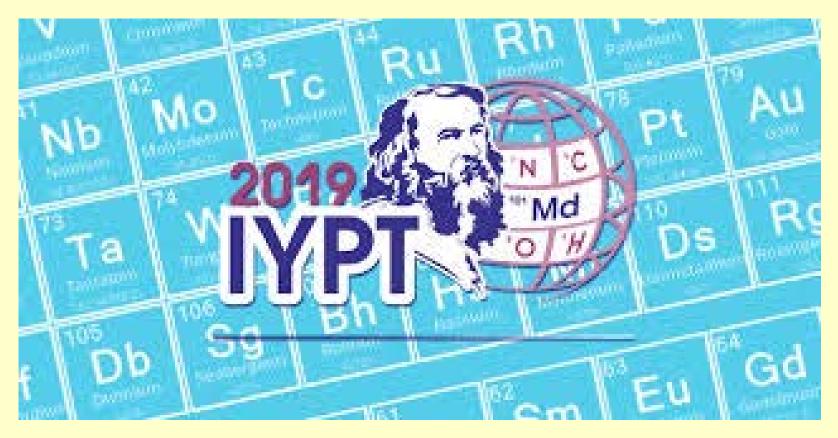
Computational Materials Discovery Using the USPEX Code


Relikové Institute of Science and Technology

Artem R. Oganov

Skolkovo Institute of Science and Technology, Russia

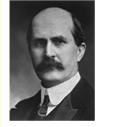
First Event of International Year of Mendeleev's Periodic Table

+ tradition of USPEX workshops+ tradition of ICTP workshops

Crystal structure determines physical properties. Crystal structure determination was a major breakthrough.

The Nobel Prize in Physics 1914

"for his discovery of the diffraction of X-rays by crystals"



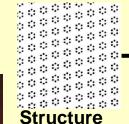
Max von Laue

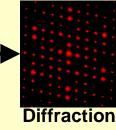
The Nobel Prize in Physics 1915

"for their services in the analysis of crystal structure by means of Xravs"

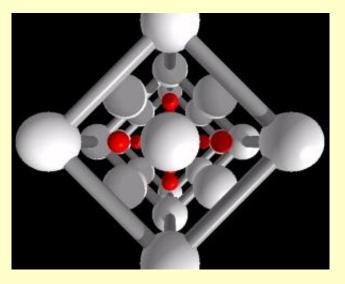
Sir William Henry Bragg

(from http://nobelprize.org)

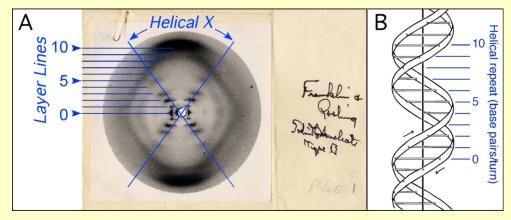

"for their outstanding achievements in the development of direct methods for the determination of crystal structures"



Jerome Karle



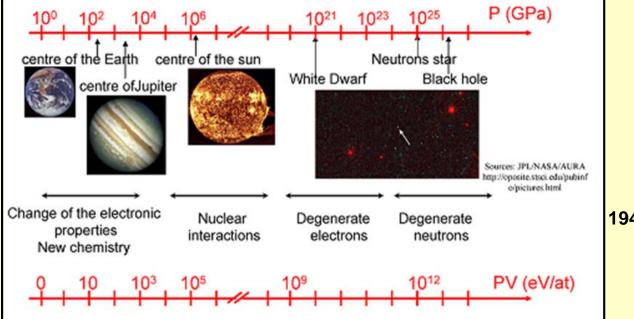
William Lawrence Bragg


Zincblende ZnS.

One of the first solved structures (1912-1913)

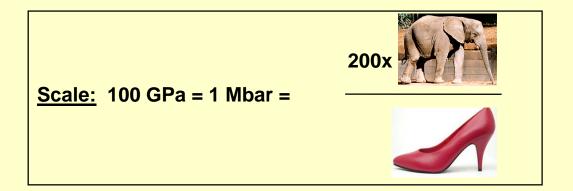
Herbert A. Hauptman

X-ray diffraction: window into the structure of matter


Determination of the structure of DNA (Watson, Crick, 1953)

Some of Nobel prizes based on X-ray diffraction

Nobel Prizes for X-ray Crystallography [edit]


Year [hide] 🕈	Laureate ¢	Prize 🗢	Rationale +
1914	Max von Laue	Physics	"For his discovery of the diffraction of X-rays by crystals", ^[118] an important step in the development of X-ray spectroscopy.
1915	William Henry Bragg	Physics	"For their services in the analysis of crystal structure by means of X-rays",[110]
1915	William Lawrence Bragg	Physics	"For their services in the analysis of crystal structure by means of X-rays",[119]
1962	Max F. Perutz	Chemistry	"for their studies of the structures of globular proteins" ^[120]
1962	John C. Kendrew	Chemistry	"for their studies of the structures of globular proteins" ^[10]
1962	James Dewey Watson	Medicine	"For their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material" ⁽¹²¹⁾
1962	Francis Harry Compton Crick	Medicine	"For their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material ^{4[21]}
1962	Maurice Hugh Frederick Wilkins	Medicine	"For their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material" ^[121]
1964	Dorothy Hodgkin	Chemistry	"For her determinations by X-ray techniques of the structures of important biochemical substances ⁽¹²²⁾
1972	Stanford Moore	Chemistry	"For their contribution to the understanding of the connection between chemical structure and catalytic activity of the active centre of the ribonuclease molecule"[123]
1972	William H. Stein	Chemistry	"For their contribution to the understanding of the connection between chemical structure and catalytic activity of the active centre of the ribonuclease molecule" ⁽¹²¹⁾
1976	William N. Lipscomb	Chemistry	"For his studies on the structure of boranes illuminating problems of chemical bonding" ⁽¹²⁴⁾
1985	Jerome Karle	Chemistry	"For their outstanding achievements in developing direct methods for the determination of crystal structures" ^[126]
1985	Herbert A. Hauptman	Chemistry	"For their outstanding achievements in developing direct methods for the determination of crystal structures ^{4126]}
1988	Johann Deisenhofer	Chemistry	"For their determination of the three-dimensional structure of a photosynthetic reaction centre ^{u[120]}
1988	Hartmut Michel	Chemistry	"For their determination of the three-dimensional structure of a photosynthetic reaction centre" [126]
1988	Robert Huber	Chemistry	"For their determination of the three-dimensional structure of a photosynthetic reaction centre ^{4[120]}
1997	John E. Walker	Chemistry	"For their elucidation of the enzymatic mechanism underlying the synthesis of adenosine triphosphate (ATP)*[127]
2003	Roderick MacKinnon	Chemistry	"For discoveries concerning channels in cell membranes [] for structural and mechanistic studies of ion channels ⁴⁽¹²⁸⁾
2003	Peter Agre	Chemistry	"For discoveries concerning channels in cell membranes [] for the discovery of water channels ^{u(128)}
2006	Roger D. Kornberg	Chemistry	"For his studies of the molecular basis of eukaryotic transcription ^{4[129]}
2009	Ada E. Yonath	Chemistry	"For studies of the structure and function of the ribosome" ⁽¹³⁰⁾
2009	Thomas A. Steitz	Chemistry	"For studies of the structure and function of the ribosome" ⁽¹³⁰⁾
2009	Venkatraman Ramakrishnan	Chemistry	"For studies of the structure and function of the ribosome" ⁽¹⁰⁰⁾
2012	Brian Kobilka	Chemistry	"For studies of G-protein-coupled receptors"(131)

We work at: (1) high pressures – because of fundamental importance; (2) zero pressure – for practical applications.

P.W. Bridgman 1946 Nobel laureate (Physics)

Are crystal structures predictable?

Faraday Discussions

Cite this: Faraday Discuss., 2018, 211, 643

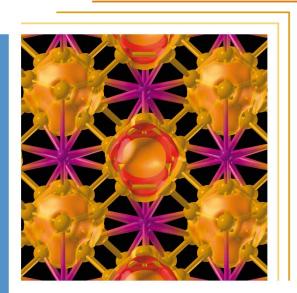
PAPER

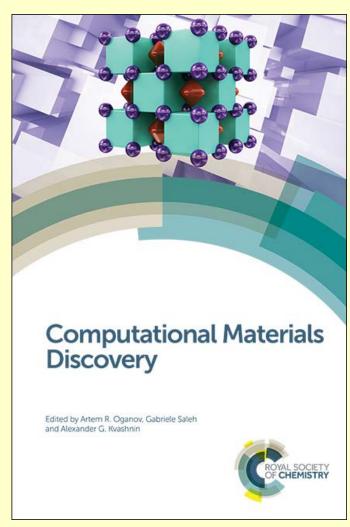
COVAL SOCIETY OF CHEMISTRY


View Article Online View Journal | View Issue

Crystal structure prediction: reflections on present status and challenges

Artem R. Oganov Dabc


Received 30th August 2018, Accepted 30th August 2018

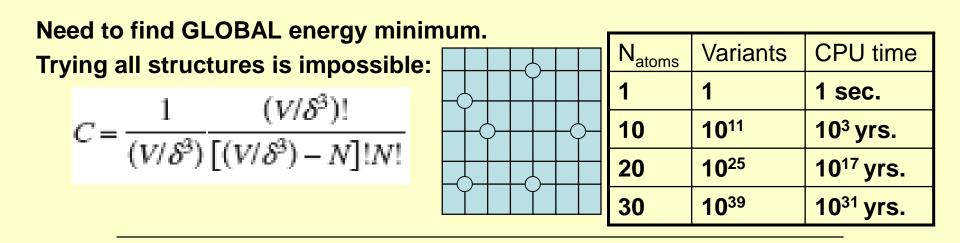

Useful books

WILEY-VCH

Modern Methods of Crystal Structure Prediction

2010

2018


Acc. Chem. Res. 1994, 27, 309-314

Are Crystal Structures Predictable?

Angelo Gavezzotti*

"No": by just writing down this concise statement, in what would be the first one-word paper in the chemical literature, one could safely summarize the present state of affairs

Crystal structure prediction – evolutionary or revolutionary crystallography?

Overview of USPEX (Oganov & Glass, *J.Chem.Phys.* 2006)

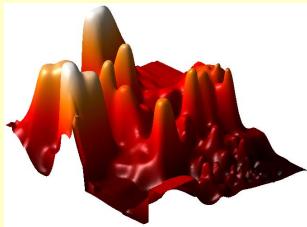
S. L. Chaplot and K. R. Rao CURRENT SCIENCE, VOL. 91, NO. 11, 10 DECEMBER 2006

The USPEX project (Universal Structure Prediction: Evolutionary Xtallography) http://uspex-team.org

[Oganov A.R., Glass C.W., J.Chem.Phys. 124, 244704 (2006)]

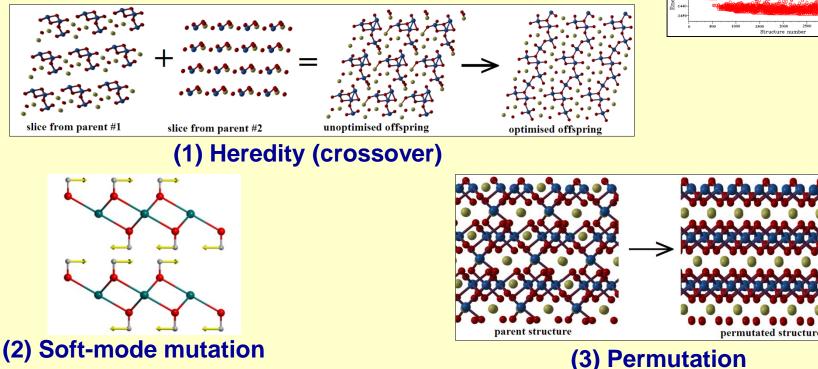
Combination of evolutionary algorithm and quantum-mechanical calculations.
>4500 users.

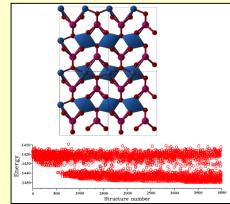
•Solves «intractable» problem of structure prediction -3D, 2D, 1D, 0D –systems, -prediction of phase transition mechanisms.


• Interfaced with: VASP, Quantum Espresso, CASTEP, FHI-aims, ABINIT, Siesta, Gaussian, ORCA, ATK, DFTB, MOPAC, GULP, LAMMPS, Tinker, DMACRYS

W. Kohn

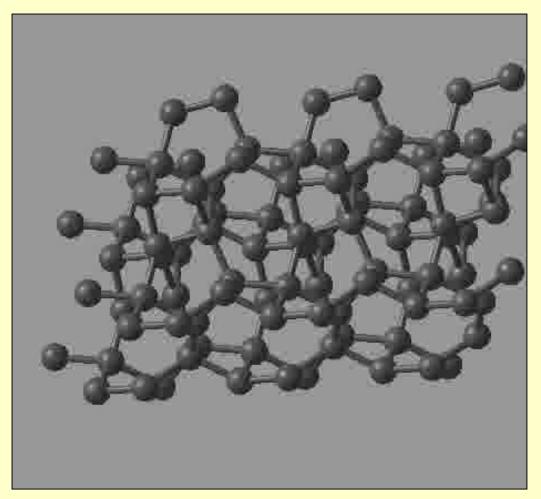
J. P. Perdew

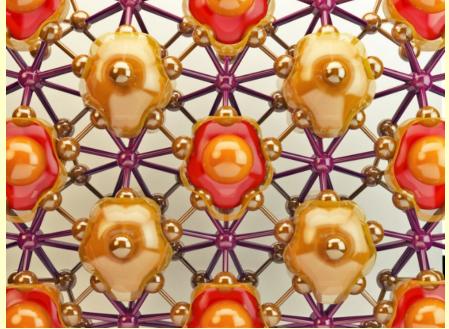

Energy landscape of Au₈Pd


$$(-\frac{\nabla^2}{2} + v_{e-n}[\rho(\mathbf{r})] + v_H[\rho(\mathbf{r})] + v_{xc}[\rho(\mathbf{r})]\phi_i(\mathbf{r}) = \varepsilon_i\phi_i(\mathbf{r})$$
$$E_{GGA,xc} = \int d\mathbf{r} F_{xc}(\rho, \frac{|\nabla\rho|}{2k_F\rho(\mathbf{r})})\rho(\mathbf{r})e_x[\rho(\mathbf{r})]$$

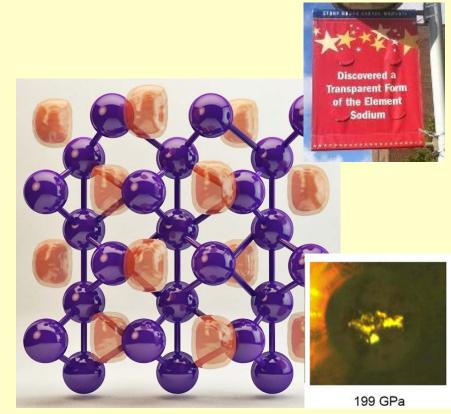
USPEX

(Universal Structure Predictor: Evolutionary Xtallography)


- (Random) initial population: fully random or using randomly selected space groups
- Evaluate structures by relaxed (free) energy
- Select lowest-energy structures as parents for new generation
- Standard variation operators:

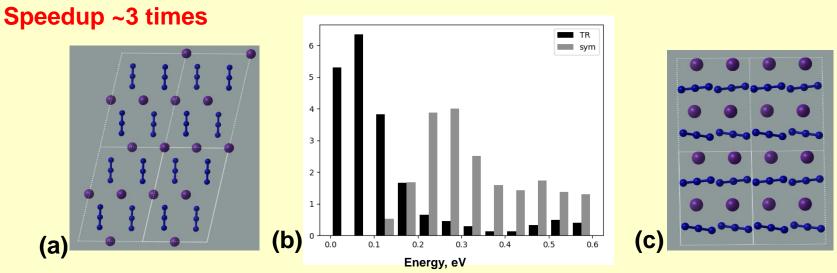

+(4) Transmutation, +(5) Rotational mutation, +(6) Lattice mutation, +...

Without any empirical information, method reliably predicts materials



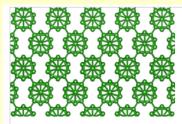
Carbon at 100 GPa – diamond structure is stable

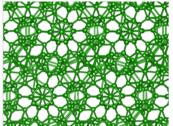
Predicting new crystal structures without empirical information


New superhard structure of boron (Oganov et al., *Nature*, 2009)

High-pressure transparent allotrope of sodium (Ma, Eremets, Oganov, *Nature*, 2009)

Topological structure generator: major development


[Bushlanov, Blatov, Oganov, Comp. Phys. Comm., 2019]


Example of KN₃: (a) topological structure, (c) random symmetric structure, (c) energy distribution of topological (TR) and random symmetric structures

Statistics (100 runs) of USPEX performance on MgAl₂O₄ (28 atoms/cell) at 100 GPa

	Old USPEX	On-the-fly adaptation	Adaptation +topology
<#structures>	1307	1069	368
Success rate	100%	100%	100%

α-boron $E^{\text{DFT}} = -6.706 \text{ eV/atom}$ Atoms: 12, Space group: *R*-3*m*, Core-hours: 10³ AL-MTP vs. 3·10³ DFT $|E^{\text{DFT}} - E^{\text{MTP}}| = 28.6 \text{ meV/atom}$

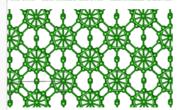
β-boron approximant $E^{DFT} = -6.704 \text{ eV/atom},$ Atoms: 106, Space group: *P*1, Core-hours: 7·10³ AL-MTP vs. 6.6·10⁷ DFT $|E^{DFT} - E^{MTP}| = 10.1 \text{ meV/atom}$

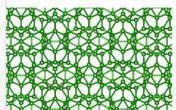
Core-hours: 2.103 AL-MTP vs. 2.5.104 DFT

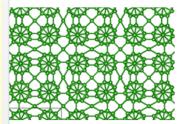
 $|E^{\text{DFT}} - E^{\text{MTP}}| = 58.1 \text{ meV/atom}$

 $|E^{\text{DFT}} - E^{\text{MTP}}| = 7.3 \text{ meV/atom}$

γ-boron

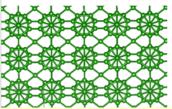

Atoms: 28,


Atoms: 54, Space group: Im-3,


 $E^{\text{DFT}} = -6.678 \text{ eV/atom}$

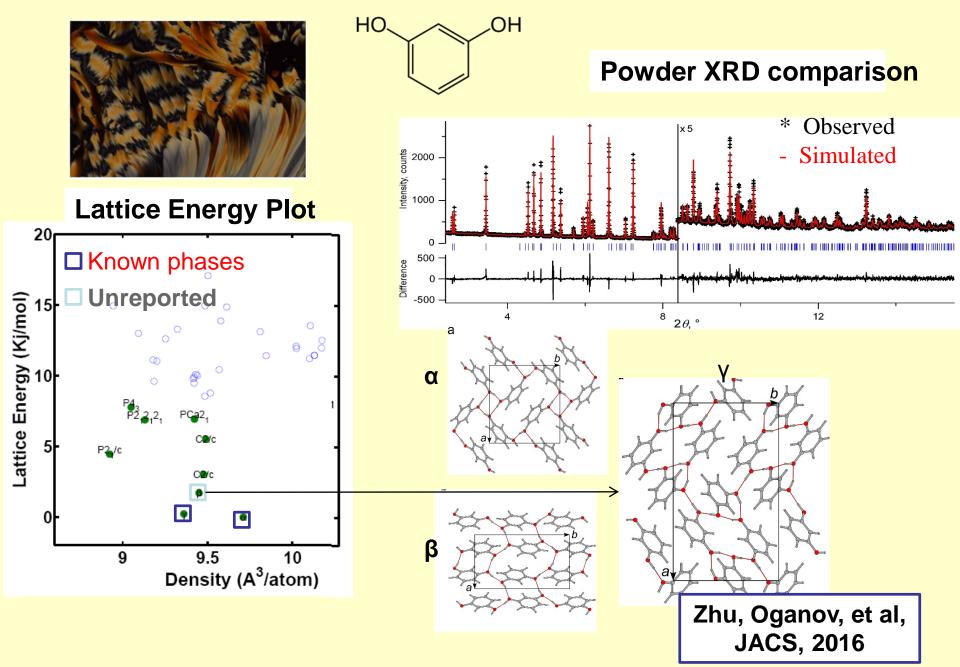
 $E^{\text{DFT}} = -6.667 \text{ eV/atom},$

Space group: Pnnm,



$$\begin{split} E^{\text{DFT}} &= -6.667 \text{ eV/atom}, \\ \text{Atoms: 52,} \\ \text{Space group: } P\text{-}42m, \\ \text{Core-hours: } 3\text{-}10^3 \text{ AL-MTP vs. } 3.2\text{-}10^5 \text{ DFT} \\ |E^{\text{DFT}} - E^{\text{MTP}}| &= 37.3 \text{ meV/atom} \end{split}$$

Core-hours: 3.103 AL-MTP vs. 3.5.105 DFT

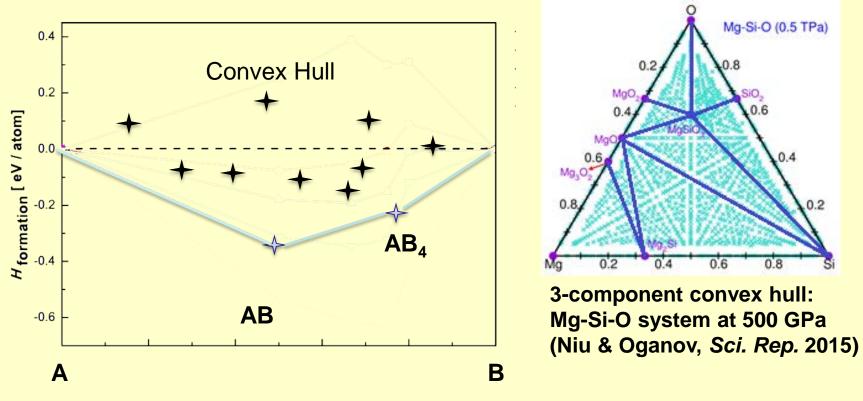

$$\begin{split} E^{\text{DFT}} &= -6.665 \text{ eV/atom}, \\ \text{Atoms: 26,} \\ \text{Space group: } \underline{Cccm}, \\ \text{Core-hours: } 2\cdot 10^3 \text{ AL-MTP vs. } 2.1\cdot 10^4 \text{ DFT} \\ |E^{\text{DFT}} - E^{\text{MTP}}| &= 13.6 \text{ meV/atom} \end{split}$$

Handling complexity with machine learning: boron allotropes

(E.Podryabinkin, E. Tikhonov, A. Shapeev, A.R. Oganov, <u>arXiv:1802.07605</u>)

- ML potential with active learning (Shapeev, 2018). 800 parameters.
- MAE = 11 meV/atom.
- Reproduced α-, β-, γ-, T52 phases of boron.
- Predicted low-energy metastable cubic cl54 phase.
- Speedup by >100 times.

USPEX can handle molecular crystals: solved γ-resorcinol

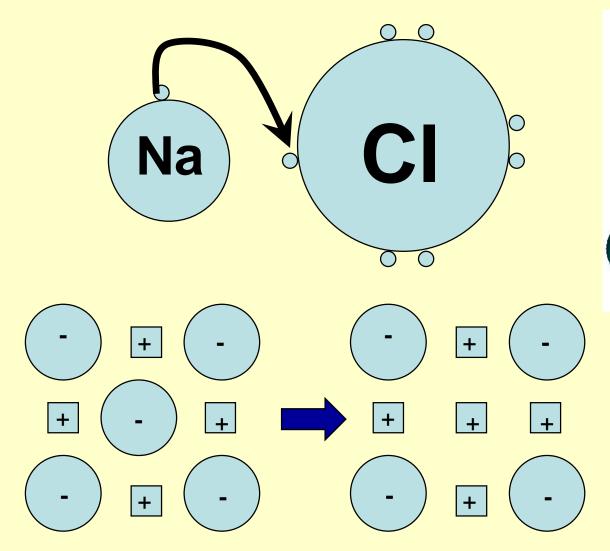


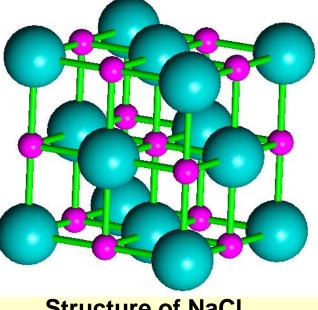
Prediction of stable structure for a given chemical composition is possible.

Now, let's predict the chemical composition!

USPEX can automatically find all stable compounds in a multicomponent system.

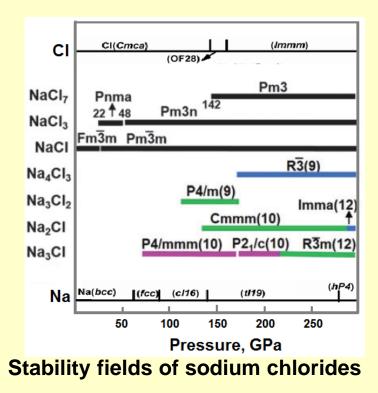
Thermodynamic stability in variable-composition systems



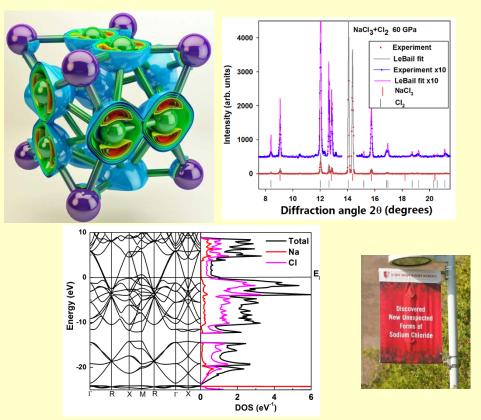

Stable structure must be below all the possible decomposition lines !!

A question from my childhood

Na and CI: large electronegativity difference \Rightarrow ionic bonding, Na⁺ ۲ and Cl⁻. Charge balance requires NaCl stoichiometry.


Structure of NaCl

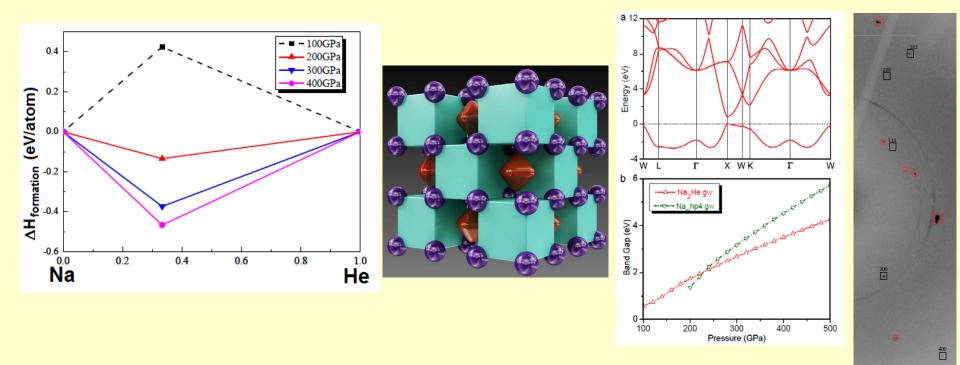
What would happen if you give the computer a "forbidden" compound, e.g. Na₂Cl?


Predictive power of modern methods:

Na₃Cl, Na₂Cl, Na₃Cl₂, NaCl, NaCl₃, NaCl₇ are stable under pressure [Zhang, Oganov, et al. *Science*, 2013].

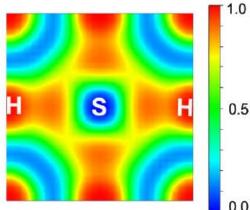
Chemical anomalies:

- -Divalent CI in Na₂CI!
- -Coexistence of metallic and ionic blocks in Na₃Cl!
- -Positively charged CI in NaCl₇!


NaCl₃: atomic and electronic structure, and experimental XRD pattern

[Zhang, Oganov, et al., Science (2013)] [Saleh & Oganov, PCCP (2015)]

Helium chemistry? Yes! [Dong, Oganov, Goncharov, *Nature Chemistry* 2017]


- Helium is the 2nd most abundant element in the Universe (24 wt.%).
- No stable compounds are known at normal conditions. Under pressure: van der Waals compound NeHe₂ (Loubeyre et al., 1993).

- 1. Na₂He is stable at >113 GPa, at least up to 1000 GPa.
- 2. New stable helium compounds: Na₂HeO (Dong & Oganov, 2017); CaF₂He, MgF₂He (Liu, 2018).

Highest-Tc superconductivity: new record, 203 Kelvin (Duan et al., *Sci. Rep.* 4, 6968 (2014))

OPEN Pressure-induced metallization of dense $(H_2S)_2H_2$ with high- T_c superconductivity

THEORY AND COMPUTATION COMPUTATION CONDENSEDMATTER PHYSCS

Received 7 July 2014 Accepted 29 September 2014 Published 10 November 2014

Correspondence and requests for materials should be addressed to T.C. [cuitian@jlu.edu. ¹State Key Laboratory of Superhard Materials, Callege of physics, Jilin University, Changchun, 130012, P. R. China, ²State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.

The high pressure structures, metallization, and superconductivity of recently synthesized H_2 -containing compounds $(H_2S)_2H_2$ are elucidated by *ab initio* calculations. The ordered crystal structure with P1 symmetry is determined, supported by the good agreement between theoretical and experimental X-ray diffraction data, equation of states, and Raman spectra. The *Cccm* structure is favorable with partial hydrogen bond symmetrization above 37 GPa. Upon further compression, H_2 molecules dis appear and two intriguing metallic structures with R3m and *Im-3m* symmetries are reconstructive above 111 and 180 GPa, respectively. The predicted metallization pressure of bulk molecular hydrogen. Application of the currently suggested metallization pressure of bulk molecular hydrogen. Application of the Allen-Dynes-modified McMillan equation for the *Im-3m* symmetrize tright is high *T*, values of 191 K to 204 K at 200 GPa, which is among the highest values reported for H_2 -rich van der Waals compounds and MH₃ type hydride thus far.

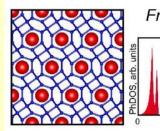
SCIENTIFIC REPORTS | 4:6968 | DOI: 10.1038/srep06968

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov & S. I. Shylin

Nature (2015) | doi:10.1038/nature14964 Received 25 June 2015 | Accepted 22 July 2015 | Published online 17 August 2015

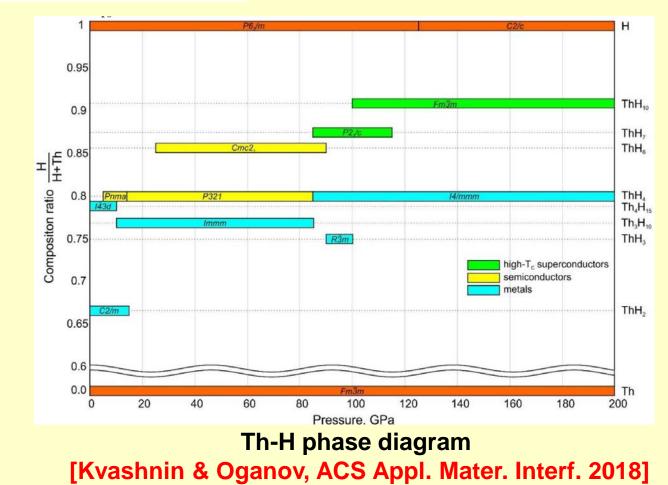
A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, T_c . The highest T_c that has been achieved to date is in the copper oxide system¹: 133 kelvin at ambient pressure² and 164 kelvin at high pressures³. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high T_c with no theoretical upper bound—all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling. and a high density of states⁴. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen^{5, 6}, as hydrogen atoms provide the necessary highfrequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides⁷, but only a moderate T_c of 17 kelvin has been observed experimentally⁸. Here we investigate sulfur hydride9, where a T c of 80 kelvin has been predicted 10. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a T_c of 203 kelvin. Moreover, a pronounced isotope shift of T_c in sulfur deuteride is suggestive of an electron– phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high- T_c superconductivity in this system is likely to be H₃S, formed from H₂S by decomposition under pressure. These findings raise hope for the prospects for achieving room-temperature superconductivity in other hydrogen-based materials.


 Old record Tc=135 K (Schilling, 1993) is broken: theorists (T. Cui, 2014) predicted new compound H₃S with Tc~200 K.

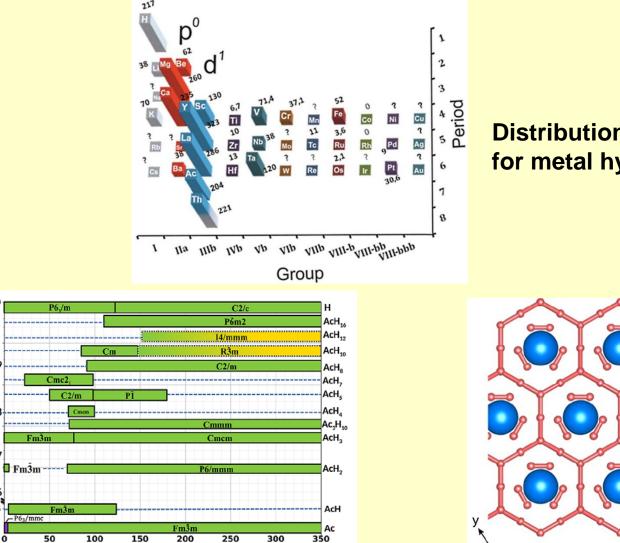
1

Confirmed by A. Drozdov et al. (*Nature* 525, 73 (2015)).

ThH₁₀: new unique superconductor


40

10


50 w. THz

Tc at 100 GPa: 241 K

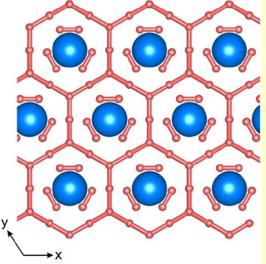
For LaH_{10} and YH_{10} even higher Tc predicted, but at much higher pressures (Liu et al., 2017).

Metals forming high-Tc superconducting hydrides form a "II-III belt" in Mendeleev's Table: test on Ac-H [Semenok & Oganov, JPCL, 2018]

Ac-H phase diagram

Pressure, GPa

1.0

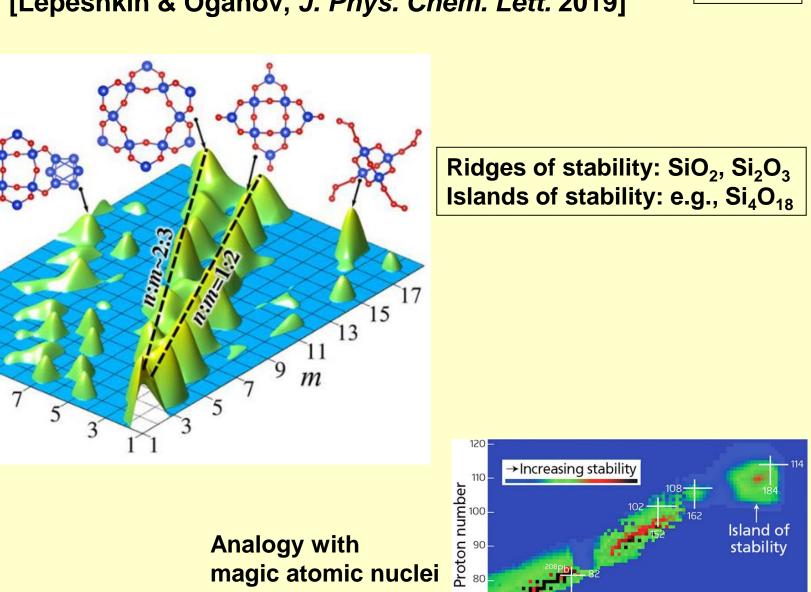

0.9

Ratio H e

0.7

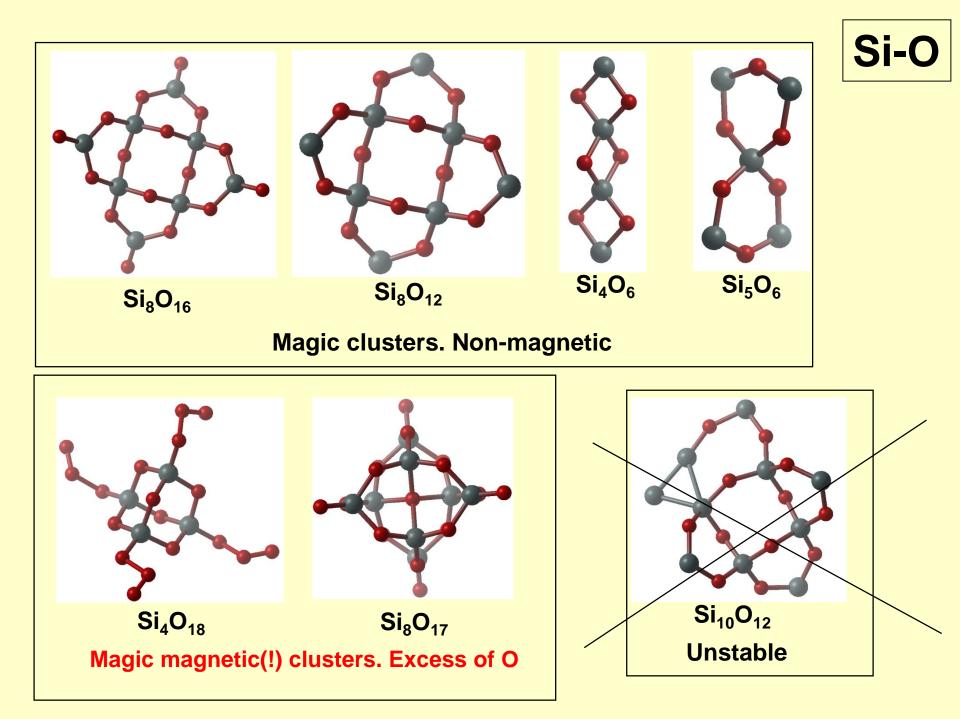
0.6 0.5

Distribution of Tc for metal hydrides

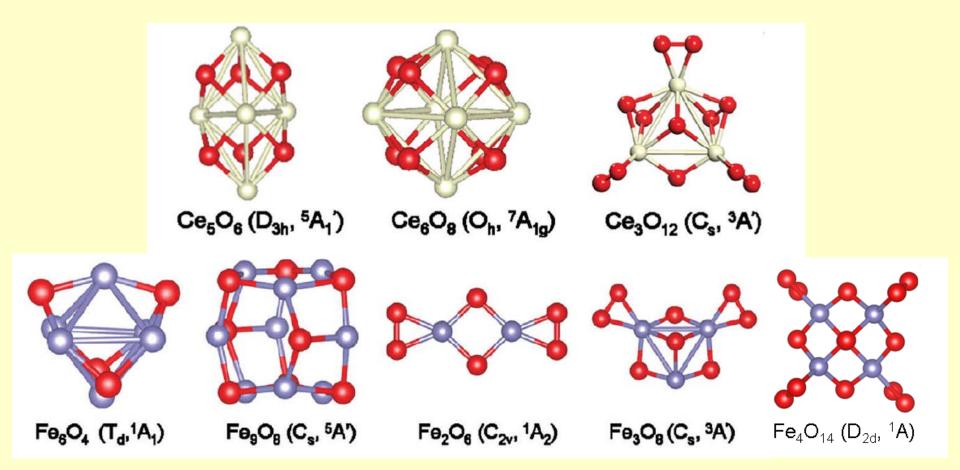


AcH₁₆. Tc ~ 230 K at 150 GPa

Map of stability of Si-O clusters [Lepeshkin & Oganov, J. Phys. Chem. Lett. 2019]


Stability of Si_nO_m clusters

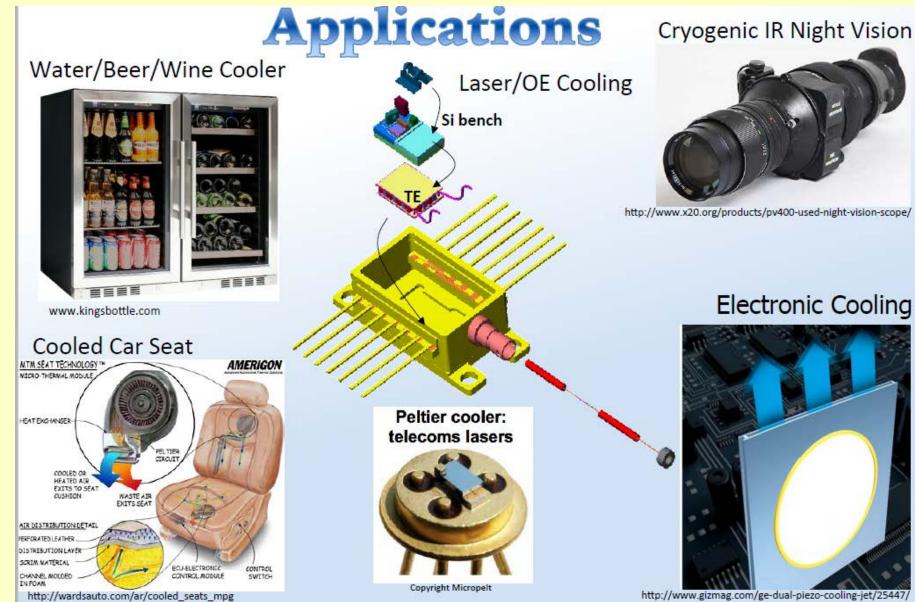
n



Neutron number

Si-O

Unusual compositions of transition metal oxide clusters [Yu & Oganov, Phys. Chem. Chem. Phys., 2018]

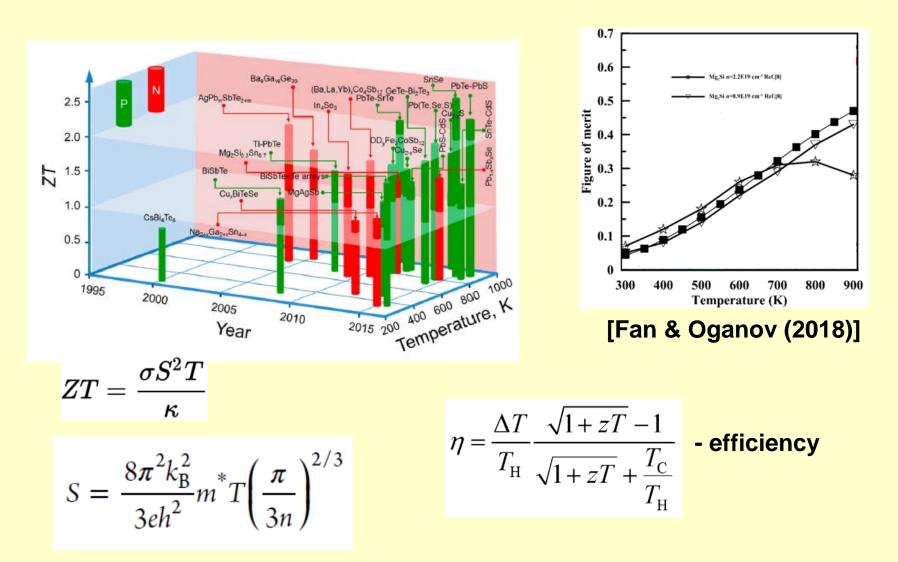


Do crystals grow from such particles?

Prediction of stable structure AND composition is possible.

Now, let's predict materials with the best properties.

Towards materials design: example of thermoelectrics

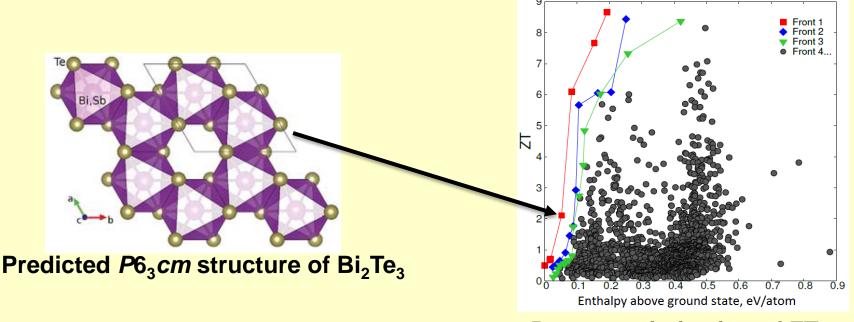


http://www.gizmag.com/ge-dual-piezo-cooling-jet/25447

How to improve efficiency of thermoelectric devices?

"One shouldn't work on semiconductors, that is a filthy mess; who knows whether any semiconductors exist"

-W. Pauli, letter to R. Peierls (1931)

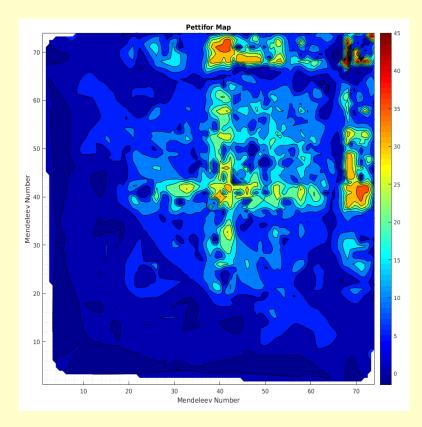


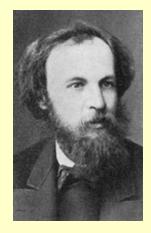
Multiobjective (Pareto) optimization finds a new thermoelectric polymorph of $\rm Bi_2Te_3$

Computer Physics Communications 222 (2018) 152–157

Efficient technique for computational design of thermoelectric materials

Maribel Núñez-Valdez, Zahed Allahyari, Tao Fan, Artem R. Oganov

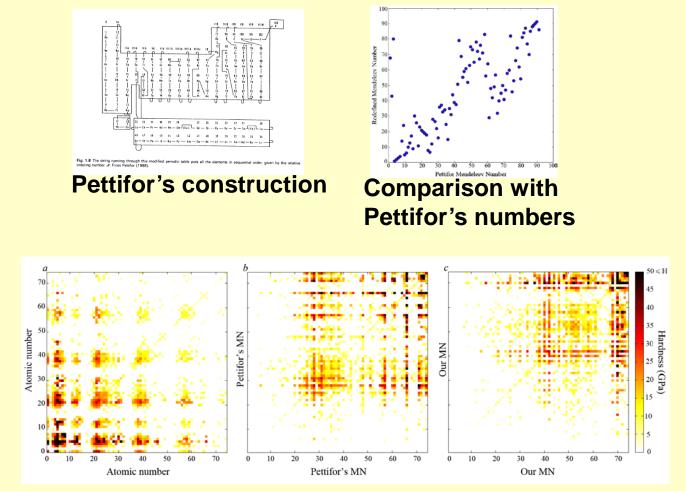



Pareto optimization of ZT and stability in the Bi-Te system

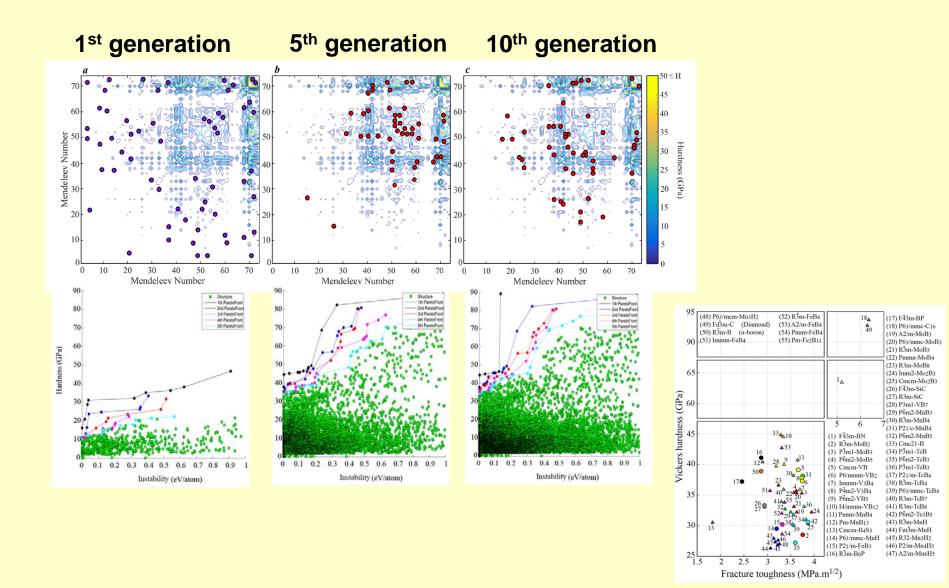
We can simultaneously optimize composition, structure, stability and other properties for a given chemical system.

Now, let's predict the best material(s) among all possible chemical systems!

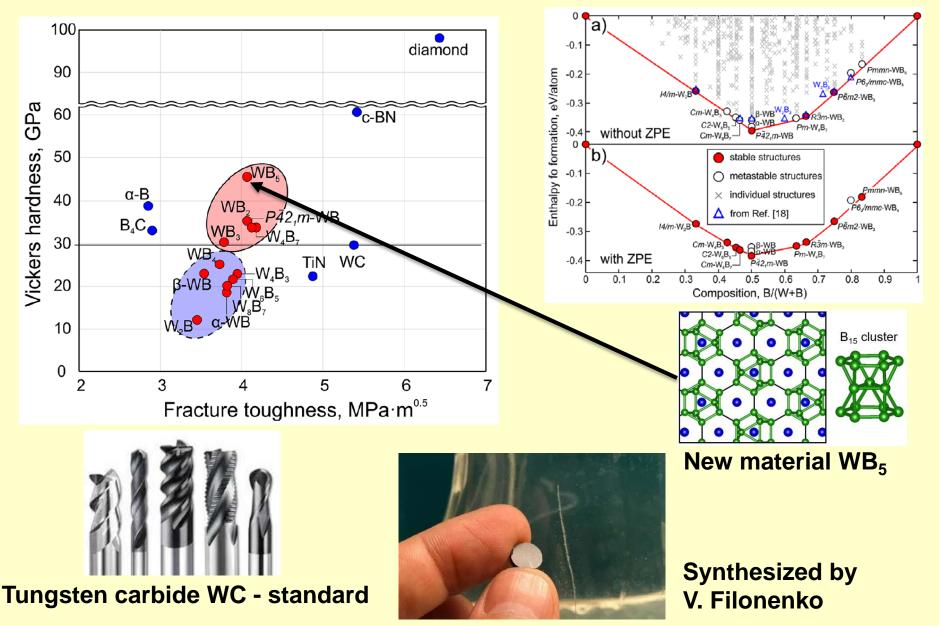
Mendelevian Search – breakthrough method for discovering best materials among all possible compounds [Allahyari & Oganov, 2018]



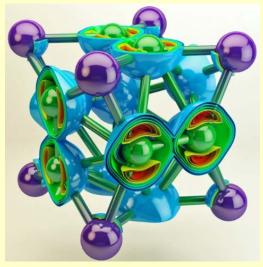
- 118 elements
- 7021 binary systems
- 273937 ternaries
- In each system ∞ possible structures

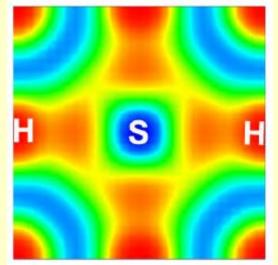

Mendeleev Number – a way to arrange elements and compounds by properties [Pettifor, 1984; Allahyari & Oganov, 2018]

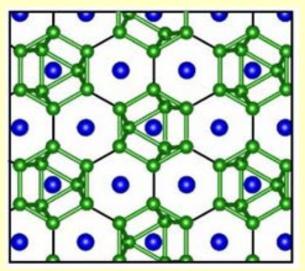
Mendeleev	Atom	Mendeleev	Atom	Mendeleev	Atom
Number		Number		Number	
1	Fr	32	п	62	Po
2	Cs	33	U	63	Fe
3	Rb	34	Pa	64	Cu
4	к	35	Zr	65	Co
5	Ra	36	Pu	66	As
6	Ba	37	Np	67	Ni
7	Sm	38	Nb	68	Kr
8	Gd	39	Та	69	Mo
9	Eu	40	In	70	1
10	Sr	41	Рb	71	Pd
11	Tm	42	Cd	72	Ir
12	Pm	43	Xe	73	Os
13	Ca	44	п	74	Р
14	Na	45	AI	75	Ru
15	Ac	46	Bi	76	Pt
16	La	47	Sn	77	At
17	Yb	48	Hg	78	Rh
18	ть	49	Zn	79	w
19	Y	50	Ga	80	Rn
20	Dy	51	v	81	Se
21	Но	52	Mn	82	в
22	Ce	53	Sb	83	Au
23	Er	54	Тө	84	s
24	u	55	Cr	85	Br
25	Th	56	Ag	86	н
26	Lu	57	Be	87	c
27	Pr	58	Go	88	СІ
28	Nd	59	Re	89	N
29	Mg	60	Si	90	0
30	Sc	61	Тс	91	F
31	Hf				



Grouping of hardness by (a) sequential number, (b) Pettifor's Mendeleev number, (c) our Mendeleev number


Mendelevian search for the hardest possible material: diamond and lonsdaleite are found!


WB₅: new supermaterial [Kvashnin & Oganov, J. Phys. Chem. Lett., 2018]


Advanced algorithms predict new supermaterials and help us understand nature

Unusual chemistry at extreme conditions

New record of high-Tc superconductivity

New superhard materials

Our team. Where great minds do NOT think alike

Haiyang Niu

Artem R. Oganov

Vladimir Baturin

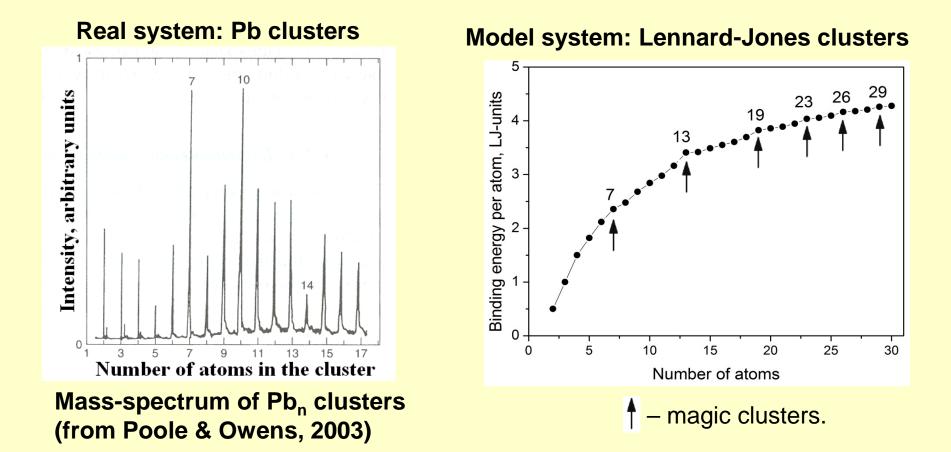
Artem Samtsevich

Eugene Tikhonov

Alexander Kvashnin

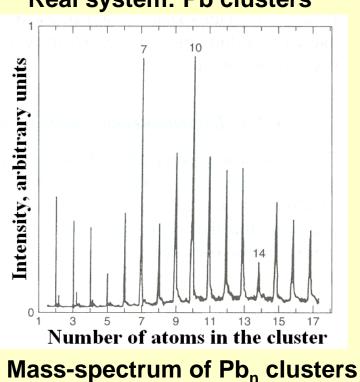
Q. Zhu

A. Goncharov V.A. Blatov



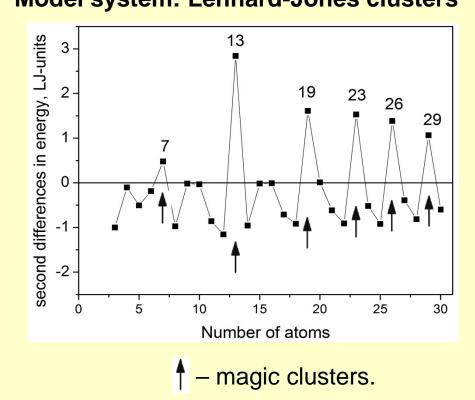
Zhenhai Wang

Ivan Kruglov


Stability of clusters

Larger clusters are generally more thermodynamically stable. The most stable state is crystal.

For nanoparticles, stability is measured relative to neighboring nanoparticles.


Stability of clusters

(from Poole & Owens, 2003)

Real system: Pb clusters

Model system: Lennard-Jones clusters

Criterion of local stability (magic clusters): $\Delta^2 E = E(n+1) + E(n-1) - 2E(n) > 0$ For binary clusters $(A_m B_n)$: $\Delta_X^2 E = E(m, n+1) + E(m, n-1) - 2E(m, n) > 0$ $\Delta_y^2 E = E(m+1, n) + E(m-1, n) - 2E(m, n) > 0$