right| \hat{\boldsymbol{\mu}}\right| \psi_{i}\right\rangle\left.\right|^{2} \\
& \left.=\left|\left\langle\chi_{f, m} \phi_{f, n}\right| \hat{\boldsymbol{\mu}}\right| \chi_{i, m} \phi_{i, n}\right\rangle\left.\right|^{2} \\
& \left.\approx\left|\left\langle\chi_{f, m} \mid \chi_{i, m}\right\rangle\right|^{2}\left|\left\langle\phi_{f, n}\right| \hat{\boldsymbol{\mu}}\right| \phi_{i, n}\right\rangle\left.\right|^{2}
\end{aligned}
$$

Franck-Condon
Factor
$\Delta v=$ unrestricted

Electronic selection rules

$$
\begin{gathered}
\Delta \Lambda=0, \pm 1 \\
g \leftrightarrow u \\
\Sigma^{+} \leftrightarrow \Sigma^{+}, \quad \Sigma^{-} \leftrightarrow \Sigma^{-}
\end{gathered}
$$

Electronic transitions for diatomics

- Franck-Condon Principle

Electronic transitions for diatomics

- Aurorae

Electronic transitions for diatomics

- Aurorae

$$
\mathrm{N}_{2}: B\left({ }^{3} \Pi_{g}\right)-A\left({ }^{3} \Sigma_{u}^{+}\right)
$$

Electronic transitions for diatomics

- Aurorae

Electronic transitions for diatomics

- Aurorae
$I_{\mathrm{em}} \propto\left|\left\langle\chi_{f, v^{\prime}} \mid \chi_{i, v^{\prime \prime}}\right\rangle\right|^{2}$

The electronic structure of diatomics

- Example 5: C_{2}

Electronic Structure of C_{2} : 8 coupled electronic states

The electronic structure of diatomics

- Example 5: C_{2}
- Nonetheless: Swan bands $d\left({ }^{3} \Pi_{g}\right)-a\left({ }^{3} \Pi_{u}\right)$
- ab initio calcualtions of hot line lists (e.g. exomol.com)

Nuclear spin statistics

- There are two kinds of H_{2} molecule.

Nuclear spin statistics

- There are two kinds of H_{2} molecule.
- ${ }^{1} \mathrm{H}$ has a nuclear spin; quantum number $\quad I=\frac{1}{2}$

Nuclear spin statistics

- There are two kinds of H_{2} molecule.
- ${ }^{1} \mathrm{H}$ has a nuclear spin; quantum number $\quad I=\frac{1}{2}$
- Just as for identical electrons, the nuclear angular momentum couples:

$$
\begin{array}{cc}
\psi_{\mathrm{ns} ; \text { ortho }}= \begin{cases}\alpha_{1} \alpha_{2} & I=1 \\
\frac{1}{\sqrt{2}}\left[\alpha_{1} \beta_{2}+\beta_{1} \alpha_{2}\right] \\
\beta_{1} \beta_{2} & \\
\psi_{\mathrm{ns} ; \text { para }}=\frac{1}{\sqrt{2}}\left[\alpha_{1} \beta_{2}-\beta_{1} \alpha_{2}\right] & I=0\end{cases}
\end{array}
$$

Nuclear spin statistics

- Consequence on population distribution of rotational states
- ${ }^{1} \mathrm{H}$ nuclei are a fermions: antisymmetric w.r.t. exchange

Nuclear spin statistics

- Consequence on population distribution of rotational states
- ${ }^{1} \mathrm{H}$ nuclei are a fermions: antisymmetric w.r.t. exchange

Nuclear spin statistics

- Consequence on population distribution of rotational states
- ${ }^{1} \mathrm{H}$ nuclei are a fermions: antisymmetric w.r.t. exchange

Nuclear spin statistics

- Consequence on population distribution of rotational states
- ${ }^{1} \mathrm{H}$ nuclei are a fermions: antisymmetric w.r.t. exchange

Nuclear spin statistics

- Consequence on population distribution of rotational states
- ${ }^{1} \mathrm{H}$ nuclei are a fermions: antisymmetric w.r.t. exchange

Nuclear spin statistics

- ortho- H_{2} molecule: only odd-J levels exist
- para- H_{2} molecule: only even-J levels exist

Nuclear spin statistics

- ortho- H_{2} molecule: only odd- J levels exist
- para- H_{2} molecule: only even-J levels exist
- ortho : para ratio is 3:1
- ... but H_{2} doesn't have an (electric dipole-allowed) IR spectrum, so we'll look at ${ }^{12} \mathrm{C}_{2}{ }^{1} \mathrm{H}_{2}$

Same nuclear spin statistics as H_{2}

Nuclear spin statistics: $\mathrm{C}_{2} \mathrm{H}_{2}$

Mode	Description	Normal Mode	Band (cm^{-1})
v_{1}	Symmetric C-X stretch	$\stackrel{x}{ }-\mathrm{C} \equiv \mathrm{C}-\mathrm{x} \longrightarrow$	$\begin{aligned} & \mathrm{X}=\mathrm{H}, 3373.7 \\ & \mathrm{X}=\mathrm{D}, 2700.5 \end{aligned}$
v_{2}	Symmetric CC stretch	$\stackrel{\mathrm{X}-\mathrm{C}}{\mathrm{C}} \equiv \stackrel{\mathrm{c}-\mathrm{X}}{ }$	$\begin{aligned} & \mathrm{X}=\mathrm{H}, 1973.8 \\ & \mathrm{X}=\mathrm{D}, 1762.4 \end{aligned}$
v_{3}	Asymmetric C-X stretch	$\stackrel{\leftarrow}{\leftarrow}-c \equiv c \stackrel{\leftarrow}{\rightleftharpoons}$	$\begin{aligned} & \mathrm{X}=\mathrm{H}, 3281.9 \\ & \mathrm{X}=\mathrm{D}, 2439.3 \end{aligned}$
v_{4}	Symmetric bend		$\begin{aligned} & \mathrm{X}=\mathrm{H}, 612.9 \\ & \mathrm{X}=\mathrm{D}, 505 \end{aligned}$
v_{5}	Asymmetric bend	$\underset{+}{\mathrm{x}}-\mathrm{C}=\underset{+}{\mathrm{C}} \equiv$	$\begin{aligned} & X=H, 730.3 \\ & X=D, 536.9 \end{aligned}$

Nuclear spin statistics: $\mathrm{C}_{2} \mathrm{H}_{2}$

- e.g. ν_{3} asymmetric stretching mode $\left(\Sigma_{u}^{+}\right)$

