Random search challenges and new directions

Chris J Pickard

University of Cambridge Department of Materials Science and Metallurgy Tohoku University Advanced Institute for Materials Research

Joining the dots

 $(n-1)! = 50! \sim 3x10^{64}$ age of universe ~ 4x10¹⁷ seconds

Joining the dots

Joining the dots

http://www.math.uwaterloo.ca/tsp/concorde/benchmarks/bench99.html

Structure Prediction

What structure will a collection of atoms adopt?

Point Defect

Interfaces

"The Arrangement of Atoms in Space" Jacobus Henricus van 't Hoff, 1898

Interpolative

Empirical or data driven

Extrapolative and predictive

First principles or theory driven

Periodic Table

Reference point: WEN2k13.1 with basis LAPW/APWHo and potential all-electron

Code: CASTEP9.0 with basis plane waves and potential OTFG CASTEP 9.0

Maximum at Mn. Minimum at V

All values are in meV.

н																	He
0.05																	0.03
U	Be											3	С	N	C	F	Ne
90.0	0.26									0.81	0.37	0.66	1.17	C.52	0.16		
Na	Mg									AI	Şi	P	s	a	M		
0.44	0.27									0.11	0.24	0.64	0.28	0.74	0.12		
К	Os -	Sc	Ti	Y	Cr	Mn	Гe	Co	N	Cu	Zn	Ge	Ge	As	Ge	Dr	Br
0.12	0.07	0.82	0.05	0.03	1.19	2.42	0.62	0.44	C.28	0.51	0.40	0.05	0.18	0.35	0.58	0.11	0.04
Rb	8	Y	Zr	Nb	Mo	Te	Ru	Ri	Pd	Au	Cd	in .	-Sn	55	Te	1	Xe
0.21	1.23	0.53	0.33	0.30	0.45	0.56	0.89	0.37	C 52	0.46	1.35	0.32	0.28	0.30	0.08	0.77	0.11
Cs	8a		Hf	Ta .	w.	Re	01	lr -	Pt	Au	Hg	п	Pb	в	iAg.	AL.	Rn
0.13	0.11		0.36	0.85	1.05	0.75	0.25	0.23	C.24	1.15	1.02	0.19	0.67	1.09	1.03		0,13
R:																	
				Pť	Nd				Gd		Dy				Yb	Lu	
																0.54	
						Np								Md			

Kurt Lejaeghere, et al., Reproducibility in density functional theory calculations of solids, Science 351 (6280), aad3000 (2016).

Smooth interactions

$$\begin{split} H\Psi &= -\frac{1}{2}\nabla^2\Psi + V\Psi = E\Psi\\ \text{Schroedinger} \end{split}$$

Smooth Landscapes

Smooth Landscapes

Smooth Landscapes

Deep basins are large

Basin Volumes

from Baranau and Ulrich Tallarek, Soft Matter, 2014, 10, 3826

Basin Volumes

Apollonian Gasket

a Fractal

Doye and Massen, J. Chem. Phys. 122, 084105 (2005) Massen and Doye, PRE, 75, 037101 (2007)

Random Sampling

Uniform distribution (exploration not exploitation)

Intrinsically parallel

Uncorrelated

Clear when (not) to stop

Robust and communicable

Being Sensible

When you don't know anything:

rough volume, avoid overlap

Impose chemical ideas

molecules, fragments, distances, connectivity

Impose symmetry

space, wallpaper, point group

Use experimental data

lattice parameters

Empirical or First Principles?

Eight atoms of Silicon

Data-Driven Learning of Total and Local Energies in Elemental Boron

<u>Deringer</u>, Pickard, Csanyi, PRL, 2018

Learn entire energy landscape

Ab Initio Random Structure Searching

Superconducting hydrides

Physical Review Letters, 2006

Hydrogen is polar and "graphene"

Nature Physics, 2007

Ammonia is ionic

Nature Materials, 2008

The end of water

Physical Review Letters, 2013

+ Martinez-Canales

Pickard & Needs, PRL 2006 and JPCM 2011 see also: basin/minima hopping, GA/EAs, particle swarms

Ab Initio Random

PRL 119, 107001 (2017)

PHYSICAL REVIEW LETTERS

work ending 5 SEPTEMBER 2017

Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity

 Feng Peng.^{1,17} Ying Sun," Chris J. Pickael," Richard J. Needs," Qiang Wu," and Yaoming Ma^{1,17} Belleg Componentmut Science Research Center, Belleg 20184, Class
 ¹⁰Cology of Physics and Electronic Information, Longoug Kornel University, Longoug 471022, Class and Bream Key Laboratory of Electronagonic: Transformation and Detection, Longoug 471022, China State Key Laboratory of Superhead Materials, College of Florence, Jills University, Classysian 110612, China State Key Laboratory of Superhead Materials, College of Florence, Jills University, of Cambridge, Department of Materials Science and Metallarys, University of Cambridge, 21 Camina Robinge Road, Cambridge CH3 095, University of Cambridge, 21 Camina Robinge Road, Cambridge CH3 095, University of Cambridge, 21 Camina Robinge Road, Cambridge CH3 095, University of Cambridge, 21 Camina Robinge Road, Cambridge CH3 095, University of Cambridge, 21 Camina Robinge Road, Cambridge CH3 095, University, Campelan Material Robinger, Comp, Cambridge Laboratory, 11 Thomase Insteam, Cambridge CH3 00E. United Keepher "Toring of Caminesi Mater Comp, Caminiki Laboratory, 11 Thomase Insteam, Cambridge CH3 00E. United Keepher "Statement Key Laboratory of Duch Wine and Dramation Physics, Science of Flord Physics, CMP, Marsong U2003, China Bactived 11 May 2017, published 8 Separation 2017)

Physical Review Letters, 2006

Nature Materials, 2008

ia is ionic

rching

Hydrogen is polar and "graphene"

Nature Physics, 2007

The end of water

Physical Review Letters, 2013

+ Martinez-Canales

Pickard & Needs, PRL 2006 and JPCM 2011 see also: basin/minima hopping, GA/EAs, particle swarms

Ab Initio Random

Pickard & Needs, PRL 2006 and JPCM 2011

see also: basin/minima hopping, GA/EAs, particle swarms

Ab Initio Random

see also: basin/minima hopping, GA/EAs, particle swarms

Ab Initio Random Structure Searching

Superconducting hydrides

Physical Review Letters, 2006

Hydrogen is polar and "graphene"

Nature Physics, 2007

Ammonia is ionic

Nature Materials, 2008

The end of water

Physical Review Letters, 2013

+ Martinez-Canales

Pickard & Needs, PRL 2006 and JPCM 2011 see also: basin/minima hopping, GA/EAs, particle swarms

Thomas-Fermi-Dirac

simplified 128 atoms (V~L³⁸⁴)

C.J. Pickard, Physical Review Materials, 2, 013806 (2018)

Gamma Boron

Fixed Cell AIRSS Example 2.3

Oganov et al Nature 2009

0.3

0.5

0.4

Gamma Boron

Fixed Cell AIRSS Example 2.3

Oganov et al Nature 2009

Random "sensible" structures

#VARVOL=11.8

#SPECIES=B%NUM=1,N%NUM=1

#SYMMOPS=1 #NFORM=128

#MINSEP=1.0 B-B=2.6 N-N=2.6 B-N=1.6

KPOINTS_MP_SPACING 0.07

SYMMETRY_GENERATE SNAP_T0_SYMMETRY

%BLOCK SPECIES_POT
%ENDBLOCK SPECIES_POT

%BLOCK EXTERNAL_PRESSURE 0 0 0 0 0 %ENDBLOCK EXTERNAL_PRESSURE

Beyond Crystals

Schusteritsch & Pickard, "Predicting interface structures: From SrTiO3 to graphene", Physical Review B (2014)

{2H,3Li} complex in silicon **Morris**, Grey, Needs & Pickard, 2014

Silicon(111) 3x3 reconstruction

Ni₃InAs **Schusteritsch** et al, 2015

Interfacial Materials

Zirconium suboxide **Nicholls** et al, 2015

Challenges

New directions

Allow the particles making up a structure to explore a higher dimensional **physical** space.

$$d = d_0 + d_+$$

Hyperspace

Normal space

Extra dimensions

$$\bar{E}(\{\tilde{\mathbf{x}}_i\}) = \tilde{E}(\{\tilde{\mathbf{x}}_i\}) + \frac{1}{2}\mu \sum_{i} l_i^2$$

$$\stackrel{\text{Energy}}{\stackrel{\text{extended to}}{\stackrel{\text{hyperspace}}{\stackrel{\text{hyperspace}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{\text{morealing}}{\stackrel{\text{penalty}}{\stackrel{\text{morealing}}{\stackrel{moreal$$

C.J. Pickard, "Hyperspatial optimization of structures", PRB (to appear)

Toy example

Lennard-Jones Clusters

d	£	Num. of Lennard-Jones atoms (PG of GS)									
u		$37 (C_1)$	$38 (O_h)$	$39 (C_{5v})$	$47 (C_1)$	$55 (I_h)$	69 (C_{5v})				
	0.05	4.5	6.0	4.4	4.6	5.6	7.0^{+}				
$^{3+0}$	0.10	3.8	5.0	3.8	4.1	4.8	6.5^{\dagger}				
	0.20	3.2	3.9	3.1	3.5	3.6	5.9^{\dagger}				
	0.05	3.3	3.4	3.1	3.6	3.3	5.9^{\dagger}				
$^{3+1}$	0.10	3.2	3.3	3.2	3.6	3.2	5.9^{\dagger}				
	0.20	3.2	3.2	3.2	3.6	3.2	5.9^{\dagger}				
3+2	0.10	3.5	3.8	3.2	3.7	3.3	5.8^{\dagger}				

- 1. When $d_+ > 0$ the dependence on system and packing (*f*) is much reduced
- 2. Performance for LJ38 comparable to MH and EA $(-log_{10}(p_e)=3.1)^{[1]}$
- 3. Adjusting parameters for LJ38 leads to $-log_{10}(p_e) = 2.8$ (at cost of more GO steps)
- 4. Combining with Relax and Shake (RASH), for LJ55 $-log_{10}(p_e) = 1.9$
- 5. **Reality check**: $-log_{10}(p_e) = 5.8$ for LJ75 (RASH) while it is 4.4 for MH

[1] S. E. Schönborn, S. Goedecker, S. Roy, and A. R. Oganov, J. Chem. Phys. **130**, 144108 (2009).

Acronyms

<u>Random s</u>tructure <u>s</u>earch - RSS <u>G</u>eometry <u>o</u>ptimisation of <u>s</u>tructures from <u>h</u>yperspace - GOSH <u>R</u>elax <u>a</u>nd <u>sh</u>ake - RASH

Binary chain

Binary cubes

Covalent bonds

Covalent bonds

Covalent bonds

Conclusion

Random search is *better* than you would think

Stochastic search and first principles approaches can *discover*

Hyperspatial optimisation provides promising new directions

AIRSS package available from: <u>http://www.mtg.msm.cam.ac.uk/Codes/AIRSS</u> under the GPL 2.0 licence

Please direct queries to <u>airss@msm.cam.ac.uk</u>