Efficient evaluation of quantum and thermal nuclear fluctuations in solids

Lorenzo Monacelli

University of Rome "Sapienza"

Self-consistent harmonic approxiation

High-pressure Hydrogen

SCHA and Hydrogen

Self-consistent harmonic approxiation

Vibrational properties

- Vibrational spectrum
- Thermal conductivity (lonic)

- First-order phase transitions
- Second-order phase transitions

Vibrational properties

- Vibrational spectrum
- Thermal conductivity (lonic)

- First-order phase transitions
- Second-order phase transitions

Vibrational properties

- Vibrational spectrum
- Thermal conductivity (lonic)

- First-order phase transitions
- Second-order phase transitions

Vibrational properties

- Vibrational spectrum
- Thermal conductivity (Ionic)

- First-order phase transitions
- Second-order phase transitions

Vibrational properties

- Vibrational spectrum
- Thermal conductivity (Ionic)

- First-order phase transitions
- Second-order phase transitions

Vibrational properties

- Vibrational spectrum
- Thermal conductivity (lonic)

- First-order phase transitions
- Second-order phase transitions

How does the SCHA work?

► The free energy satisfies the Helmholtz least principle:

$$F = \min_{\rho} \left[U(\rho) - TS(\rho) \right] = \min_{\rho} \left[\langle H \rangle_{\rho} + k_b T \langle \ln \rho \rangle_{\rho} \right]$$

 $\rho =$ lonic density matrix

• the density matrix $\rho(\vec{R})$ is restricted to a multidimensional **Gaussian**:

$$\langle \vec{R} | \rho_S | \vec{R} \rangle = \sqrt{\frac{\det \Upsilon}{(2\pi)^D}} \exp \left[-\frac{1}{2} \sum_{ab}^{3N} (R_a - \mathcal{R}_a) \cdot \Upsilon_{ab} \cdot (R_b - \mathcal{R}_b) \right]$$

 \mathcal{R} are the centroid positions \mathcal{T} is the covariance matrix

 $\triangleright \rho_{S}(\vec{R})$ is the solution of a harmonic Hamiltonian \mathcal{H}

$$\rho_S = \frac{\exp\left(-\mathcal{H}/k_b T\right)}{Z}$$

How does the SCHA work?

► The free energy satisfies the Helmholtz least principle:

$$F = \min_{\rho} \left[U(\rho) - TS(\rho) \right] = \min_{\rho} \left[\langle H \rangle_{\rho} + k_b T \langle \ln \rho \rangle_{\rho} \right]$$

 $\rho = {\rm lonic}$ density matrix

• the density matrix $\rho(\vec{R})$ is restricted to a multidimensional **Gaussian**:

$$\langle \vec{R} | \rho_{S} | \vec{R} \rangle = \sqrt{\frac{\det \Upsilon}{(2\pi)^{D}}} \exp\left[-\frac{1}{2} \sum_{ab}^{3N} (R_{a} - \mathcal{R}_{a}) \cdot \Upsilon_{ab} \cdot (R_{b} - \mathcal{R}_{b})\right]$$

 $\mathcal{\vec{R}}$ are the centroid positions Υ is the covariance matrix

 $\triangleright \rho_{S}(\vec{R})$ is the solution of a harmonic Hamiltonian \mathcal{H}

$$\rho_S = \frac{\exp\left(-\mathcal{H}/k_b T\right)}{Z}$$

How does the SCHA work?

► The free energy satisfies the Helmholtz least principle:

$$F = \min_{\rho} \left[U(\rho) - TS(\rho) \right] = \min_{\rho} \left[\langle H \rangle_{\rho} + k_b T \langle \ln \rho \rangle_{\rho} \right]$$

 $\rho = {\rm lonic} \ {\rm density} \ {\rm matrix}$

• the density matrix $\rho(\vec{R})$ is restricted to a multidimensional **Gaussian**:

$$\langle \vec{R} | \rho_{S} | \vec{R} \rangle = \sqrt{\frac{\det \Upsilon}{(2\pi)^{D}}} \exp\left[-\frac{1}{2} \sum_{ab}^{3N} (R_{a} - \mathcal{R}_{a}) \cdot \Upsilon_{ab} \cdot (R_{b} - \mathcal{R}_{b})\right]$$

 $ec{\mathcal{R}}$ are the centroid positions $\ \ \Upsilon$ is the covariance matrix

• $\rho_{S}(\vec{R})$ is the solution of a harmonic Hamiltonian \mathcal{H}

$$\rho_S = \frac{\exp\left(-\mathcal{H}/k_b T\right)}{Z}$$

$$\rho_{S} = \mathbf{Gaussian} = \rho_{S}(\vec{\mathcal{R}}, \Upsilon)$$
$$F = \min_{\vec{\mathcal{R}}, \Upsilon} \left[U(\vec{\mathcal{R}}, \Upsilon) - TS(\vec{\mathcal{R}}, \Upsilon) \right]$$

Using a Gaussian ansatz for the density matrix have a lot of advantages:

- A limited number of degrees of freedom (if compared with other mean-field approaches)
- **b** Both $S(\rho_S)$ and the kinetic part of $U(\rho_S)$ are known analytically.
- ▶ The potential energy can be efficiently evaluated by **Monte Carlo**.

Computationally cheap!

No thermodynamic integration required to evaluate the free energy.

$$\rho_{S} = \mathbf{Gaussian} = \rho_{S}(\vec{\mathcal{R}}, \Upsilon)$$
$$F = \min_{\vec{\mathcal{R}}, \Upsilon} \left[U(\vec{\mathcal{R}}, \Upsilon) - TS(\vec{\mathcal{R}}, \Upsilon) \right]$$

Using a Gaussian ansatz for the density matrix have a lot of advantages:

- A limited number of degrees of freedom (if compared with other mean-field approaches)
- Both $S(\rho_S)$ and the kinetic part of $U(\rho_S)$ are known analytically.
- ▶ The potential energy can be efficiently evaluated by Monte Carlo.

Computationally cheap!

No thermodynamic integration required to evaluate the free energy.

$$\rho_{S} = \mathbf{Gaussian} = \rho_{S}(\vec{\mathcal{R}}, \Upsilon)$$
$$F = \min_{\vec{\mathcal{R}}, \Upsilon} \left[U(\vec{\mathcal{R}}, \Upsilon) - TS(\vec{\mathcal{R}}, \Upsilon) \right]$$

Using a Gaussian ansatz for the density matrix have a lot of advantages:

- A limited number of degrees of freedom (if compared with other mean-field approaches)
- Both $S(\rho_S)$ and the kinetic part of $U(\rho_S)$ are known analytically.
- ► The potential energy can be efficiently evaluated by **Monte Carlo**.

Computationally cheap!

No thermodynamic integration required to evaluate the free energy.

$$H = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial R^2} + V(R)$$

Exact energy:

$$E = \min_{\rho} \operatorname{Tr}[\rho H]$$

► Quasi-Harmonic (QHA) energy:

$$E_{QHA} = \min_{R} V(R) + \hbar \omega/2 \qquad \omega = \sqrt{\frac{1}{m} \left. \frac{d^2 V}{dR^2} \right|_{R=R_{min}}}$$

► SCHA energy:

$$E_{SCHA} = \min_{\mathcal{R},\Upsilon} \operatorname{Tr}[\rho_{S}H] \qquad \operatorname{Tr}[\rho_{S}H] = \frac{\hbar^{2}\Upsilon}{8m} + \langle V(R) \rangle_{s}$$

Exact energy:

$$E = \min_{
ho} \operatorname{Tr}[
ho H]$$

6

Harmonic energy:

$$E_{QHA} = \min_{R} V(R) + \hbar \omega/2$$

6

Scha energy:

$$E_{SCHA} = \min_{\mathcal{R},\Upsilon} \operatorname{Tr}[\rho_S H]$$

The energy and the centroid position are very good.

 ${igvee}$ The wave-function shape is not as good as the energy.

The standard relaxation

- 1. Initialize the atomic position.
- 2. Relax the atomic position.
- 3. Relax the unit cell.
- 4. Compute phonon dispersion.

The SCHA relaxation

The standard relaxation

- 1. Initialize the atomic position.
- 2. Relax the atomic position.
- 3. Relax the unit cell.
- 4. Compute phonon dispersion.

The SCHA relaxation

1) We initialize the SSCHA calculation with the density matrix that is the solution of the Harmonic Hamiltonian.

The standard relaxation

- 1. Initialize the atomic position.
- 2. Relax the atomic position.
- 3. Relax the unit cell.
- 4. Compute phonon dispersion.

The SCHA relaxation

2) We perform the minimization with respect to $\vec{\mathcal{R}}$ and Υ .

The standard relaxation

- 1. Initialize the atomic position.
- 2. Relax the atomic position.
- 3. Relax the unit cell.
- 4. Compute phonon dispersion.

The SCHA relaxation

3) We can compute the derivative of the free energy to get the stress tensor that includes the ionic contribution on quantum and thermal fluctuations:

$$P_{\alpha\beta} = -\frac{1}{\Omega} \frac{dF}{d\varepsilon_{\alpha\beta}}$$

 $\Omega = \mathsf{Volume}$ $arepsilon = \mathsf{Strain}$ tensor

[1] Monacelli et. al. Pressure and stress tensor of complex anharmonic crystals within the stochastic self-consistent harmonic approximation, PRB 98, 2, 2018

The standard relaxation

- 1. Initialize the atomic position.
- 2. Relax the atomic position.
- 3. Relax the unit cell.
- 4. Compute phonon dispersion.

The SCHA relaxation

4) We can study the structure stability computing the second derivative of the free energy with respect to the atomic positions:

 $\frac{d^2 F}{d \mathcal{R}_a d \mathcal{R}_b}$

[2] Bianco et. al. Second-order structural phase transitions, free energy curvature, and temperature-dependent anharmonic phonons in the self-consistent harmonic approximation: Theory and stochastic implementation, PRB 96, 014111, 2017

- Harmonic approx. has imaginary phonons
- ► We can define a SCHA energy landscape

 $\mathsf{E}_{s}(\mathcal{R}) = \min_{\Upsilon} \mathsf{Tr}[
ho_{\mathcal{S}}(\mathcal{R},\Upsilon)H]$

Structure stability

Harmonic approx. has imaginary phonons

We can define a SCHA energy landscape

$\mathit{E}_{s}(\mathcal{R}) = \min_{\Upsilon} \operatorname{Tr}[ho_{S}(\mathcal{R},\Upsilon)H]$

Structure stability

- Harmonic approx. has imaginary phonons
- ► We can define a SCHA energy landscape

 $E_{s}(\mathcal{R}) = \min_{\Upsilon} \operatorname{Tr}[\rho_{S}(\mathcal{R}, \Upsilon)H]$

$$E_{s}(\mathcal{R}) = \min_{\Upsilon} \operatorname{Tr}[\rho_{S}(\mathcal{R}, \Upsilon)H]$$

This is equivalent to study how the energy changes if we move the atoms using a static external electric field.

High-pressure Hydrogen

- ▶ 1935: Metallic hydrogen was predicted to be stable over 25 GPa
- ▶ 1968: Metallic hydrogen is a superconductor $T_c > 300 \text{ K}$
- ▶ 2015: Experimental realization of H_3S : $T_c = 203 \text{ K}$

The highest T_c known

 H_3S broke the record held by cuprates for 40 years (138 K)

In 1935 Hungtington and Wigner were wrong:

25 GPa

In 1935 Hungtington and Wigner were wrong:

In 1935 Hungtington and Wigner were wrong:

500 GPa

The high-pressure phase-diagram

[Eremets et al, Molecular semimetallic hydrogen, Arxiv, 2017]

The high-pressure phase-diagram

[Eremets et al, Molecular semimetallic hydrogen, Arxiv, 2017]

Vibrational spectroscopy is the only insight on the structure

[Howie et al, Mixed Molecular and Atomic Phase of Dense Hydrogen, PRL, 2012]

SCHA and Hydrogen

Anharmonicity and quantum zero-point motion stretches the H_2 molecules when increasing the pressure:

Anharmonic Stress Tensor

Anharmonicity wants to separate the parallel planes of layered structures

Anharmonic Stress Tensor

Anharmonicity wants to separate the parallel planes of layered structures

Stability of the structure

Unexpected Phase transition when increasing pressure.

SCHA get the full phase-diagram

We can get the phase-diagram with few calculations!

SCHA get the full phase-diagram

We can get the phase-diagram with few calculations!

Conclusions

