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The electronic structure of diatomics

๏ A configuration may have one or more states, labelled as 
molecular term symbols:

2S+1 |Λ |(+/−)
(g/u)

Total electronic orbital angular 
momentum about internuclear axis: 

|Λ | = ∑
i

λi = 0,1,2,⋯ = Σ, Π, Δ, ⋯



The electronic structure of diatomics

๏ A configuration may have one or more states, labelled as 
molecular term symbols:

2S+1 |Λ |(+/−)
(g/u)

Reflection symmetry of 
electronic wavefunction (for Σ 
states)

https://en.wikipedia.org/wiki/%CE%A3


The electronic structure of diatomics

๏ A configuration may have one or more states, labelled as 
molecular term symbols:

2S+1 |Λ |(+/−)
(g/u)

Inversion symmetry of 
electronic wavefunction (for 
homonuclear diatomics)



The electronic structure of diatomics

๏ Example 1: a closed-shell configuration



The electronic structure of diatomics

๏ Example 1: a closed-shell configuration 

๏ Easiest case: all electrons paired off in their orbitals 

๏ No net spin or orbital angular momentum: S = Λ = 0 

๏ Electronic wavefunction is totally symmetric:

1Σ+
g



The electronic structure of diatomics

๏ Example 2: one unpaired σ-electron 



The electronic structure of diatomics

๏ Example 2: one unpaired σ-electron 

๏ Only contribution is from the partially-filled orbital 

๏ Λ = 0 and S = ½, so 2S+1 = 2 (a doublet state):

2Σ+
g



The electronic structure of diatomics

๏ Example 3: one or three unpaired π-electrons 

๏ Λ = ±1 and S = ½, so 2S+1 = 2 (a doublet state):

2Πu
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The electronic structure of diatomics

๏ Example 4: two identical π-electrons 

๏ Label the valence orbitals π- and π+. Consider some possible 
spatial wavefunctions: 

ψ(a1)
spatial = π+(1)π+(2)

ψ(a2)
spatial = π−(1)π−(2)

ψ(b)
spatial =

1

2
[π+(1)π−(2) + π−(1)π+(2)]

Λ = 2 ⇒}
Λ = 0 ⇒}

Δ

Σ



The electronic structure of diatomics

๏ Example 4: two identical π-electrons 

๏ Label the valence orbitals π- and π+. Consider some possible 
spatial wavefunctions: 

ψ(a1)
spatial = π+(1)π+(2)

ψ(a2)
spatial = π−(1)π−(2)

ψ(b)
spatial =

1

2
[π+(1)π−(2) + π−(1)π+(2)]

ψ(c)
spatial =

1

2
[π+(1)π−(2) − π−(1)π+(2)]

Λ = 2 ⇒}
Λ = 0 ⇒}

}

Δ

Λ = 0 ⇒

Σ

Σ



The electronic structure of diatomics

๏ Example 4: two identical π-electrons 

๏ Combine with suitable spin wavefunctions:

ψ(a1)
spatial = π+(1)π+(2)

ψ(a2)
spatial = π−(1)π−(2)} 1Δ

1

2
[α(1)β(2) − β(1)α(2)]



The electronic structure of diatomics

๏ Example 4: two identical π-electrons 

๏ Combine with suitable spin wavefunctions:

ψ(a1)
spatial = π+(1)π+(2)

ψ(a2)
spatial = π−(1)π−(2)

ψ (b)
spatial =

1

2
[π+(1)π−(2) + π−(1)π+(2)]

} 1Δ

1Σ

1

2
[α(1)β(2) − β(1)α(2)]
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The electronic structure of diatomics

๏ Example 4: two identical π-electrons 

๏ Combine with suitable spin wavefunctions:

ψ(a1) = π+(1)π+(2)

ψ(a2) = π−(1)π−(2)

ψ (b) =
1

2
[π+(1)π−(2) + π−(1)π+(2)]

ψ (c) =
1

2
[π+(1)π−(2) − π−(1)π+(2)]

} 1Δ

1Σ

3Σ

1

2
[α(1)β(2) − β(1)α(2)]

1

2
[α(1)β(2) − β(1)α(2)]

1

2
[α(1)β(2) + β(1)α(2)]



The electronic structure of diatomics

๏ Example 4: two identical π-electrons 

๏ ± -reflection symmetry (molecular axis system):

Λℏ −Λℏ

̂σ

̂σeiΛℏϕ = e−iΛℏϕ ⇒ ̂σπ±(i) = π∓(i)



The electronic structure of diatomics

๏ Example 4: two identical π-electrons 

๏ ± -reflection symmetry (molecular axis system): 

๏ e.g. 

Λℏ −Λℏ

̂σ

̂σeiΛℏϕ = e−iΛℏϕ ⇒ ̂σπ±(i) = π∓(i)

3Σ−



The electronic structure of diatomics

๏ Example 4: two identical π-electrons 

X3Σ−
g , a1Δg, b1Σ+

g



The electronic structure of diatomics
๏ Example 4: two identical π-electrons 

๏ NB Hund’s rules predict energy ordering 

๏ Labelling: 

๏ X = ground state 

๏ A, B, C, …= excited states with the same spin multiplicity 

๏ a, b, c, …= excited states with different spin multiplicity 
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The electronic structure of diatomics

๏ Example 4: two identical π-electrons 

๏ Labelling: 

๏ X = ground state 

๏ A, B, C, …= excited states with the same spin multiplicity 

๏ a, b, c, …= excited states with different spin multiplicity 

๏ No ± label for states with 

X3Σ−
g , a1Δg, b1Σ+

g

|Λ | > 0



The electronic structure of diatomics
๏ Hund’s rules predict energy ordering

X3Σ−
g < a1Δg, b1Σ+

g

๏ State with highest multiplicity is lowest in energy: 

๏ “Fermi hole”:

ψ (c) =
1

2
[π+(1)π−(2) − π−(1)π+(2)] 3Σ

1

2
[α(1)β(2) + β(1)α(2)]



The electronic structure of diatomics
๏ Hund’s rules predict energy ordering

X3Σ−
g < a1Δg < b1Σ+

g

๏ Then, state with highest electronic orbital angular 
momentum, |Λ|



The electronic structure of diatomics

๏ Example 4: two identical π-electrons 



Electronic transitions for diatomics

X

A



Electronic transitions for diatomics
๏ Transition probability

Ifi ∝ |⟨ψf | ̂μ |ψi⟩ |2

= |⟨χf,mϕf,n | ̂μ |χi,mϕi,n⟩ |2

≈ |⟨χf,m |χi,m⟩ |2 |⟨ϕf,n | ̂μ |ϕi,n⟩ |2
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Electronic transitions for diatomics
๏ Franck-Condon Principle

Ifi ∝ |⟨ψf | ̂μ |ψi⟩ |2

= |⟨χf,mϕf,n | ̂μ |χi,mϕi,n⟩ |2

≈ |⟨χf,m |χi,m⟩ |2 |⟨ϕf,n | ̂μ |ϕi,n⟩ |2

Franck-Condon 
Factor

Electronic 
selection rules

ΔΛ = 0, ± 1
g ↔ u

Σ+ ↔ Σ+, Σ− ↔ Σ−

Δv = unrestricted



Electronic transitions for diatomics
๏ Franck-Condon Principle

R R



Electronic transitions for diatomics
๏ Aurorae



Electronic transitions for diatomics
๏ Aurorae

N2 : B(3Πg) − A(3Σ+
u )}



Electronic transitions for diatomics
๏ Aurorae



Electronic transitions for diatomics
๏ Aurorae

Iem ∝ |⟨χf,v′ �|χi,v′�′�⟩ |2



The electronic structure of diatomics
๏ Example 5: C2 



The electronic structure of diatomics
๏ Example 5: C2 

๏ Nonetheless: Swan bands 

๏ ab initio calcualtions of hot line lists (e.g. exomol.com)

d(3Πg) − a(3Πu)

http://exomol.com
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Nuclear spin statistics

๏ There are two kinds of H2 molecule. 

๏ 1H has a nuclear spin; quantum number 

๏ Just as for identical electrons, the nuclear angular 
momentum couples: 

I = 1
2

I = 1

I = 0



Nuclear spin statistics

๏ Consequence on population distribution of rotational states 

๏ 1H nuclei are a fermions: antisymmetric w.r.t. exchange  



Nuclear spin statistics

๏ Consequence on population distribution of rotational states 

๏ 1H nuclei are a fermions: antisymmetric w.r.t. exchange  

p = 1 (ortho-H2) 
p = 0 (para-H2) 
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๏ 1H nuclei are a fermions: antisymmetric w.r.t. exchange  
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Nuclear spin statistics
๏ ortho-H2 molecule: only odd-J levels exist 

๏ para-H2 molecule: only even-J levels exist 

๏ ortho : para ratio is 3:1 

๏ … but H2 doesn’t have an (electric dipole-allowed) IR 
spectrum, so we’ll look at 12C21H2 

1H–12C   12C–1H
I = 1

2
I = 0

Same nuclear spin statistics as H2 



Nuclear spin statistics: C2H2



Nuclear spin statistics: C2H2

๏ e.g.      asymmetric stretching modeν3 (Σ+
u )


