

1

Inorganic Electride from First-principles Crystal Structure Prediction and Highthroughput Data Mining

Qiang Zhu Department of Physics and Astronomy, University of Nevada Las Vegas

Workshop on Crystal Structure Prediction: Exploring the Mendeleev Table As a Palette to Design New Materials, 14-18, January 2019

Crystal structure prediction from the First-principles

- Define the system
- Exhaustive structure navigation
 - Evolutionary algorithm (USPEX)
 - Random search (AIRSS)
 - Minima hopping
 - Some others
- Intelligent analysis

The ultimate goal to do suggest new materials.

CSP solves the structure searching problem, assuming the chemistry is known! We relies on the experts tell us which system to look at!

Crystal structure prediction from the First-principles

- Define the system
- Exhaustive structure navigation
 - Evolutionary algorithm (USPEX)
 - Random search (AIRSS)
 - Minima hopping
 - Some others
- Intelligent analysis

The ultimate goal to do suggest new materials.

CSP solves the structure searching problem, assuming the chemistry is known! We relies on the experts tell us which system to look at!

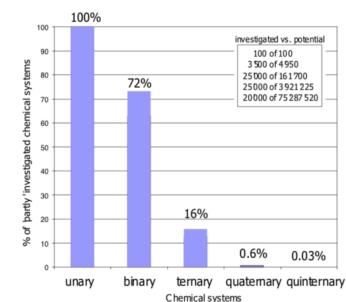
How to define the chemical system?

Helium based compounds under high pressure? He-F/O or He-Na/Li

Crystal structure prediction from the First-principles

- Define the system
- Exhaustive structure navigation
 - Evolutionary algorithm (USPEX)
 - Random search (AIRSS)
 - Minima hopping
 - Some others
- Intelligent analysis

The ultimate goal to do suggest new materials.


CSP solves the structure searching problem, assuming the chemistry is known! We relies on the experts tell us which system to look at!

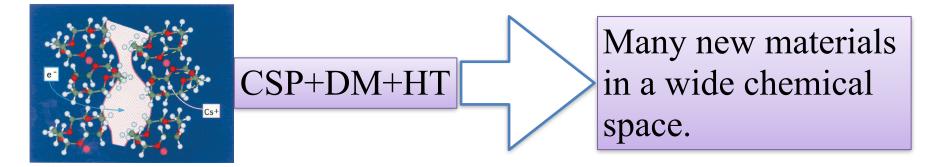
If no clue about it? Two many systems ahead of us !

Mendeleev CSP search? Perhaps too expensive to do so in reality.

Pierre Villars (PaulingFile)

How to suggest new materials without the help of expert?

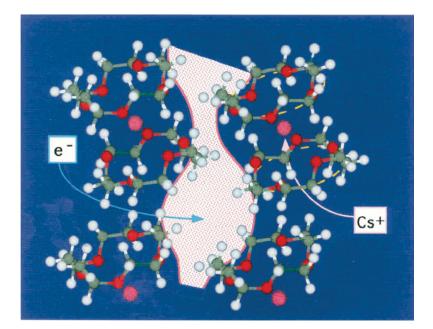
High-throughput screening on the known materials as many as possible.

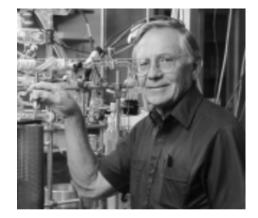

Data mining: chemical substitution to generate new materials.

CSP: generate complete new structures

Conceptually, these three important ingredients are complementary to each other. Mixing them at different levels can be useful.

Outline


I. The fundamentals of Electrides
II. The Rule for Design & Analysis
III. Binary Electrides from CSP + DM
IV. Full Database Screening from HT

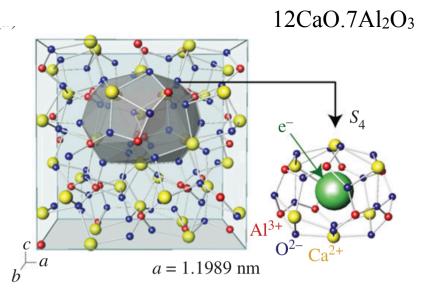

I. The Fundamentals of Electride

Electride (1983-present)

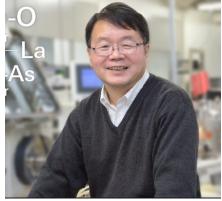
- Ionic solids
- Interstitial electrons
- Stoichiometric

encapsulation of the alkali cation within a complex matrix

J. L. Dye, MSU


Pros: Low work function Reducing agents Catalytic

Cons: Thermal instability Air/water sensible


Ellaboudy & Dye, JACS, 1983, Dye, Acc. Chem. Res. 2009

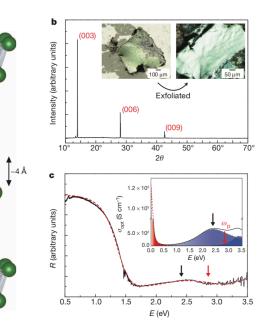
Inorganic Electride (2003-present)

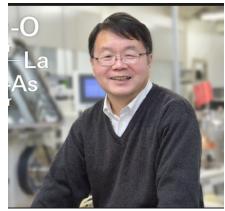
- Ionic solids
- Interstitial electrons
- Stoichiometric

Pros: Low work function Reducing agents Catalytic

Hiedo Hosono

Reductive replacement of cavity-trapped O²⁻ ion by electrons, Through high temperature reduction with Ca Matsuishi, et al, Science, 2003 Kitano, et al, Nat. Chem, 2012


Inorganic Electride (2003-present)

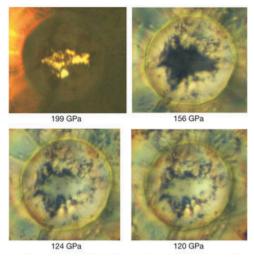

- Ionic solids
- Interstitial electrons
- Stoichiometric

[Ca_N

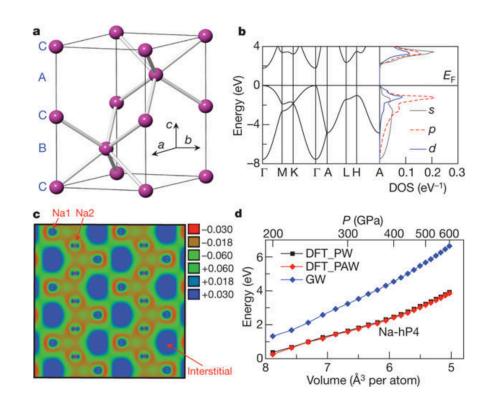
Electron layer

new topology

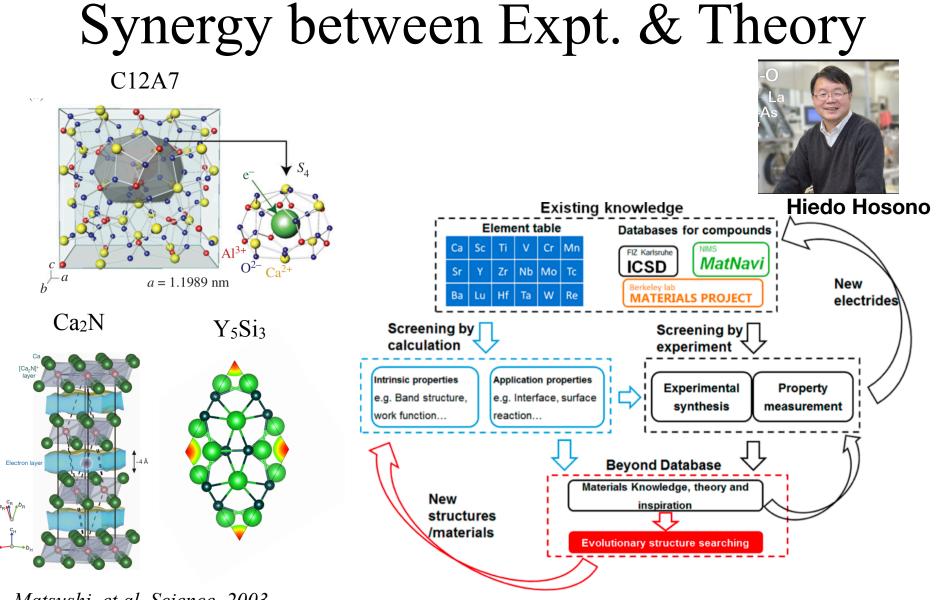
Hiedo Hosono


Ca₂N

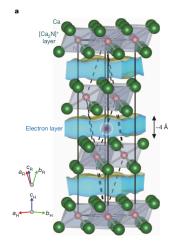
- First electride with 2D interstitial electrons
- Lower work function
- High electron mobility
- 2D electronic device

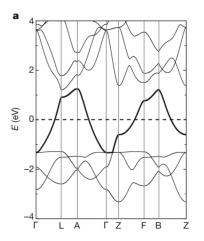

Lee, et al, Nature, 2012

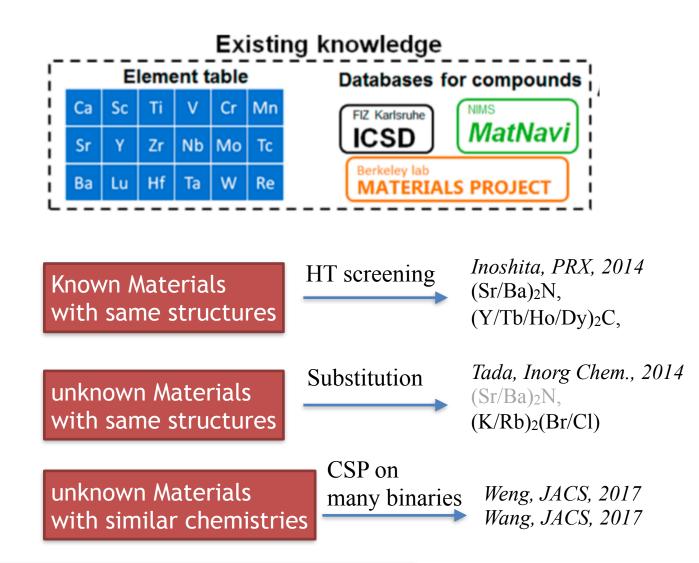
High Pressure Electrides (2001-present)


- Firstly found on several simple metals (Li, Ca, K, Mg, .etc)
- Also in some compounds (Mg₃O₂, NaHe₂, .etc)
- Ambient electride phases (Ca₂N) also have recent structural behavior under pressure
- viable behaviors (metal, semiconductor, insulator, superconductor, magnet)

Rousseau & Ashcroft, PRL, 2008 Ma, Eremet, Oganov, Nature, 2009 Pickard, PRL, 2011 Zhu & Oganov, PCCP, 2013 Miao & Hoffman, Acc. Chem. Res., 2014 Dong, et al, Nat. Chem, 2017 Zhang et al, JACS, 2017


II. The Design Rules & Analysis


Matsushi, et al, Science, 2003 Lee, et al, Nat. Chem, 2013 Lu, et al, JACS, 2016


Others include: LaScSi, La(Ce, Y)H₂, La₈Sr₂(SiO₄)₆

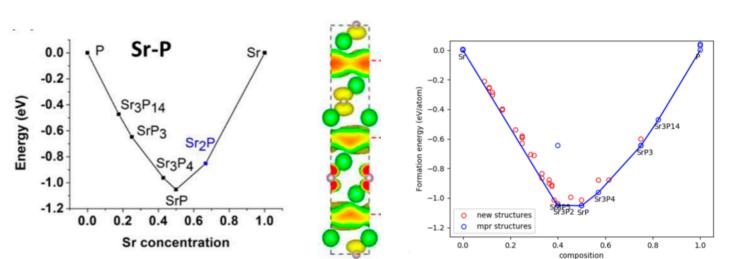
Synergy between Expt. & Theory

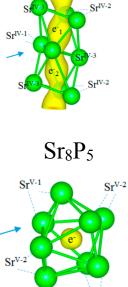
Ca₂N

Select the candidate structures, and then analyze each !

CSPs: Fixed or Variable composition

Weng et al, JACS, 2017 (CALYPSO)


Fixed composition CSP search on Sr₂P (and other binaries)


Sr₂P

Fixed composition CSP search on Sr-P

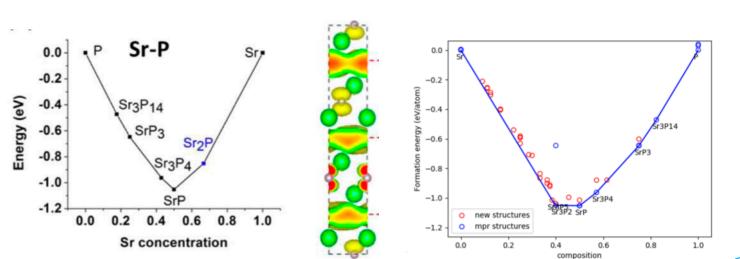
Sr₂P is slightly unstable relative to the convex hull. Shall we consider it? SrV-1

CSPs: Fixed or Variable composition

Weng et al, JACS, 2017 (CALYPSO)

Fixed composition CSP search on Sr₂P (and other binaries)

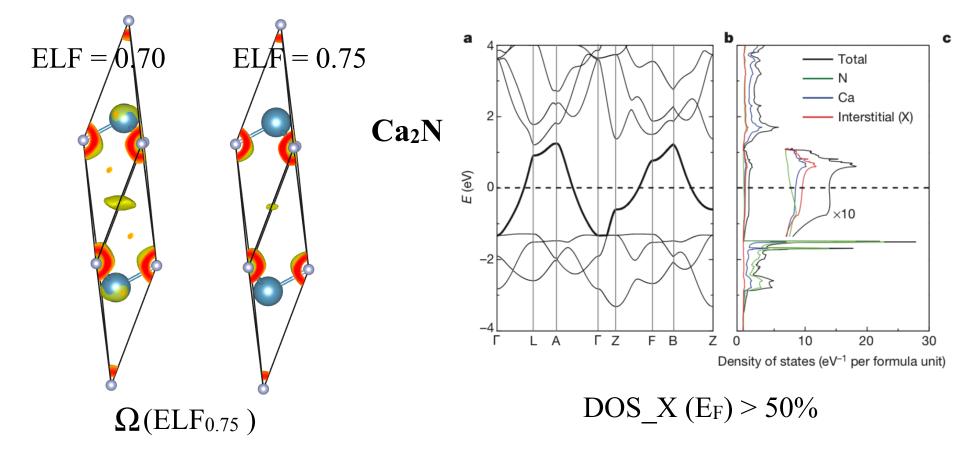
Sr₂P


Wang et al, JACS, 2017 (USPEX)

Fixed composition CSP search on Sr-P

SrIV-2

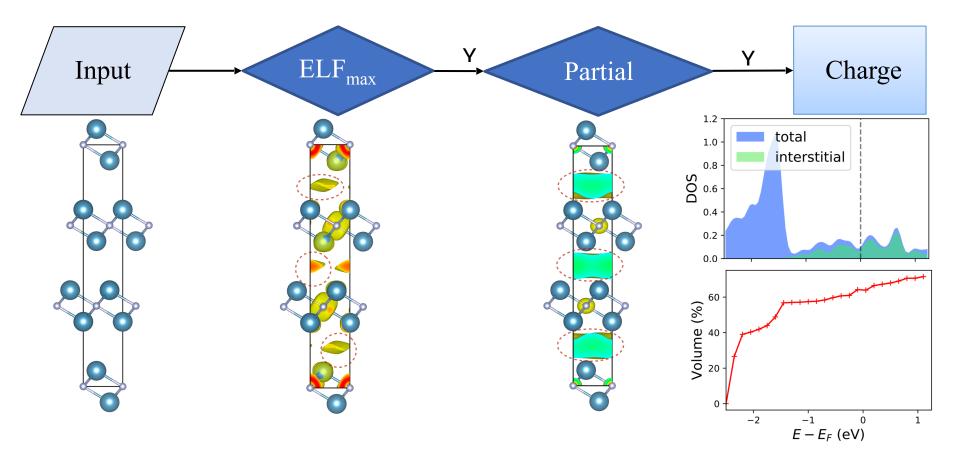
SrV-1


Sr¹V-1 Sr² Sr¹V-3 Sr² Sr¹V-2 Sr² Sr¹V-2 Sr² Sr² Sr²-2

If we are also interested in the metastable structures, We need to check many structures if they are electrides.

Identify the Electrides for Many structures Describe the interstitial electrons occupying DOS close (across) E_F

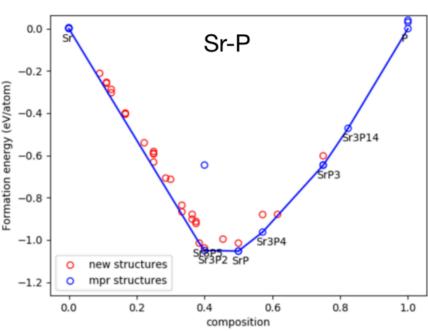
1, ELF analysis


2, PDOS analysis

Zhang et al, PRX, 2017

Burton et al, Chem. Mater, 2018 17

We develop a new descriptor


- Simultaneous analysis on ELF/charge info
- Computationally affordable
- More robust than the previous approaches

Zhu & Frolov, arXiv, 2018

III. Binary Electrides from CSP + DM

A trial CSP on Sr-P by USPEX

	Formula	Space group	Prototype	Source	Composition	Formation energy (eV/atom)		
0	Sr5P8	C2/m	Ca5P8	own	0.615385	-0.879451	0.005801	
1	Sr8P5	I-4	new	own	0.384615	-1.015240	0.000000	
2	SrP	P-62m	EuAs	mpr	0.500000	-1.052954	0.000000	
3	Sr2P	Fdd2	new	own	0.333333	-0.867195	0.012680	
4	Sr10P	C2/m	new	own	0.090909	-0.211559	0.028407	
5	Sr6P5	Cm	new	own	0.454545	-0.996288	0.055424	
6	Sr7P4	C2/m	new	own	0.363636	-0.901736	0.058127	
7	Sr7P4	Cm	new	own	0.363636	-0.879277	0.080587	
8	Sr7P3	Cm	new	own	0.300000	-0.713190	0.078697	
9	Sr8P	P4/mmm	new	own	0.111111	-0.253788	0.039503	
10	Sr8P	C2/m	new	own	0.111111	-0.258493	0.034799	
11	Sr3P	C2/m	MoCl3	own	0.250000	-0.631493	0.028413	
12	SrP3	P-1	new	own	0.750000	-0.602179	0.044731	
13	SrP	P6_3/mmc	NaS	own	0.500000	-1.015396	0.037558	
14	Sr7P	Cm	new	own	0.125000	-0.303570	0.026383	
15	Sr5P3	Cm	new	own	0.375000	-0.922124	0.067735	
16	Sr3P	R32	new	own	0.250000	-0.593473	0.066433	
17	Sr3P	I4/mmm	new	own	0.250000	-0.590381	0.069525	
18	Sr5P3	C2/m	new	own	0.375000	-0.912738	0.077121	
19	Sr7P	R-3	new	own	0.125000	-0.287604	0.042349	
20	Sr5P	Cm	new	own	0.166667	-0.399585	0.040352	
21	Sr2P	P2_1/m	new	own	0.333333	-0.836071	0.043804	
22	Sr5P	C2/m	new	own	0.166667	-0.405096	0.034841	
23	Sr5P	I4/m	UF5	own	0.166667	-0.402246	0.037691	
24	Sr7P2	C2/m	new	own	0.222222	-0.540275	0.046308	
25	Sr5P2	C2/m	new	own	0.285714	-0.707654	0.046524	
26	Sr3P4	Cm	new	own	0.571429	-0.880164	0.082914	
27	Sr3P2	P-3m1	La2O3	own	0.400000	-1.038737	0.011483	
28	Sr3P	C2/m	new	own	0.250000	-0.581662	0.078244	

A lot of low energy structures are not counted by the existing database

Search in an extended chemical space

From Materials Project, we search for all MX

Th

We take the advantage of both structures from CSP and MP

C Х Μ Ĥ He Be F Ne 15 **P** 17 \mathbf{S} Cl Ar Ma 35 Zn Ge As Br Kr Cr Со Cu Ga Tc Sb Nb Mo Ru Rh Pd Aq Cd In Sn Xe Ŵ Re Pt Au Hg Ta Os Ir Tl Pb Bi Po At Rn 110 111 114 115 118 Sg Rf Db Bh Hs Mt Ds Rg Cn Nh Fl Mc Og Ra Lr Ts Се Pm Sm Eu Gd Tb Ho Er Tm Yb U

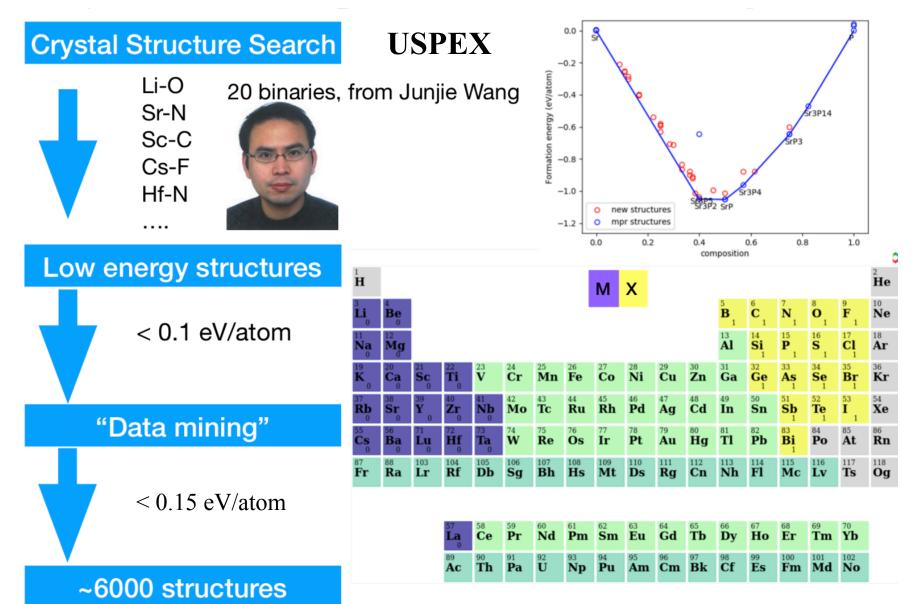
ND

Pu

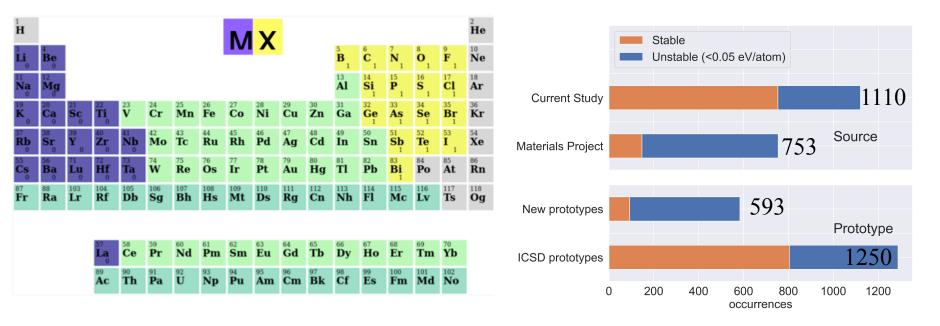
Am Cm Bk

Cf

Es


Fm

No


Md

19*16 = 304 binaries

CSP + Data Mining

The Binary Electride Database

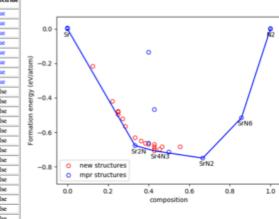
- Combining first principles crystal structure predictions and data mining, we obtained ~6000 structures, of which about ~2000 are energetically favorable
- Of ~2000 low energy structures, we found 147 new stable compounds and 753 low energy compounds
- A certain fraction of structures resembles new prototypes which haven't been found in ICSD database.

The Binary Electride Database

UNLV_db.py

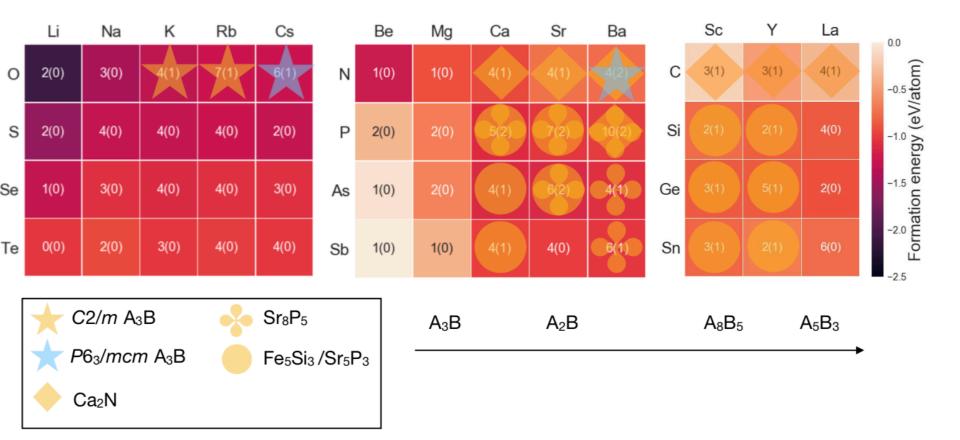
\$ python UNLV_db.py -h
Usage: UNLV_db.py [options]

Options:

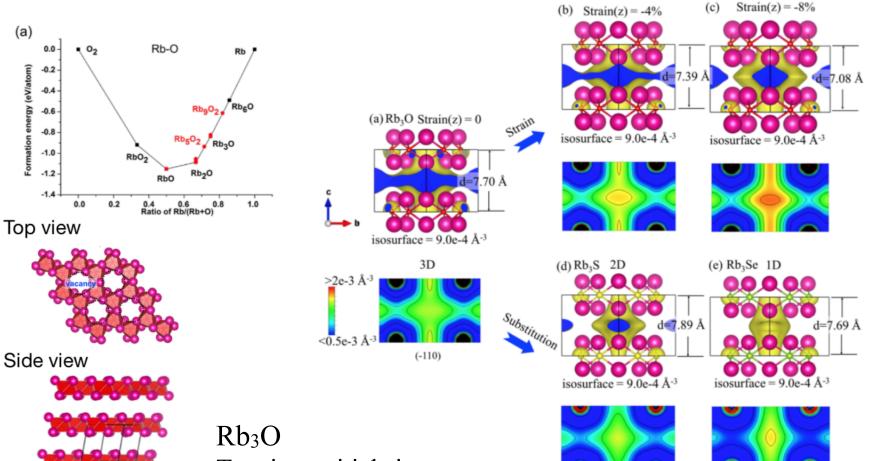

-h, --help show this help message and exit -s system, -system=system, quick search by system, e.g., Sc-N -i materials id, --id=materials id, quick

search by id

python UNLV_db.py -i [materials_id]

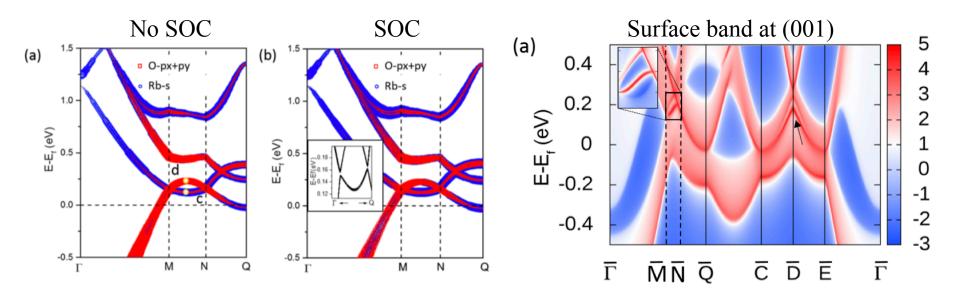

	Formula	Space group	Prototype	Source	Composition	Formation energy (eV/atom)		Elect
Ō	Sr2N	R-3m	Ca2N	mpr	0.3333	-0.6771	0.0000e+00	True
:	Sr5N2	C2/m	new	USPEX	0.2857	-0.5666	1.3780e-02	True
Ö	Sr3N	P-1	new	USPEX	0.2500	-0.4820	2.5828e-02	True
2	Sr8N5	C2/m	new	USPEX	0.3846	-0.6641	2.9259e-02	True
1	Sr3N	C2/m	MoCl3	USPEX	0.2500	-0.4785	2.9304e-02	True
7	Sr7N2	P-1	new	USPEX	0.2222	-0.4207	3.0707e-02	True
5	Sr8N3	C2/m	new	USPEX	0.2727	-0.5222	3.1818e-02	True
4	Sr4N3	P-1	new	USPEX	0.4286	-0.6704	3.7035e-02	True
1	Sr4N3	P-1	new	USPEX	0.4286	-0.7074	0.0000e+00	False
5	SrN6	Fddd	SrN6	mpr	0.8571	-0.5159	0.0000e+00	False
9	Sr	Fm-3m	Fe	mpr	0.0000	0.0000	0.0000e+00	False
ï	N2	P2_13	Li	mpr	1.0000	0.0000	0.0000e+00	False
5	N2	Pa3	N2	mpr	1.0000	0.0000	0.0000e+00	False
6	N2	R-3c	N2	mpr	1.0000	0.0000	0.0000e+00	False
7	N2	P6_3/mmc	Ti	mpr	1.0000	0.0000	0.0000e+00	False
8	N2	P4_2/mnm	N2	mpr	1.0000	0.0000	0.0000e+00	False
9	N2	12_13	C	mpr	1.0000	0.0000	0.0000e+00	False
Ō	N2	P6_3/mmc	Br	mpr	1.0000	0.0000	0.0000e+00	False
1	N2	C2/m	new	mpr	1.0000	0.0000	0.0000e+00	False
1	SrN2	I4/mmm	CaC2	mpr	0.6667	-0.7496	2.7756e-17	False
3	Sr	P6_3/mmc	Ti	mpr	0.0000	0.0012	1.2480e-03	False
8	Sr	P6_3/mmc	Nd	mpr	0.0000.0	0.0033	3.2781e-03	False
7	Sr	Im-3m	Sn	mpr	0.0000	0.0044	4.4475e-03	False
ī	SrN	C2/m	SrN	mpr	0.5000	-0.7141	5.9403e-03	False
-	Sr3N	P6_3/mcm	RuC13	USPEX	0.2500	-0.4971	1.0681e-02	False
ī	Sr4N3	P2/m	new	USPEX	0.4286	-0.6960	1.1431e-02	False
Ĩ	Sr6N5	P-1	new	USPEX	0.4545	-0.6991	1.2873e-02	False
i	C-1112	(2)/m		TEDEV	0.4286	0.4926	2 2010- 02	Ealer

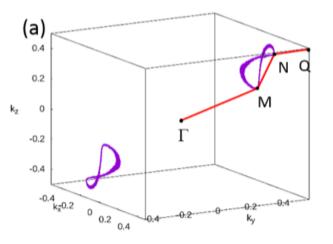
- Cif file
- Vasp POSCAR file
- Vasp INCAR file for PARCHG analysis


Among the short list of ~2000 low energy structures, we identified 364 potential electrides (35 from materials project, 329 from prediction)

Distribution of stable electrodes

Zhu, Wang, Chen & Zhu, arXiv, 2018

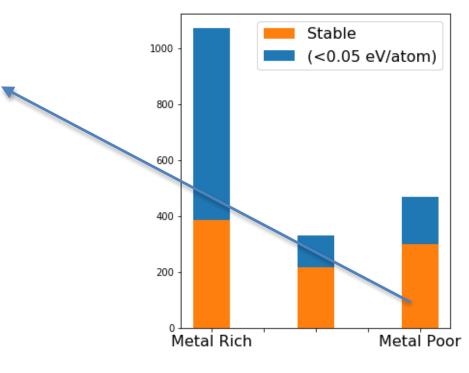

Example 1: Flexible Electride Rb₃O



- Two interstitial sites
 - tunable electron topology under strain or dopping
 - Such characteristics only exist in a few electrides

Zhu, Wang, Chen & Zhu, arXiv, 2018

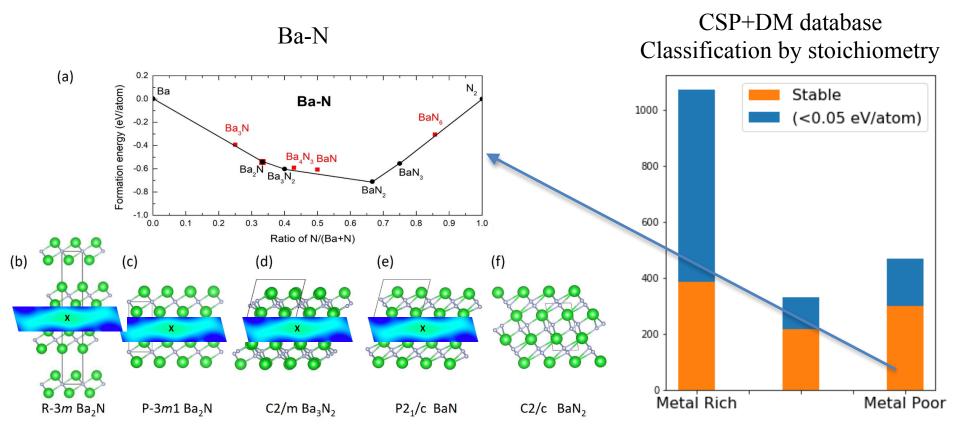
Example 1: Topological Electride Rb₃O


<u>Topological Electrides were proposed recently.</u> <u>The combination of two properties are interesting</u>

- Rb₃O
- a topological Dirac nodal line semimetal
- induced by the interstitial electric charges
- Band inversion not at the high-symmetry point & highsymmetry line

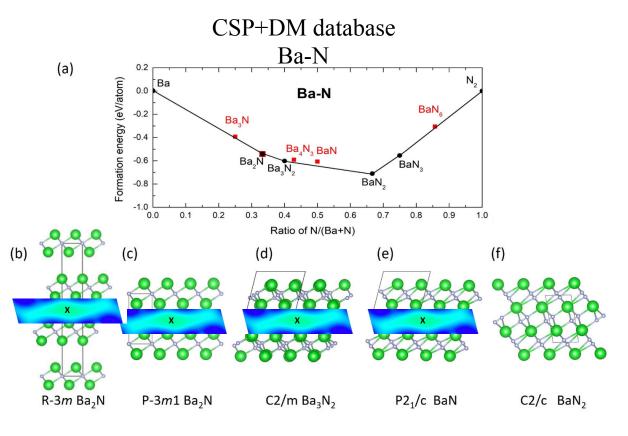
Zhu, Wang, Chen & Zhu, arXiv, 2018

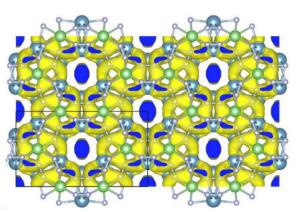
Example 2: Electrides with Pernitride Anions

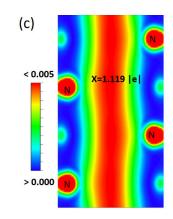

CSP+DM database Classification by stoichiometry

Several metal-poor compounds are electrides !

Qu & Zhu, ACS Appl. Mater. Interface, 2018


Example 2: Electrides with Pernitride Anions

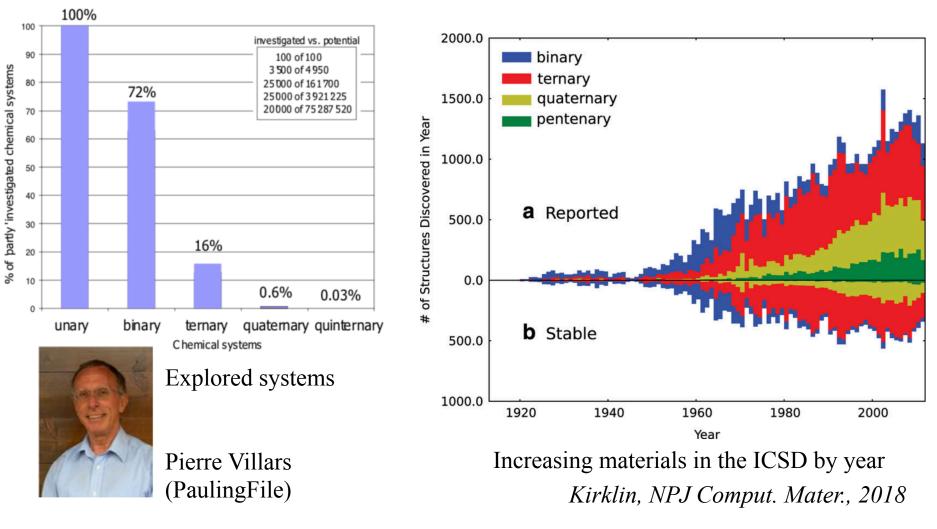

BaN and Ba_3N_2 are also electrides. maybe overlooked if one just look at the chemical formula unit


Qu & Zhu, ACS Appl. Mater. Interface, 2018

Example 2: Electrides with Pernitride Anions

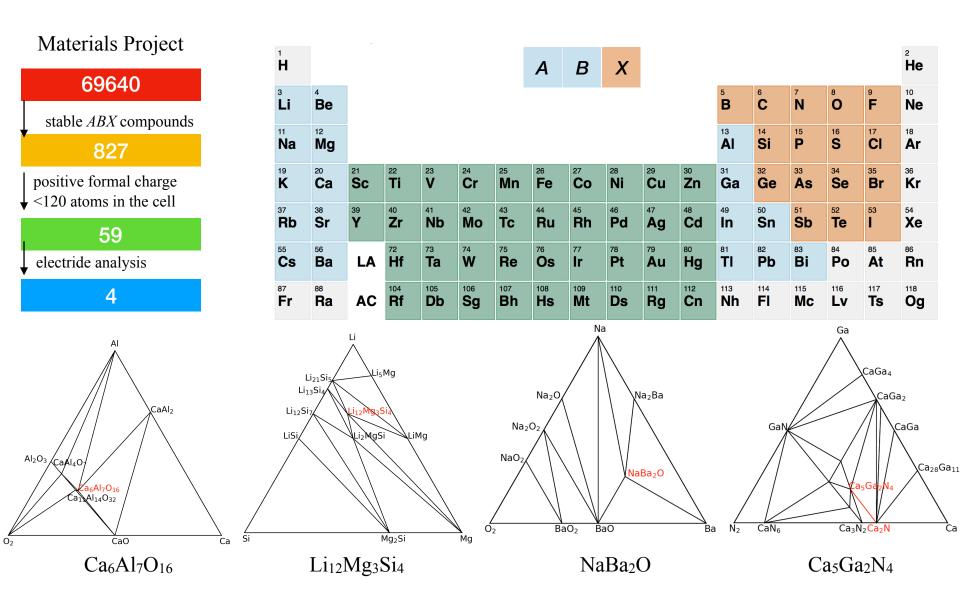
HT on the ICSD materials: Li₂Ca₃N₆

BaN and Ba₃N₂ are also electrides.

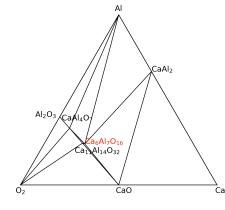

maybe overlooked if one just look at the chemical formula unit

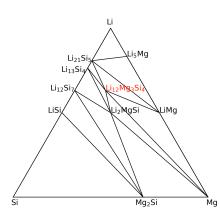
 $Li_2Ca_3N_6$ is another electride with [N₂] from our high throughput search

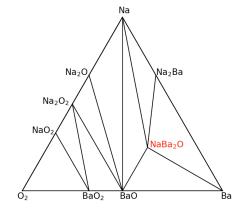
Qu & Zhu, ACS Appl. Mater. Interface, 2018

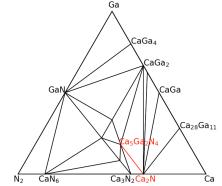

IV. Beyond Binary Systems

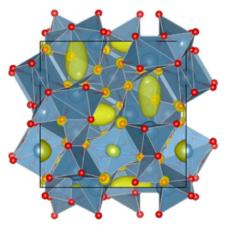
The unary/binary systems may have been largely explored in both expt. & theory

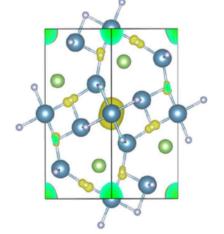

Search for more complex electrides?


Stable Ternary Electrides Made of Main Group Elements



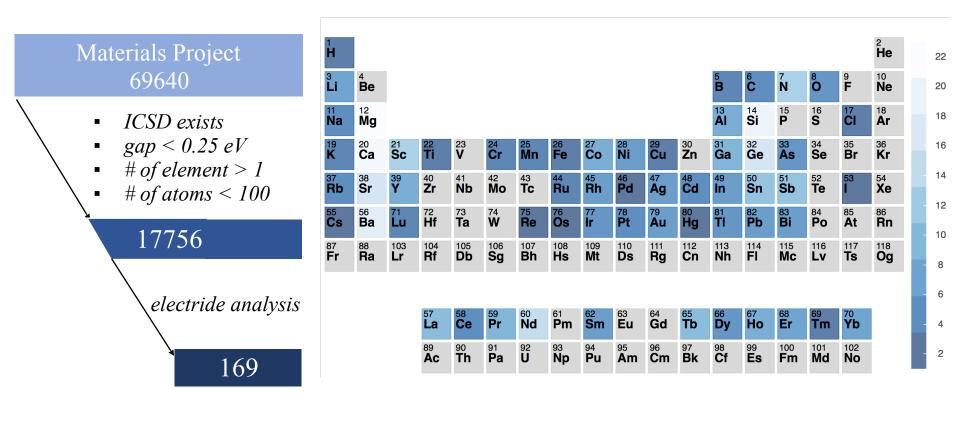

Wang & Zhu, arXiv, 2018


Stable Ternary Electrides Made of Main Group Elements

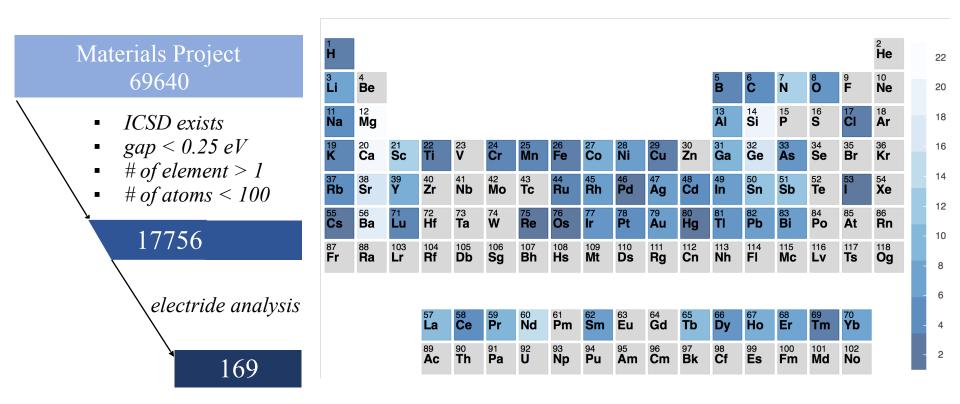


Ca₆Al₇O₁₆

 $Li_{12}Mg_3Si_4$



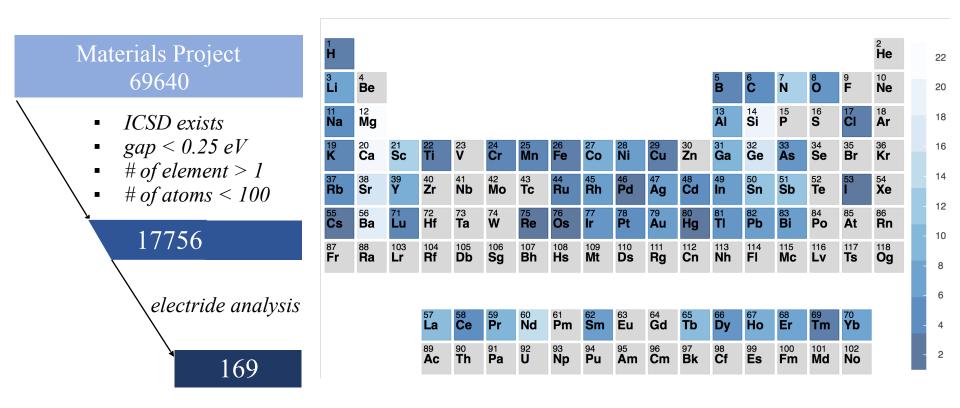
NaBa₂O



Wang & Zhu, arXiv, 2018

An extended search from the entire ICSD

An extended search from the entire ICSD

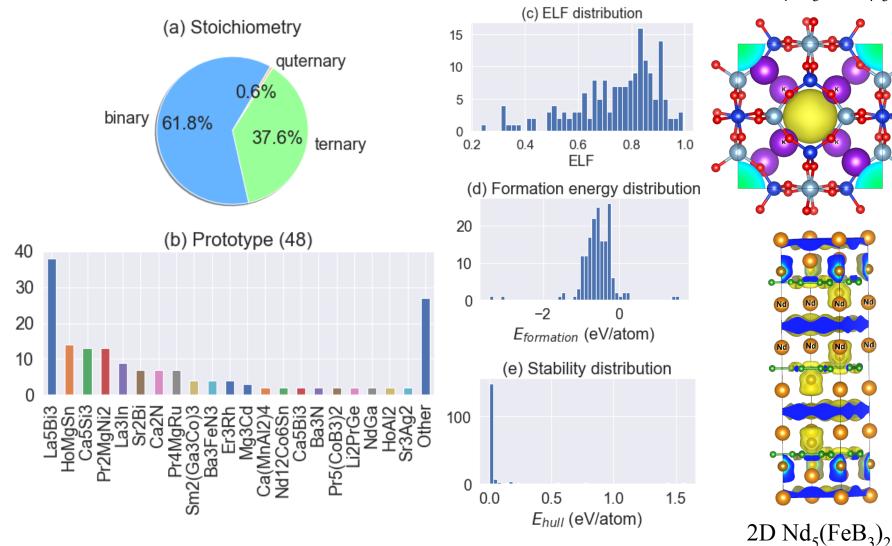


Burton et al (Chem. Mater., 2018) did a similar screening on the same data set, found 65 electrides. Among 10 experimentally recognized electrides, only 3 were found.

Here we found 169 electrides, and 7 out of 10 experimental electrides were identified in this work. All structure prototypes were identified.

Zhu & Frolov, arXiv, 2018

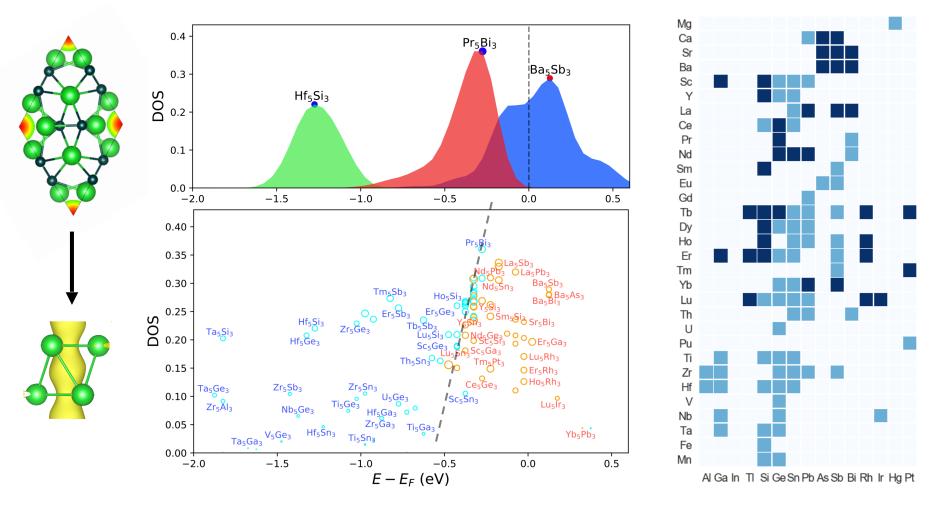
An extended search from the entire ICSD



We learn

- 59 elements are involved (previous researches were focusing on only a small space)
- Group II elements (Mg/Ca/Sr/Ba) are most frequent electron providers.
- Many transition metals (mostly forming intermetallics) are found, which are rarely studied in the past

Zhu & Frolov, arXiv, 2018


Various Statistics

 $0D K_4Al_3(SiO_4)_3$

Zhu & Frolov, arXiv, 2018

Chemistry-Structure dependence

There exist 105 different Fe₅Si₃ type compounds, but not all of them are electrides!

Zhu & Frolov, arXiv, 2018

Summary

- Technical implementation
 - Hybrid CSP + DM + HT method used for the search and design of functional electrides
 - A new descriptor for identifying interstitial electrons
- Important results
 - A growing library for many (>364) low-energy binary electrides from CSP + HT + DM
 - 169 electrides from HT screening on the ICSD

• Related Articles from this work

- Zhu Q*, Frolov T (2018) Inorganic Electrides from High-throughput Screening, arxiv 1812.06222
- Zhu S-C, Wang L, Qu, J-Y, Wang, J-J, Frolov T, Chen X-Q and Zhu, Q*. (2018) <u>Computational Design of Flexible Electrides with Non-trivial Band Topology</u>, arXiv 1811.11334
- Wang J-J, Zhu, Q*, Wang Z-H, Hosono H. (2018) <u>Ternary Inorganic Electrides with mixed bonding</u>, arXiv 1811.10682
- Qu J-Y, Zhu S-C, Zhang W-W, Zhu, Q* (2018) <u>Electrides with Pernitride Anions</u>, ACS Applied Materials & Interfaces, just accepted
- Zhu, Q*, Wang, J-J, in preparation.

Computational Materials Sciences @ UNLV

Merci 谢谢 Jazie Juank You ありがとう

Collaborators: X-Q, Chen, L Wang, IMR, China Hiedo Hosono, Tokyo Inst. of Tech. J. Wang, NWPU, China