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What is the SCHA?

The Self-Consistent Harmonic Approximation is a numerical tool

to account for both thermal and quantum fluctuations of nuclei.

I Vibrational properties

• Vibrational spectrum
• Thermal conductivity (Ionic)

I Structural stability

• First-order phase transitions
• Second-order phase transitions
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How does the SCHA work?

I The free energy satisfies the Helmholtz least principle:

F = min
ρ

[U(ρ)− TS(ρ)] = min
ρ

[
〈H〉ρ + kbT 〈ln ρ〉ρ

]
ρ = Ionic density matrix

I the density matrix ρ(~R) is restricted to a multidimensional Gaussian:

〈~R|ρS |~R〉 =

√
detΥ

(2π)D
exp

[
−1

2

3N∑
ab

(Ra −Ra) ·Υab · (Rb −Rb)

]

~R are the centroid positions Υ is the covariance matrix

I ρS(~R) is the solution of a harmonic Hamiltonian H

ρS =
exp (−H/kbT )

Z
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Why should we use a Gaussian?

ρS = Gaussian = ρS( ~R,Υ)

F = min
~R,Υ

[
U( ~R,Υ)− TS( ~R,Υ)

]
Using a Gaussian ansatz for the density matrix have a lot of advantages:

I A limited number of degrees of freedom

(if compared with other mean-field approaches)

I Both S(ρS) and the kinetic part of U(ρS) are known analytically.

I The potential energy can be efficiently evaluated by Monte Carlo.

Computationally cheap!

No thermodynamic integration required to evaluate the free energy.
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1D example at T = 0 K
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1D example at T = 0 K

H = − ~2

2m

∂2

∂R2
+ V (R)

I Exact energy:

E = min
ρ

Tr[ρH]

I Quasi-Harmonic (QHA) energy:

EQHA = min
R

V (R) + ~ω/2 ω =

√
1

m

d2V

dR2

∣∣∣∣
R=Rmin

I SCHA energy:

ESCHA = min
R,Υ

Tr[ρSH] Tr[ρSH] =
~2Υ

8m
+ 〈V (R)〉s
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1D example at T = 0 K

Harmonic energy:

EQHA = min
R

V (R) + ~ω/2
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1D example at T = 0 K

Scha energy:

ESCHA = min
R,Υ

Tr[ρSH]
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1D example at T = 0 K

The energy and the centroid position are very good.

The wave-function shape is not as good as the energy.
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Structure relaxation

The standard relaxation

1. Initialize the atomic position.

2. Relax the atomic position.

3. Relax the unit cell.

4. Compute phonon dispersion.

The SCHA relaxation
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Structure relaxation

The standard relaxation

1. Initialize the atomic position.

2. Relax the atomic position.

3. Relax the unit cell.

4. Compute phonon dispersion.

The SCHA relaxation

1) We initialize the SSCHA calculation with the density matrix that is the

solution of the Harmonic Hamiltonian.
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Structure relaxation

The standard relaxation

1. Initialize the atomic position.

2. Relax the atomic position.

3. Relax the unit cell.

4. Compute phonon dispersion.

The SCHA relaxation

2) We perform the minimization with respect to ~R and Υ.
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Structure relaxation

The standard relaxation

1. Initialize the atomic position.

2. Relax the atomic position.

3. Relax the unit cell.

4. Compute phonon dispersion.

The SCHA relaxation

3) We can compute the derivative of the free energy to get the stress tensor

that includes the ionic contribution on quantum and thermal fluctuations:

Pαβ = − 1

Ω

dF

dεαβ

Ω = Volume ε = Strain tensor

[1] Monacelli et. al. Pressure and stress tensor of complex anharmonic crystals within

the stochastic self-consistent harmonic approximation, PRB 98, 2, 2018
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Structure relaxation

The standard relaxation

1. Initialize the atomic position.

2. Relax the atomic position.

3. Relax the unit cell.

4. Compute phonon dispersion.

The SCHA relaxation

4) We can study the structure stability computing the second derivative of

the free energy with respect to the atomic positions:

d2F

dRadRb

[2] Bianco et. al. Second-order structural phase transitions, free energy curvature, and

temperature-dependent anharmonic phonons in the self-consistent harmonic approxima-

tion: Theory and stochastic implementation, PRB 96, 014111, 2017
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Structure stability

I Harmonic approx. has imaginary phonons

I We can define a SCHA energy landscape

Es(R) = minΥ Tr[ρS(R,Υ)H]
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Structure stability

Es(R) = min
Υ

Tr[ρS(R,Υ)H]

This is equivalent to study how the energy changes if we move the atoms

using a static external electric field.
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High-pressure Hydrogen



A long time challenge

I 1935: Metallic hydrogen was predicted to be stable over 25 GPa

I 1968: Metallic hydrogen is a superconductor Tc > 300 K

I 2015: Experimental realization of H3S: Tc = 203 K

The highest Tc known

H3S broke the record held by cuprates for 40 years (138 K)
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A “bit” more difficult than expected

In 1935 Hungtington and Wigner were wrong:

25 GPa
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A “bit” more difficult than expected

In 1935 Hungtington and Wigner were wrong:
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A “bit” more difficult than expected

In 1935 Hungtington and Wigner were wrong:

500 GPa
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The high-pressure phase-diagram

[Eremets et al, Molecular semimetallic hydrogen, Arxiv, 2017]
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The high-pressure phase-diagram

[Eremets et al, Molecular semimetallic hydrogen, Arxiv, 2017]
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Vibrational spectroscopy is the only insight on the structure

The phase diagram:

[Howie et al, Mixed Molecular and Atomic

Phase of Dense Hydrogen, PRL, 2012]
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SCHA and Hydrogen



Structure deformation

Anharmonicity and quantum zero-point motion stretches the H2 molecules

when increasing the pressure:
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Structure deformation

Anharmonic Stress Tensor

Anharmonicity wants to separate the parallel planes of layered structures

250 GPa

x y z

x 6.1 0 0

y 0 12.2 0

z 0 0 6.0
[GPa]

350 GPa

x y z

x 5.1 0 0

y 0 15.7 0

z 0 0 4.7
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450 GPa

x y z

x 5.1 0 0

y 0 18.3 0

z 0 0 4.1
[GPa]
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Structure deformation

Anharmonic Stress Tensor

Anharmonicity wants to separate the parallel planes of layered structures
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Stability of the structure

Unexpected Phase transition when increasing pressure.
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SCHA get the full phase-diagram

We can get the phase-diagram with few calculations!
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SCHA get the full phase-diagram

We can get the phase-diagram with few calculations!
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Conclusions

Within the SCHA we can do:

I Structure relaxation

I Structure stability

I Phase diagram
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