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Convective organization at the largest scales:
 ITCZ, monsoonal precipitation zones and their link to the 

large-scale tropical circulation



Clouds seen from above
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Observed distribution of precipitation
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Observed distribution of precipitation

Data source: GPCP Why is the maximum precipitation (ITCZ) north of the equator?



Precipitation is tied to the atmospheric circulation
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Precipitation is tied to the atmospheric circulation
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Maximum precipitation is co-located with ascending motion in the Hadley cells
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What drives the Hadley circulation



Implied poleward energy transport



Atmospheric and oceanic energy transport

The general circulation of the atmosphere exists to transport energy from regions with net 
energy gain to regions of net energy loss

 



The energy budget for a moist atmosphere



The energy budget for a moist atmosphere

h = CpT + Lvq + gz

Relates the circulation to energy sources and sinks, without 
explicit consideration of latent heating 

e.g., Neelin and Held (1987), Held (2001), Merlis, Eisenman, Bordoni and Schneider (2013 a,b,c)



Because MSE is positively stratified, the Hadley cell usually 
transports energy in the direction of the upper-level flow

Energetic constraint on Hadley cell

of this Review. What emerges is a framework that links ITCZ variations
to the energy input to and energy fluxes in the atmosphere. It allows us to
interpret ITCZ variations across timescales from years to geological epochs.

Atmospheric energy balance and dynamics
Energy flux equator and ITCZ position
Although the air masses diverging in the upper troposphere above the ITCZ
are cooler and drier than those converging near the surface, their potential
energy is greater, such that their moist static energy—the energy relevant
for transport considerations— is generally greater than that of the near-
surface air masses33,34. Therefore, vertically integrated over atmospheric
columns, deep overturning circulations such as the Hadley circulation trans-
port energy in the direction of their upper branches: away from the ITCZ
(Fig. 1b). Averaged over a span of longitudes wide enough that one can focus
on meridional fluxes, the ITCZ can be expected to lie near the ‘‘energy flux
equator’’21,22, where the atmospheric meridional energy flux F changes sign—
insofar as eddy contributions to the tropical atmospheric energy flux diver-
gence remain negligible30,33. Because the energy flux F usually increases going

northward in Earth’s tropics—its divergence div F is usually positive, mean-
ing that energy is exported out of the tropics (Fig. 1b)—one expects the energy
flux equator and the ITCZ to lie farther north the stronger southward is
the cross-equatorial energy flux F0 (Fig. 5). This is indeed what is seen in
observations and climate simulations20–30,32. Moreover, for a fixed cross-
equatorial energy flux F0, one expects the energy flux equator and the ITCZ
to lie closer to the Equator for a steeper equatorial ‘slope’ div F of the energy
flux with latitude (Fig. 5)35.

More precisely, the atmospheric energy balance33

div F 5 S – L – O (1)

connects the divergence of the atmospheric energy flux F to the net energy
input to the atmosphere, consisting of the net downward shortwave radi-
ation S at the top of the atmosphere, minus the outgoing longwave radia-
tion L and any ocean energy uptake O owing to transport or storage in the
oceans. Energy storage on land is negligible on timescales of seasons and
longer, as is storage in the atmosphere, at least in the tropics36, on which
we focus. Now we consider a zonal average over a span of longitudes (for
example, an ocean basin) sufficiently wide that zonal fluxes can be ignored.
By expanding the meridional energy flux F to first order in the latitude d
of the energy flux equator, we obtain 0 5 Fd < F0 1 (div F0)ad, where the
subscripts d and 0 indicate latitude, and a is Earth’s radius (Fig. 5). Solving
for the energy flux equator gives35

d<{
1
a

F0

S0{L0{O0
ð2Þ

Hence, the energy flux equator, and approximately the ITCZ position,
depend to first order on the cross-equatorial atmospheric energy flux F0
and on the net energy input to the atmosphere at or near the Equator:
div F0 5 S0 2 L0 2 O0. To be sure, the energy flux equator is not as sharply
defined as is the ITCZ, because the nearly moist adiabatic thermal strati-
fication implies that the atmospheric energy flux near the ITCZ is weak34

(Fig. 1b). The energy flux equator also does not always coincide with the
ITCZ (over the annual cycle5,26 for example). But its meridional excursions
have magnitudes similar to those of the ITCZ5,22,35, so equation (2) pro-
vides a starting point for understanding the ITCZ position quantitatively.

In the present climate in the zonal and annual mean, the atmosphere
transports 0.3 6 0.2 PW of energy southward across the Equator (Fig. 5)30,37.
The net equatorial energy input to the atmosphere37 is 186 3 W m–2 (Fig. 1b).
With that, equation (2) implies an energy flux equator at 4uN 6 3u—broadly
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Figure 4 | Processes controlling zonal-mean ITCZ position. The lower
branches of the Hadley circulation (grey arrows) bring warm and moist air
masses towards the ITCZ, where they converge, rise and diverge as cooler and
drier air masses aloft. Because the moist static energy aloft is greater than near
the surface, the Hadley circulation transports energy away from the ITCZ.
Eddies transport that energy farther into the extratropics (red wavy arrows).
Hemispheric asymmetries in the energy export out of the tropics generally lead
to an energy flux that crosses the Equator. Currently, the energy export into
the extratropics in the south exceeds that in the north, leading to a southward
cross-equatorial energy flux (Fig. 5). This implies an ITCZ in the Northern
Hemisphere. Coupled to the Hadley circulation are mean zonal winds (red
arrows at the sea surface), which are easterly where the near-surface mass flux is
equatorward, and westerly where it is poleward. In the oceans, these zonal
winds drive subtropical cells, with near-surface mass flux to the right of zonal
winds in the Northern Hemisphere, and to the left in the Southern Hemisphere.
Water masses cool and sink along their way towards the Hadley circulation
termini and return below the sea surface (red and blue arrows). With mean
easterlies in the tropics, the returning cool water masses upwell at the Equator,
and the subtropical cells transport energy away from the Equator. But the
upwelling location can migrate with the ITCZ away from the Equator and can
dampen the ITCZ migration (Box 1).
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Figure 5 | Atmospheric meridional energy flux and energy flux equator.
The atmospheric moist static energy flux F in the zonal and annual mean in the
present climate (red line) is generally poleward, but it has a small southward
component F0 at the Equator. The energy flux equator is the zero of the energy
flux, which currently lies around d < 2.5u. Given the equatorial values of the
energy flux F0 and of its ‘slope’ with latitude div F0, the energy flux equator d
can be determined from F0 < –ad div F0, where a is Earth’s radius. For example,
if F0 increases (indicated schematically by the blue line), the energy flux equator
d moves southward. Similarly, if div F0 increases, the energy flux equator
moves towards the Equator. The energy flux data are from the ECMWF
interim reanalysis for 1998–2012, corrected as in ref. 37 and provided by the
National Center for Atmospheric Research. The light red shading indicates an
estimated 60.2 PW standard error (the actual uncertainty is poorly known).

REVIEW RESEARCH

4 S E P T E M B E R 2 0 1 4 | V O L 5 1 3 | N A T U R E | 4 7

Macmillan Publishers Limited. All rights reserved©2014

Eq
Adapted from Schneider et al. 2014



ITCZ position is anti-correlated with the cross-equatorial energy 
transport 
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of this Review. What emerges is a framework that links ITCZ variations
to the energy input to and energy fluxes in the atmosphere. It allows us to
interpret ITCZ variations across timescales from years to geological epochs.
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Although the air masses diverging in the upper troposphere above the ITCZ
are cooler and drier than those converging near the surface, their potential
energy is greater, such that their moist static energy—the energy relevant
for transport considerations— is generally greater than that of the near-
surface air masses33,34. Therefore, vertically integrated over atmospheric
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example, an ocean basin) sufficiently wide that zonal fluxes can be ignored.
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and on the net energy input to the atmosphere at or near the Equator:
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defined as is the ITCZ, because the nearly moist adiabatic thermal strati-
fication implies that the atmospheric energy flux near the ITCZ is weak34
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have magnitudes similar to those of the ITCZ5,22,35, so equation (2) pro-
vides a starting point for understanding the ITCZ position quantitatively.
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transports 0.3 6 0.2 PW of energy southward across the Equator (Fig. 5)30,37.
The net equatorial energy input to the atmosphere37 is 186 3 W m–2 (Fig. 1b).
With that, equation (2) implies an energy flux equator at 4uN 6 3u—broadly
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the surface, the Hadley circulation transports energy away from the ITCZ.
Eddies transport that energy farther into the extratropics (red wavy arrows).
Hemispheric asymmetries in the energy export out of the tropics generally lead
to an energy flux that crosses the Equator. Currently, the energy export into
the extratropics in the south exceeds that in the north, leading to a southward
cross-equatorial energy flux (Fig. 5). This implies an ITCZ in the Northern
Hemisphere. Coupled to the Hadley circulation are mean zonal winds (red
arrows at the sea surface), which are easterly where the near-surface mass flux is
equatorward, and westerly where it is poleward. In the oceans, these zonal
winds drive subtropical cells, with near-surface mass flux to the right of zonal
winds in the Northern Hemisphere, and to the left in the Southern Hemisphere.
Water masses cool and sink along their way towards the Hadley circulation
termini and return below the sea surface (red and blue arrows). With mean
easterlies in the tropics, the returning cool water masses upwell at the Equator,
and the subtropical cells transport energy away from the Equator. But the
upwelling location can migrate with the ITCZ away from the Equator and can
dampen the ITCZ migration (Box 1).
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Figure 5 | Atmospheric meridional energy flux and energy flux equator.
The atmospheric moist static energy flux F in the zonal and annual mean in the
present climate (red line) is generally poleward, but it has a small southward
component F0 at the Equator. The energy flux equator is the zero of the energy
flux, which currently lies around d < 2.5u. Given the equatorial values of the
energy flux F0 and of its ‘slope’ with latitude div F0, the energy flux equator d
can be determined from F0 < –ad div F0, where a is Earth’s radius. For example,
if F0 increases (indicated schematically by the blue line), the energy flux equator
d moves southward. Similarly, if div F0 increases, the energy flux equator
moves towards the Equator. The energy flux data are from the ECMWF
interim reanalysis for 1998–2012, corrected as in ref. 37 and provided by the
National Center for Atmospheric Research. The light red shading indicates an
estimated 60.2 PW standard error (the actual uncertainty is poorly known).

REVIEW RESEARCH

4 S E P T E M B E R 2 0 1 4 | V O L 5 1 3 | N A T U R E | 4 7

Macmillan Publishers Limited. All rights reserved©2014

Eq
Adapted from Schneider et al. 2014

hvhi0

e.g., Kang et al. 2008, Hwang and Frierson 2012, Donohoe et al. 2013, Bischoff and Schneider 2014

hvhi0



What drives hemispheric asymmetry?

Marshall et al. (2013)



Role of ocean heat transport

Marshall et al. (2013), Frierson et al. (2013)



Mechanisms of northward shifted position of the ITCZ

Frierson et al. (2013)
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of this Review. What emerges is a framework that links ITCZ variations
to the energy input to and energy fluxes in the atmosphere. It allows us to
interpret ITCZ variations across timescales from years to geological epochs.
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Although the air masses diverging in the upper troposphere above the ITCZ
are cooler and drier than those converging near the surface, their potential
energy is greater, such that their moist static energy—the energy relevant
for transport considerations— is generally greater than that of the near-
surface air masses33,34. Therefore, vertically integrated over atmospheric
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on meridional fluxes, the ITCZ can be expected to lie near the ‘‘energy flux
equator’’21,22, where the atmospheric meridional energy flux F changes sign—
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we focus. Now we consider a zonal average over a span of longitudes (for
example, an ocean basin) sufficiently wide that zonal fluxes can be ignored.
By expanding the meridional energy flux F to first order in the latitude d
of the energy flux equator, we obtain 0 5 Fd < F0 1 (div F0)ad, where the
subscripts d and 0 indicate latitude, and a is Earth’s radius (Fig. 5). Solving
for the energy flux equator gives35
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Hence, the energy flux equator, and approximately the ITCZ position,
depend to first order on the cross-equatorial atmospheric energy flux F0
and on the net energy input to the atmosphere at or near the Equator:
div F0 5 S0 2 L0 2 O0. To be sure, the energy flux equator is not as sharply
defined as is the ITCZ, because the nearly moist adiabatic thermal strati-
fication implies that the atmospheric energy flux near the ITCZ is weak34

(Fig. 1b). The energy flux equator also does not always coincide with the
ITCZ (over the annual cycle5,26 for example). But its meridional excursions
have magnitudes similar to those of the ITCZ5,22,35, so equation (2) pro-
vides a starting point for understanding the ITCZ position quantitatively.

In the present climate in the zonal and annual mean, the atmosphere
transports 0.3 6 0.2 PW of energy southward across the Equator (Fig. 5)30,37.
The net equatorial energy input to the atmosphere37 is 186 3 W m–2 (Fig. 1b).
With that, equation (2) implies an energy flux equator at 4uN 6 3u—broadly
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masses towards the ITCZ, where they converge, rise and diverge as cooler and
drier air masses aloft. Because the moist static energy aloft is greater than near
the surface, the Hadley circulation transports energy away from the ITCZ.
Eddies transport that energy farther into the extratropics (red wavy arrows).
Hemispheric asymmetries in the energy export out of the tropics generally lead
to an energy flux that crosses the Equator. Currently, the energy export into
the extratropics in the south exceeds that in the north, leading to a southward
cross-equatorial energy flux (Fig. 5). This implies an ITCZ in the Northern
Hemisphere. Coupled to the Hadley circulation are mean zonal winds (red
arrows at the sea surface), which are easterly where the near-surface mass flux is
equatorward, and westerly where it is poleward. In the oceans, these zonal
winds drive subtropical cells, with near-surface mass flux to the right of zonal
winds in the Northern Hemisphere, and to the left in the Southern Hemisphere.
Water masses cool and sink along their way towards the Hadley circulation
termini and return below the sea surface (red and blue arrows). With mean
easterlies in the tropics, the returning cool water masses upwell at the Equator,
and the subtropical cells transport energy away from the Equator. But the
upwelling location can migrate with the ITCZ away from the Equator and can
dampen the ITCZ migration (Box 1).
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Figure 5 | Atmospheric meridional energy flux and energy flux equator.
The atmospheric moist static energy flux F in the zonal and annual mean in the
present climate (red line) is generally poleward, but it has a small southward
component F0 at the Equator. The energy flux equator is the zero of the energy
flux, which currently lies around d < 2.5u. Given the equatorial values of the
energy flux F0 and of its ‘slope’ with latitude div F0, the energy flux equator d
can be determined from F0 < –ad div F0, where a is Earth’s radius. For example,
if F0 increases (indicated schematically by the blue line), the energy flux equator
d moves southward. Similarly, if div F0 increases, the energy flux equator
moves towards the Equator. The energy flux data are from the ECMWF
interim reanalysis for 1998–2012, corrected as in ref. 37 and provided by the
National Center for Atmospheric Research. The light red shading indicates an
estimated 60.2 PW standard error (the actual uncertainty is poorly known).
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ITCZ and EFE

of this Review. What emerges is a framework that links ITCZ variations
to the energy input to and energy fluxes in the atmosphere. It allows us to
interpret ITCZ variations across timescales from years to geological epochs.

Atmospheric energy balance and dynamics
Energy flux equator and ITCZ position
Although the air masses diverging in the upper troposphere above the ITCZ
are cooler and drier than those converging near the surface, their potential
energy is greater, such that their moist static energy—the energy relevant
for transport considerations— is generally greater than that of the near-
surface air masses33,34. Therefore, vertically integrated over atmospheric
columns, deep overturning circulations such as the Hadley circulation trans-
port energy in the direction of their upper branches: away from the ITCZ
(Fig. 1b). Averaged over a span of longitudes wide enough that one can focus
on meridional fluxes, the ITCZ can be expected to lie near the ‘‘energy flux
equator’’21,22, where the atmospheric meridional energy flux F changes sign—
insofar as eddy contributions to the tropical atmospheric energy flux diver-
gence remain negligible30,33. Because the energy flux F usually increases going

northward in Earth’s tropics—its divergence div F is usually positive, mean-
ing that energy is exported out of the tropics (Fig. 1b)—one expects the energy
flux equator and the ITCZ to lie farther north the stronger southward is
the cross-equatorial energy flux F0 (Fig. 5). This is indeed what is seen in
observations and climate simulations20–30,32. Moreover, for a fixed cross-
equatorial energy flux F0, one expects the energy flux equator and the ITCZ
to lie closer to the Equator for a steeper equatorial ‘slope’ div F of the energy
flux with latitude (Fig. 5)35.

More precisely, the atmospheric energy balance33

div F 5 S – L – O (1)

connects the divergence of the atmospheric energy flux F to the net energy
input to the atmosphere, consisting of the net downward shortwave radi-
ation S at the top of the atmosphere, minus the outgoing longwave radia-
tion L and any ocean energy uptake O owing to transport or storage in the
oceans. Energy storage on land is negligible on timescales of seasons and
longer, as is storage in the atmosphere, at least in the tropics36, on which
we focus. Now we consider a zonal average over a span of longitudes (for
example, an ocean basin) sufficiently wide that zonal fluxes can be ignored.
By expanding the meridional energy flux F to first order in the latitude d
of the energy flux equator, we obtain 0 5 Fd < F0 1 (div F0)ad, where the
subscripts d and 0 indicate latitude, and a is Earth’s radius (Fig. 5). Solving
for the energy flux equator gives35
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Hence, the energy flux equator, and approximately the ITCZ position,
depend to first order on the cross-equatorial atmospheric energy flux F0
and on the net energy input to the atmosphere at or near the Equator:
div F0 5 S0 2 L0 2 O0. To be sure, the energy flux equator is not as sharply
defined as is the ITCZ, because the nearly moist adiabatic thermal strati-
fication implies that the atmospheric energy flux near the ITCZ is weak34

(Fig. 1b). The energy flux equator also does not always coincide with the
ITCZ (over the annual cycle5,26 for example). But its meridional excursions
have magnitudes similar to those of the ITCZ5,22,35, so equation (2) pro-
vides a starting point for understanding the ITCZ position quantitatively.

In the present climate in the zonal and annual mean, the atmosphere
transports 0.3 6 0.2 PW of energy southward across the Equator (Fig. 5)30,37.
The net equatorial energy input to the atmosphere37 is 186 3 W m–2 (Fig. 1b).
With that, equation (2) implies an energy flux equator at 4uN 6 3u—broadly
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the surface, the Hadley circulation transports energy away from the ITCZ.
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Hemispheric asymmetries in the energy export out of the tropics generally lead
to an energy flux that crosses the Equator. Currently, the energy export into
the extratropics in the south exceeds that in the north, leading to a southward
cross-equatorial energy flux (Fig. 5). This implies an ITCZ in the Northern
Hemisphere. Coupled to the Hadley circulation are mean zonal winds (red
arrows at the sea surface), which are easterly where the near-surface mass flux is
equatorward, and westerly where it is poleward. In the oceans, these zonal
winds drive subtropical cells, with near-surface mass flux to the right of zonal
winds in the Northern Hemisphere, and to the left in the Southern Hemisphere.
Water masses cool and sink along their way towards the Hadley circulation
termini and return below the sea surface (red and blue arrows). With mean
easterlies in the tropics, the returning cool water masses upwell at the Equator,
and the subtropical cells transport energy away from the Equator. But the
upwelling location can migrate with the ITCZ away from the Equator and can
dampen the ITCZ migration (Box 1).
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Figure 5 | Atmospheric meridional energy flux and energy flux equator.
The atmospheric moist static energy flux F in the zonal and annual mean in the
present climate (red line) is generally poleward, but it has a small southward
component F0 at the Equator. The energy flux equator is the zero of the energy
flux, which currently lies around d < 2.5u. Given the equatorial values of the
energy flux F0 and of its ‘slope’ with latitude div F0, the energy flux equator d
can be determined from F0 < –ad div F0, where a is Earth’s radius. For example,
if F0 increases (indicated schematically by the blue line), the energy flux equator
d moves southward. Similarly, if div F0 increases, the energy flux equator
moves towards the Equator. The energy flux data are from the ECMWF
interim reanalysis for 1998–2012, corrected as in ref. 37 and provided by the
National Center for Atmospheric Research. The light red shading indicates an
estimated 60.2 PW standard error (the actual uncertainty is poorly known).
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ITCZ and cross-equatorial energy transport

Donohoe et al. 2013



Tropical rainbelts in climate models

IPCC Assessment Report 5 (2013)  

763

Evaluation of Climate Models Chapter 9
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Figure 9.4 |  Annual-mean precipitation rate (mm day–1) for the period 1980–2005. (a) Multi-model-mean constructed with one realization of all available AOGCMs used in the 
CMIP5 historical experiment. (b) Difference between multi-model mean and precipitation analyses from the Global Precipitation Climatology Project (Adler et al., 2003). (c) Multi-
model-mean absolute error with respect to observations. (d) Multi-model-mean error relative to the multi-model-mean precipitation itself.

ERA40 meteorological reanalyses to within approximately 10% (Walis-
er et al., 2007). Initial analysis of the CMIP5 ensemble shows the model 
results are within the uncertainties of the observations (Jiang et al., 
2012a). 

Modelling the vertical structure of water vapour is subject to great-
er uncertainty since the humidity profile is governed by a variety of 
processes. The CMIP3 models exhibited a significant dry bias of up to 
25% in the boundary layer and a significant moist bias in the free 
troposphere of up to 100% (John and Soden, 2007). Upper tropospher-
ic water vapour varied by a factor of three across the multi-model 
ensemble (Su et al., 2006). Many models have large biases in lower 
stratospheric water vapour (Gettelman et al., 2010), which could have 
implications for surface temperature change (Solomon et al., 2010). 
The limited number of studies available for the CMIP5 model ensem-
ble broadly confirms the results from the earlier model generation. In 
tropical regions, the models are too dry in the lower troposphere and 
too moist in the upper troposphere, whereas in the extratropics they 
are too moist throughout the troposphere (Tian et al., 2013). However, 
many of the model values lie within the observational uncertainties. 

Jiang et al. (2012a) show that the largest biases occur in the upper 
troposphere, with model values up to twice that observed, while in the 
middle and lower troposphere models simulate water vapour to within 
10% of the observations. 

The spatial patterns and seasonal cycle of the radiative fluxes at the 
TOA are fundamental energy balance quantities. Both the CMIP3 and 
CMIP5 model ensembles reproduce these patterns with considerable 
fidelity relative to the National Aeronautics and Space Adminsitration 
(NASA) Clouds and the Earth’s Radiant Energy System (CERES) data 
sets (Pincus et al., 2008; Wang and Su, 2013). Globally averaged TOA 
shortwave and longwave components of the radiative fluxes in 12 
atmosphere-only versions of the CMIP5 models were within 2.5 W m–2 
of the observed values (Wang and Su, 2013). 

Comparisons against surface components of radiative fluxes show 
that, on average, the CMIP5 models overestimate the global mean 
downward all-sky shortwave flux at the surface by 2 ± 6 W m–2 (1 ± 
3%) and underestimate the global downward longwave flux by 6 ± 9 
W m–2 (2 ± 2%) (Stephens et al., 2012). Although in tropical regions 


