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Review: Convective self-aggregation

• the spontaneous spatial organization 
of convection in numerical simulations 
of radiative-convective equilibrium 
despite homogeneous boundary 
conditions and forcing (Wing et al. 
2017)

• arises due to interactions among 
convection, radiation, environmental 
moisture, surface fluxes and circulation

Wing and Emanuel (2014)



RCE in global (coarse) models: 
Dependence on SST?

Bony et al. (2016)

self-aggregation 
is more 
pronounced at 
high SSTs, with a 
narrowing of 
rainy areas 

Fixed SST,           
no rotation, 
constant 
insolation with a 
diurnal cycle 
(usually)



Dependence on resolution?

Reed and Medeiros (2015)

For CAM5 model: 
aggregation becomes 
stronger with finer grid 
scale.  Note that planetary 
radius scale varies going 
down column from 1 to 
1/16.



Dependence on convection representation and 
entrainment?
Becker et al. (2017) find that convective 
parameterisation (on/off, and entrainment mixing 
value) affect SST dependence of aggregation in a 
global model (ECHAM 6.3) at ~200 km grid 
spacing:

They also find that WISHE (wind-
evaporation feedback) is 
important at low SSTs (with 
parameterised convection) but 
not at high SSTs, where 
evaporation is higher in dry 
regions.  
On the other hand, moisture-
convection feedbacks become 
more important at higher SSTs 
because larger saturation deficits 
lead to more dry air dilution per 
mixing amount.



Becker 
et al. 
(2017)
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Dependence on resolution (flat domain)?

Arnold and Putnam (2018)

GEOS Column 
water vapour 
(CWV), flat 
doubly periodic 
domain: 
aggregation 
differs somewhat 
with resolution 
but not 
systematically.

Note that 3.5 km 
is mainly explicit 
convection, 7 km 
is “gray zone”.



Global models, OLR day 1000, RCEMIP 300 K SST

Courtesy of Allison Wing Note: MPAS (Re/8) and NICAM (Re/4) are 4km small-planet GCRMs



Organisation indices for global models
• Review: Subsiding 

fraction (SF) (Coppin 
and Bony 2015): the 
fractional area of the 
globe covered by large-
scale (coarse grid or 
horiz. avg.) and ~day-
mean subsidence in the 
mid-troposphere (e.g. 
500 hPa or 
tropospheric-mean)

• SF is close to 0.5 when 
convection is 
disaggregated, but can 
be much higher when 
aggregated

• Dry area fraction (DAF) 
is the area fraction 
covered by very low 
precipitation.

SF

Coppin and Bony (2015)

Dry area 
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Different mechanisms for different SSTs?

Coppin and Bony (2015)

High SSTLow SST



Possible implications of aggregation for climate

(Some introduction before Thursday’s lecture on aggregation and climate)

Courtesy of Allison Wing

(Note: the rest of this lecture includes limited-area 
CRMs and observations, not just global models)



Decrease in high clouds, warming, drying
with aggregation

Wing and Cronin (2016)
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Courtesy of Allison Wing



Drying of mean state under more aggregated 
conditions seen in self-aggregation simulations and 
observations of aggregated convection

Wing (2019)
Courtesy of Allison Wing



Wing (2019)
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Increased humidity variance: 
dry regions get drier, moist regions get moister

Courtesy of Allison Wing



                                                                  Nauru sondes
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Humidity variability in aggregated channel 
simulations resembles observed humidity variability

Holloway et al. (2017)
Courtesy of Allison Wing



Why might self-aggregation be 
important for climate?

Self-aggregation...
warms and dries mean state, 

reduces high clouds, 
enhances dryness of dry regions, 
might be temperature dependent 

Courtesy of Allison Wing



Aggregation modestly reduces climate sensitivity*

• Net feedback over whole SST range more negative in channel than square
• Implies lower climate sensitivity when aggregated (in channel)
• Contributions from both non-cloud and cloud feedbacks

• Caveat: large variability across simulations

Cronin and Wing (2017)

* more on this in Thursday’s lecture
Courtesy of Allison Wing



Aggregation in Observations
• Similar processes (i.e. moisture-convection feedbacks, radiation 

feedbacks, surface flux feedbacks) are important for observed 
phenomena:

• The Madden-Julian Oscillation (MJO)
• The Intertropical Convergence Zone (ITCZ)
• Tropical Cyclogenesis

• Even at shorter time and space scales, some of these feedbacks 
appear to be important for maintaining organised convection 
against the often dis-aggregating tendency of vertical convective 
circulations (e.g. Holloway 2017)

Holloway et al. (2017)



Tobin et al. 2013

Review: There is agreement between models and observations that as 
convection becomes aggregated (clumped into fewer moist regions), the 
subsidence regions become dryer, resulting in a dryer large-scale mean 
environment. 

This drying, and a reduction of upper-tropospheric stratiform cloud, leads to 
larger OLR and stronger atmospheric cooling. 

Tobin et al. 2012 Stein et al. 2017

less aggregated 

Convective aggregation in observations 

more aggregated 



Figure adapted from Coppin and Bony 2015

Initiation processes, such as radiatively-driven cold pools and related shallow 
overturning circulations (above), are one obvious observational target. 

Maintenance processes may be easier to study in observations (already aggregated 
convection).  Likely links to the MJO and tropical cyclones, with feedbacks involving 
convection, clouds, moisture, radiation, and surface fluxes being important. 

Further work is needed on ocean coupling effects in models and observations.

Observational perspectives on aggregation processes



Figure from Igel et al. 2014,  JGR Atmos.

Recent work suggests potential sensitivity of 
aggregation processes to SST and climate 
change. 

For instance, the “stability-iris” effect (Bony 
et al, 2016) predicts smaller anvil fractions in 
a warmer climate.  

Igel et al. (2014, JGR Atmos.) shows an 
observational dependence of anvil size on 
local SST (left). 

However, modelling challenges include 
expense in resolving both large-scale 
circulations and convective processes as well 
as more complex processes such as ocean 
coupling.

There are also challenges in using 
observations, including short data records.

Aggregation in a warming climate



Holloway et al. 2017

Future observational aspirations
Evolution of convective organization using satellite data



Water vapor profiles from a 
dry (black) and moist (gray) 
region of an aggregated 
idealized simulation.

Holloway et al. 2017

Future observational aspirations
Feasibility of a ground-based observational network

Corresponding calculated 
longwave heating profiles, with 
estimated uncertainties for 
hypothetical radiometer 
measurements. 



Summary
• Global models in non-rotating RCE show a range of self-

aggregation behavior
• One metric developed specifically for global models is 

the subsiding fraction
• More aggregated conditions mean not only more 

organisation of convective elements but also changes 
to the mean state (in simulations and observations):

• Mean drying
• Increased spatial humidity variance
• Reduced high cloud fraction
• Increased mean OLR
• Increased mean atmospheric cooling rate

• Self-aggregation in models may be relevant for real-
world phenomena such as the MJO, the ITCZ, and 
tropical cyclogenesis, and might affect climate 
sensitivity …



Questions
• How might coupling to an ocean model affect these 

global RCE simulations?
• How might rotation affect these simulations?
• Is self-aggregation typically stronger for:

• Global or “flat” simulations?
• Explicit or parameterised convection?
• Fine resolution or coarse resolution?

• What might be some objections to the idea that 
self-aggregation is analogous to observed tropical 
convective organisation?
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