Entropy as a tool for crystal discovery

Pablo Piaggi (EPFL and USI, Switzerland)

Workshop on Crystal Structure Prediction, ICTP, Trieste

January 14-18, 2019

Some substances have more than one crystal structure

Polymorphism is particularly important for the pharmaceutical industry

- Molecules used as drugs exhibit rich polymorphism
- Each polymorph can be patented separately
- Polymorphs have different solubilities/bioavailability

The case of ritonavir

- Medication to treat HIV/AIDS
- During development form I was found
- Once in the market, the more stable form II appeared and its bioavailability is much lower
- The company lost US\$ 250 million

J. Bauer et al., Pharmaceutical research 18 (2001)

Search for potential energy minima

• Current methods search at 0 K

- Random search, evolutionary algorithms
- Many minima are found

Are these minima relevant at finite T?

S.L. Price, Chemical Society Reviews 43 (2014)

The effects of temperature

Is it possible to predict the crystal structure of a substance (directly) at finite temperature?

Search for free energy minima using metadynamics

$$V(\mathbf{s}, t) = \sum_{k=1}^{n} W e^{-||\mathbf{s}-\mathbf{s}_{k}||^{2}} \exp\left[-\frac{1}{\gamma-1}\beta V_{k-1}(\mathbf{s}_{k})\right].$$
$$V(\mathbf{s}, t) = -\left(1 - \frac{1}{\gamma}\right)F(\mathbf{s}) + c(t),$$

A Laio, and M Parrinello, PNAS 99, (2002) A Barducci, G Bussi, and Parrinello, Physical Review Letters 100, (2008)

- Steinhardt parameters, structure factor peaks
- Not useful for crystal discovery

H Niu, P Piaggi, M Invernizzi, and M Parrinello, PNAS 115, (2018)

The quest for a structure agnostic CV

Can we find a CV that does not assume the final structure from the start?

Crystallization as a trade off between enthalpy and entropy

In first order phase transitions there is a trade off between enthalpy and entropy

P. M. Piaggi, O. Valsson, and M. Parrinello, Physical Review Letters 119, 015701 (2017)

Approximate expression for the entropy

Entropy expansion in multibody correlation functions

Enhancing enthalpy and entropy fluctuations

Two examples: Na and Al

P. M. Piaggi, O. Valsson, and M. Parrinello, Physical Review Letters 119, 015701 (2017)

From atoms to molecules ...

$g(r, \theta)$ is a natural way to describe molecular crystals

Examples of $g(r, \theta)$ - the case of Urea

We define a corresponding pair entropy

$$S_{2} = -2\pi\rho k_{B} \int_{0}^{\infty} [g(r)\ln g(r) - g(r) + 1] r^{2} dr$$

$$S_{2} = -\pi\rho k_{B} \int_{0}^{\infty} \int_{0}^{\pi} [g(r,\theta)\ln g(r,\theta) - g(r,\theta) + 1] r^{2} \sin\theta \, dr d\theta$$

P. M. Piaggi and M. Parrinello, PNAS 115 (41), 10251 (2018)

Good exploration - boon or bane?

P. M. Piaggi and M. Parrinello, PNAS 115 (41), 10251 (2018)

Clustering to understand complex data

Hierachical clustering of the configurations

Urea form B is stabilized by entropy

Time autocorrelation function

Free energy $G(\theta) = -k_B T \log p(\theta) \sin \theta$ Entropy $k_B T \int p(\theta) \log p(\theta) \sin \theta d\theta$

P. M. Piaggi and M. Parrinello, PNAS 115 (41), 10251 (2018)

From global to local ...

From global to local

• Projection onto each atom

$$s_{S}^{i} = -2\pi\rho k_{B} \int_{0}^{r_{m}} \left[g_{m}^{i}(r) \ln g_{m}^{i}(r) - g_{m}^{i}(r) + 1 \right] r^{2} dr,$$

• Average over first neighbors

P. M. Piaggi and M. Parrinello, Journal of Chemical Physics 147, 114112 (2017)

A fingerprint for local crystalline order

Distinguish between polymorphs

P. M. Piaggi and M. Parrinello, Journal of Chemical Physics 147, 114112 (2017)

Multithermal-multibaric simulations from a variational principle

The idea

Isothermal-isobaric vs multithermal-multibaric

P. M. Piaggi and M. Parrinello, arXiv:1811.08253 (2018)

How?

Importance sampling

We would like to calculate: $\langle f \rangle_p = \int f(x) p(x) dx$

Use a different distribution:

$$\langle f\rangle_p = \int \frac{f(x)p(x)}{q(x)} q(x) dx = \left\langle \frac{fp}{q} \right\rangle_q$$

Sample several distributions simultaneously

Find a q(x) useful to sample several distributions $p_i(x)$

all the $p_i(x)$ should have good overlap

Multithermal-multibaric simulations

Find distribution that encompasses all the isothermal-isobaric distributions in the desired T-P range. But how?

Variationally enhanced sampling

Introduce a bias potential V(s) - s are the collective variables Convex functional of the bias potential:

$$\Omega[V] = \frac{1}{\beta} \log \frac{\int d\mathbf{s} \, e^{-\beta[F(\mathbf{s}) + V(\mathbf{s})]}}{\int d\mathbf{s} \, e^{-\beta F(\mathbf{s})}} + \int d\mathbf{s} \, p(\mathbf{s}) V(\mathbf{s})$$

Made stationary by,

$$V(\mathbf{s}) = -F(\mathbf{s}) - rac{1}{eta} \log p(\mathbf{s})$$

Then,

$$p(\mathbf{s}) = \frac{e^{-\beta[F(\mathbf{s})+V(\mathbf{s})]}}{\int d\mathbf{s} \ e^{-\beta[F(\mathbf{s})+V(\mathbf{s})]}} = P_V(\mathbf{s})$$

Therefore, once that $\Omega[V]$ is minimized, the distribution of CVs is p(s)

O. Valsson and M. Parrinello, Physical Review Letters 113 (9), 090601 (2014)

Multithermal-multibaric sampling with VES

- Use potential energy E and volume as CVs
- Choose some basis set for the bias
- Use a 2D uniform p(s). Region not known beforehand. Determine it self-consistently.

Rigorous link between free energies

$$\beta' F_{\beta',P'}(E, \mathcal{V}) = \beta F_{\beta,P}(E, \mathcal{V}) + (\beta' - \beta)E + (\beta' P' - \beta P)\mathcal{V} + C'',$$

Definition of p(E,V)

Density anomaly in TIP4P/Ice water

Density anomaly for all T and P

Excellent agreement with individual isothermal-isobaric simulations!

Also other static physical quantities

Radial distribution function

water becomes less structured as the temperature and pressure increase

Tetrahedral order parameter

Also specific heat ...

What if there are **phase transitions** in the chosen regions of the phase diagram?

Solid-liquid transition

Combination with metadynamics

Example of **Sodium**

Y. Yang, H. Niu, M. Parrinello, Journal of Physical Chemistry Letters 9 (22), 6426 (2018)

Conclusions

- The pair entropy is a collective variable based on the g(r) and it doesn't require any information about the final structure
- It has proven to be effective in predicting crystals structures in many systems from metals, to ionic crystals, to molecular crystals
- Useful to find structures at finite temperature, e.g. high entropy structures
- Pair entropy fingerprint to characterize order-disorder environments
- I presented a method for performing multithermal-multibaric simulations
- The temperature and pressure interval is given as input and the relevant region of energy and pressure is determined automatically
- Once that the algorithm has converged, the simulation can be used to calculate all static physical quantities
- Can be used both in Lammps and Gromacs and is fully integrated in Plumed

Aultithermal-multibaric

Thank you for your attention! Questions?

Acknowledgments

- NCCR MARVEL for funding
- The organizers for inviting me
- Prof. Parrinello
- Collaborators: Omar Valsson, Sergio Perez-Conesa