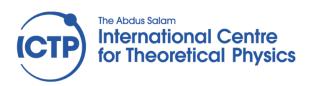
Towards the optimization of IACTs as dark matter probes using DCNs

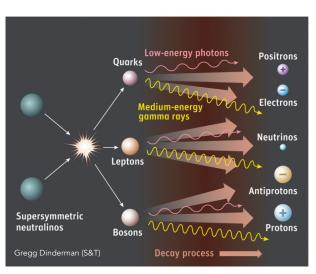
Advanced Workshop on Accelerating the Search for Dark Matter with Machine Learning

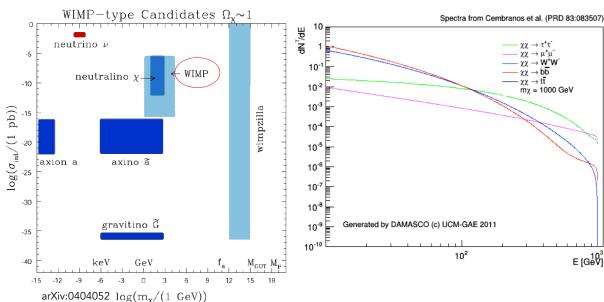


D. Nieto on behalf of the Cherenkov Telescope Array Consortium

- Indirect dark matter searches in the γ-ray band
- Imaging atmospheric Cherenkov technique
- Machine learning & current-generation IACTs
- Prospects for dark matter searches with CTA
- Enhancing CTA's performance with deep learning

- Basis: Detection of DM annihilation or decay products (SM particles)
- o In most cases, entangled with CR and subdominant
- WIMPs with masses > 100 GeV are good DM particle candidates
- Photons are privileged messengers
 - No deflection by B-fields, trace back to source
 - Observation of astrophysical targets
 - Characteristic spectral shape: identification





Indirect dark matter searches in the γ -ray band

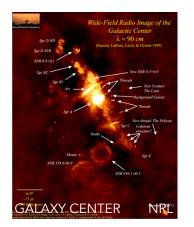
Expected spectrum from annihilating DM

$$\frac{d\Phi}{dE} = J(\Delta\Omega) \times \frac{d\Phi^{PP}}{dE} = \int_{I.o.s,V} \rho_{DM}^{2}(I) d\Omega dI \times \frac{1}{4\pi} \frac{\langle \sigma_{ann} V \rangle}{2m_{DM}^{2}} \sum_{i} B_{i} \frac{dN_{i}^{\gamma}}{dE}$$

Key concepts: ρ_{DM} , distance, background

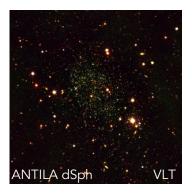
Galactic Center & Halo

- High flux
- Background Issues



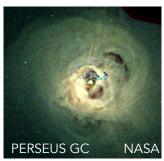
Dwarf Galaxies

- Large M/L
- No background
- Low flux



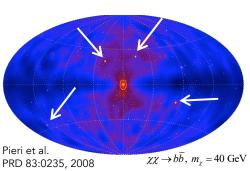
Galaxy Clusters

- Huge DM content
- Large distance
- High background



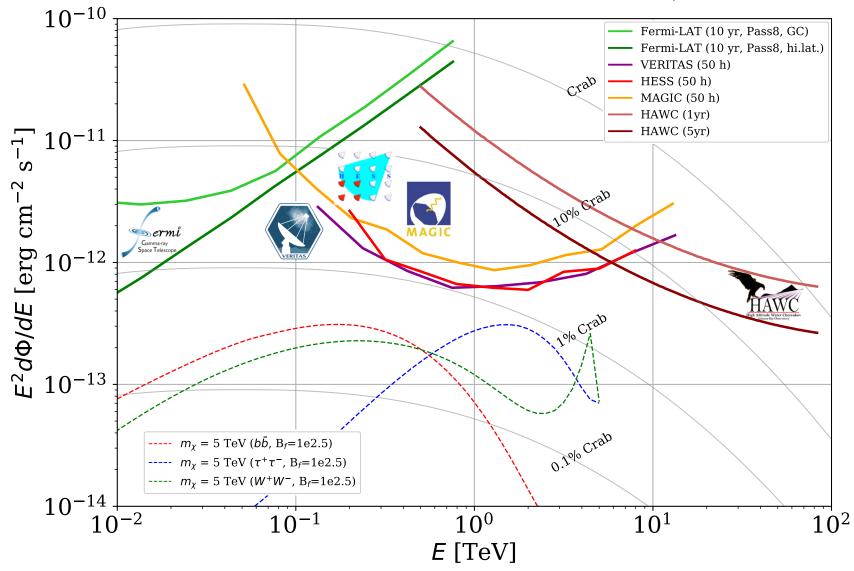
Unassociated HE Sources:

• DM Subhalos?

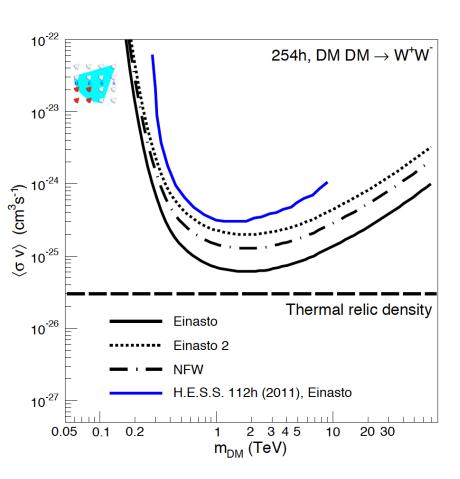


Indirect dark matter searches in the γ -ray band

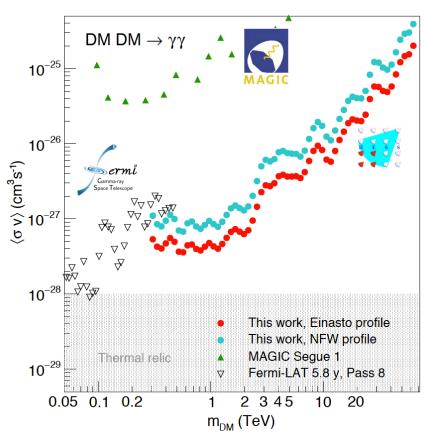
Sensitivity of current-generation γ -ray telescopes



Galactic Halo

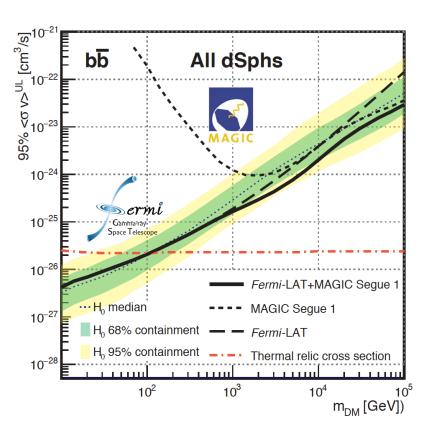


Abdallah et al., PRL 117, 111301 (2016)

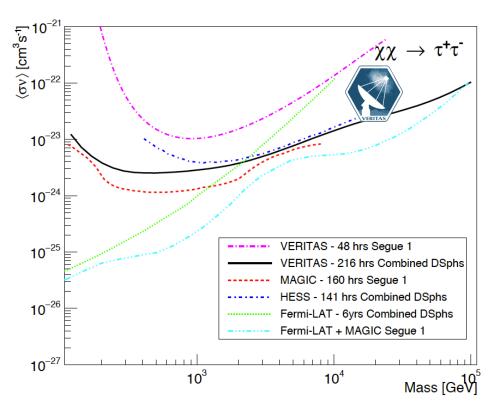


Abdallah et al., PRL 120, 201101 (2018)

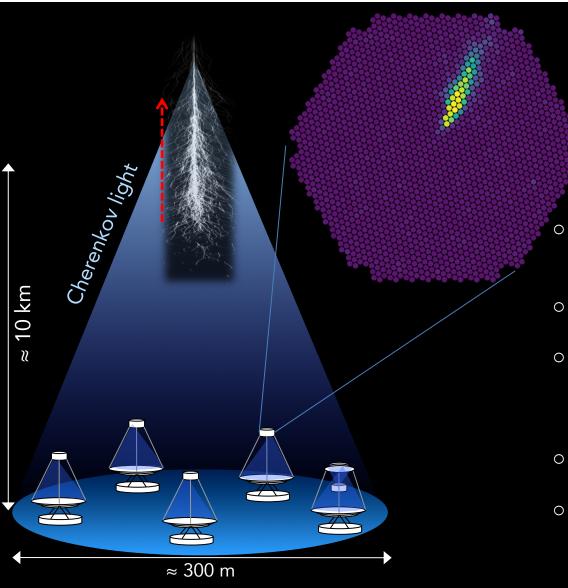
Dwarf Spheroidal Galaxies



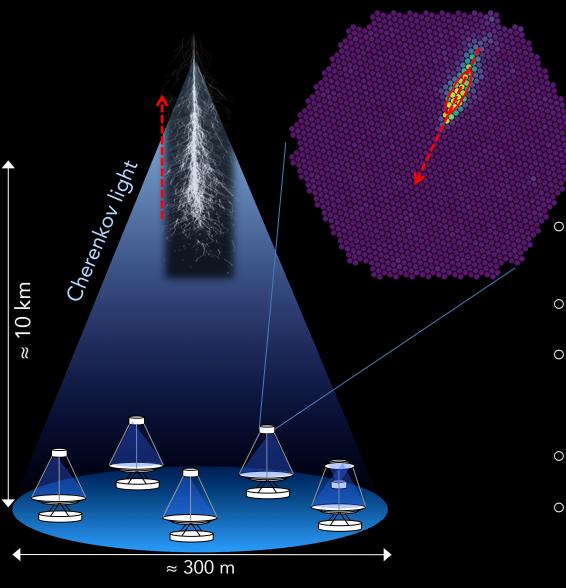
Ahnen et al., JCAP 02 (2016) 039



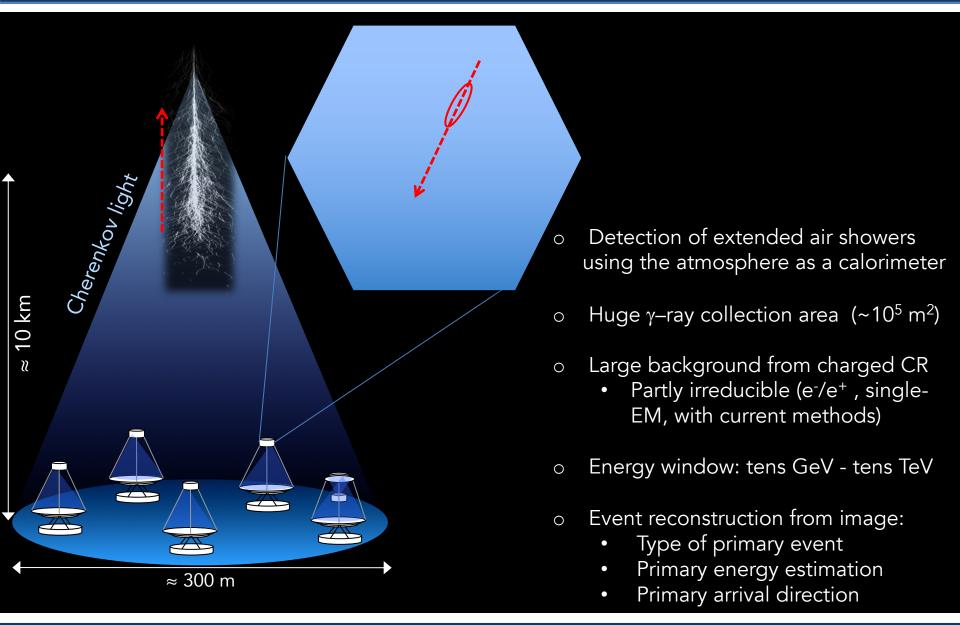
Archambault et al. PRD 95, 082001 (2017)

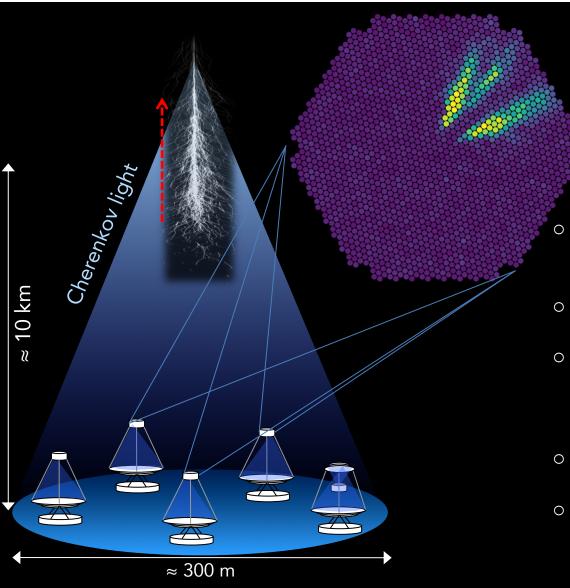


- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area ($\sim 10^5$ m²)
- Large background from charged CR
 - Partly irreducible (e⁻/e⁺, single-EM, with current methods)
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

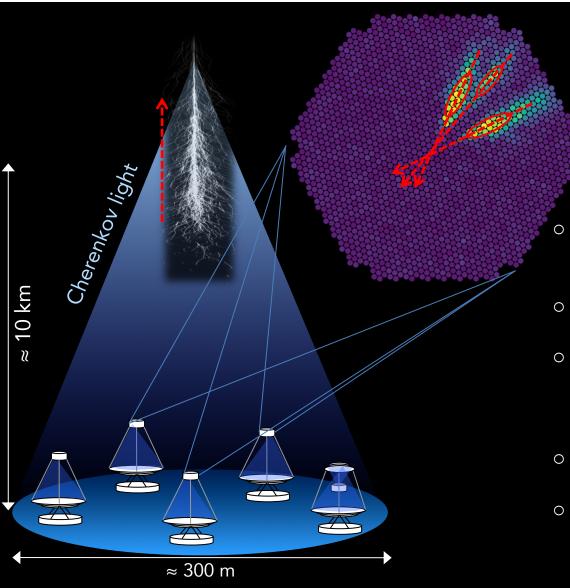


- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area ($\sim 10^5 \text{ m}^2$)
- Large background from charged CR
 - Partly irreducible (e⁻/e⁺, single-EM, with current methods)
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

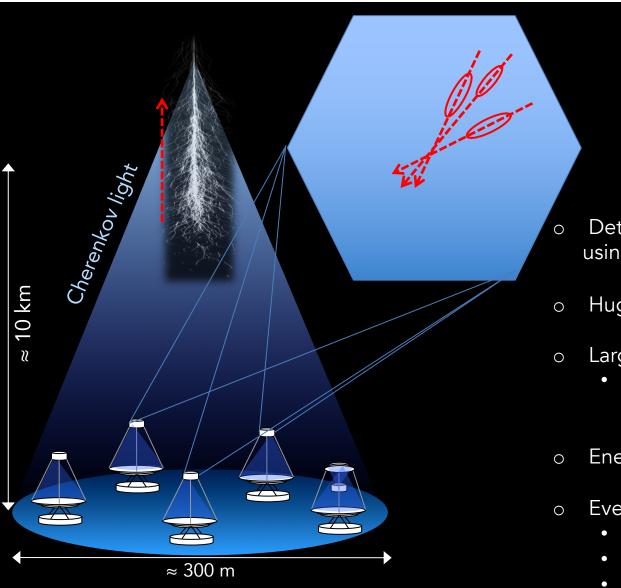




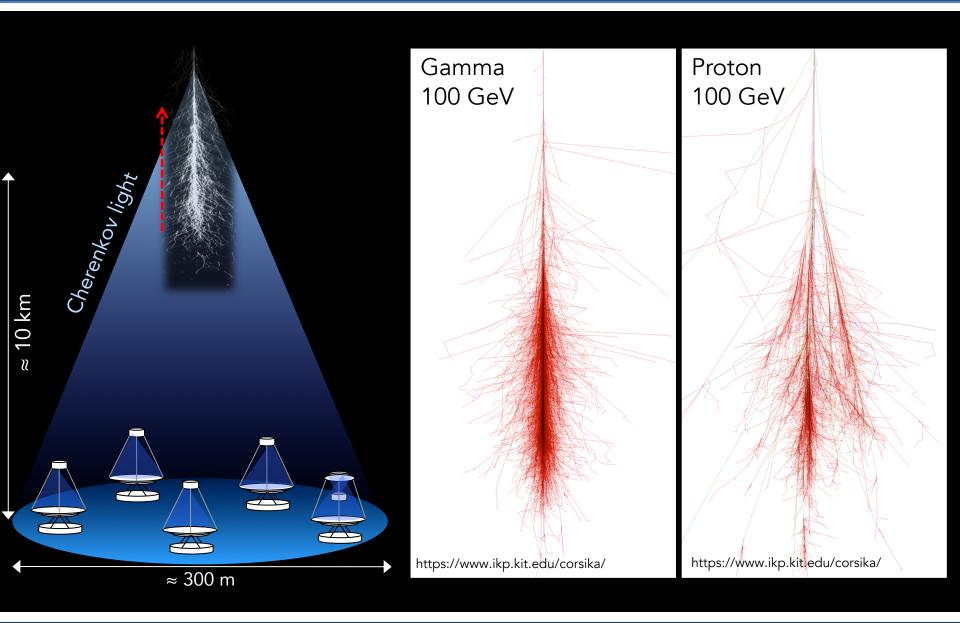
- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area ($\sim 10^5 \text{ m}^2$)
- Large background from charged CR
 - Partly irreducible (e⁻/e⁺, single-EM, with current methods)
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

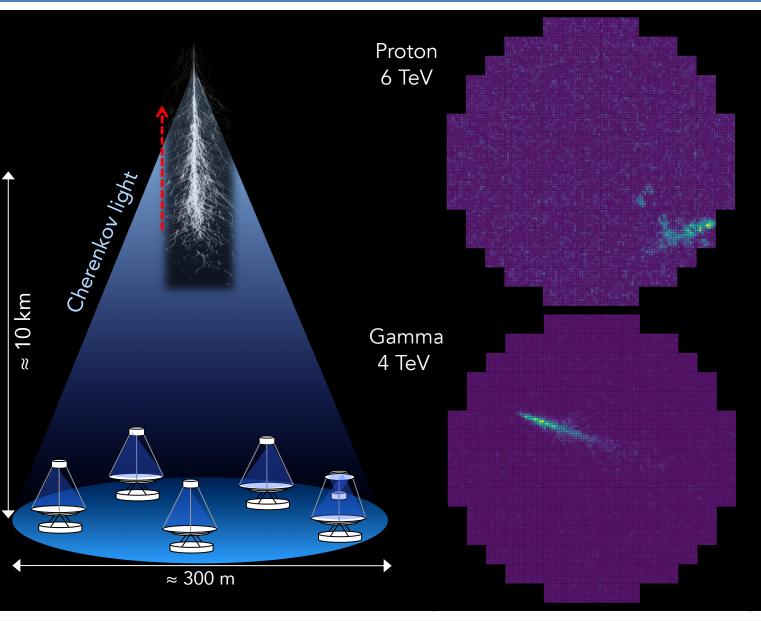


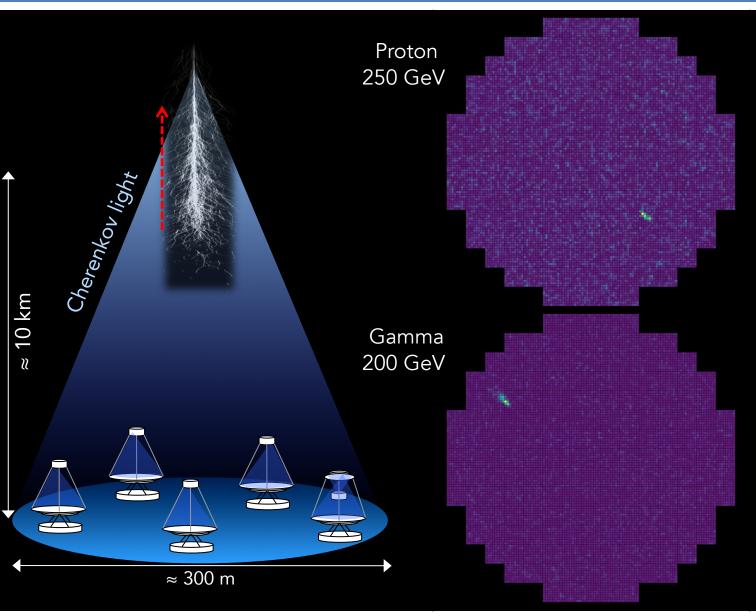
- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area ($\sim 10^5 \text{ m}^2$)
- Large background from charged CR
 - Partly irreducible (e⁻/e⁺, single-EM, with current methods)
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction

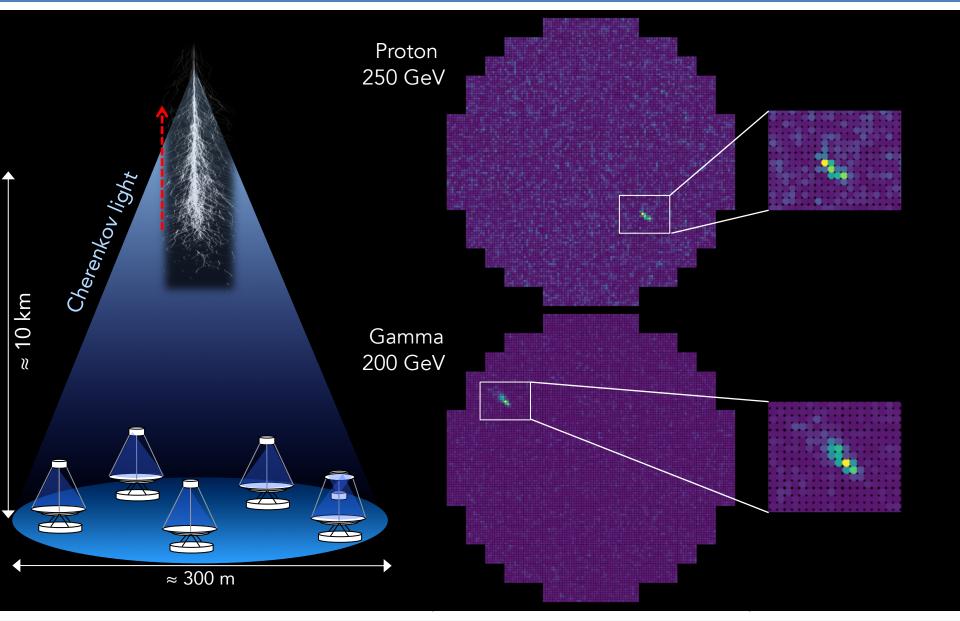


- Detection of extended air showers using the atmosphere as a calorimeter
- Huge γ -ray collection area ($\sim 10^5$ m²)
- Large background from charged CR
 - Partly irreducible (e⁻/e⁺, single-EM, with current methods)
- Energy window: tens GeV tens TeV
- Event reconstruction from image:
 - Type of primary event
 - Primary energy estimation
 - Primary arrival direction



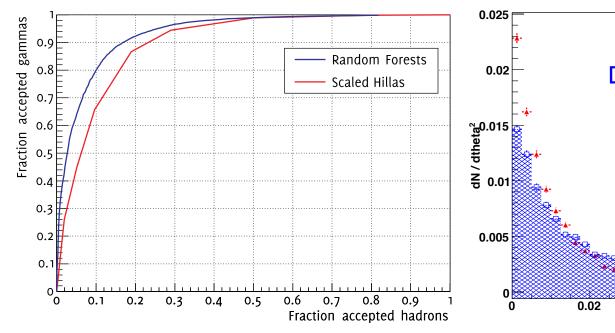


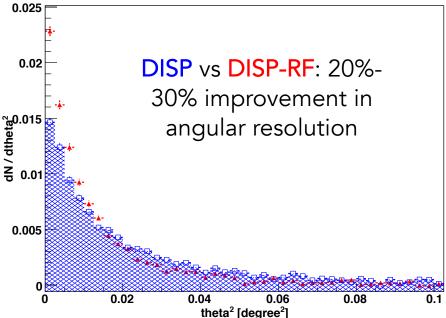




Machine learning & current generation IACT

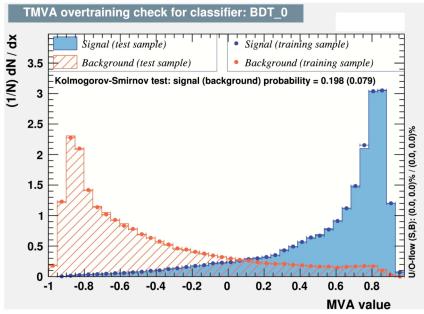
- ML method: Random Forest (RF)
- Applied to: background rejection, arrival direction

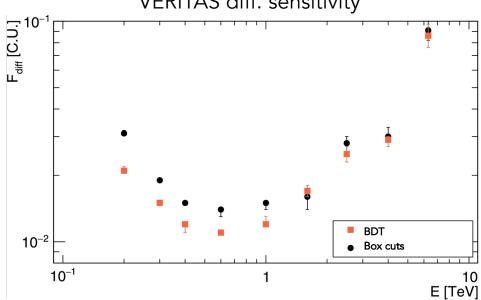




Aleksic et al., A&A 524 A77 (2010)

Machine learning & current generation IACT

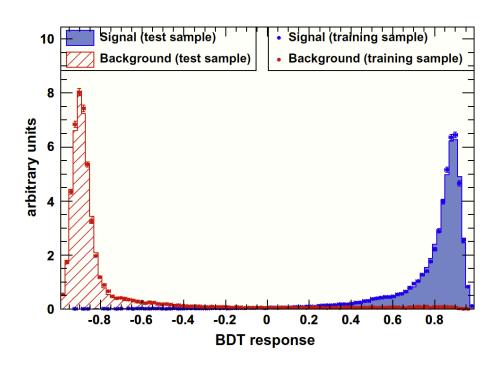




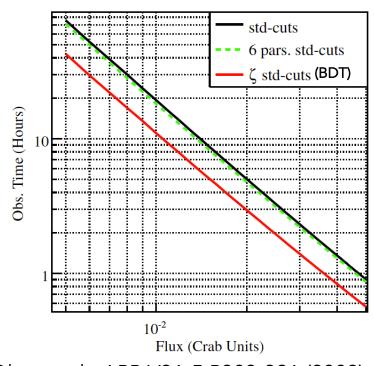
Krause et al., APP V89 P1-9 (2017)

Machine learning & current generation IACT

- ML method: Boosted Decision Trees (BDT)
- Applied to: background rejection



Becherini et al., APP V34-12 P858-870 (2011)



Ohm et al., APP V31-5 P383-391 (2009)

(Results for H.E.S.S. I only)

The Cherenkov Telescope Array

- 5-20 fold better sensitivity w.r.t. current IACTs
- 4 decades of energy coverage: 20 GeV to 300 TeV
- Improved angular and energy resolution
- Two arrays (North/South)

Low-energy range:

23 m ø Parabolic reflector 4° - 5° FoV

Energy threshold 20 GeV

Mid energy-range:

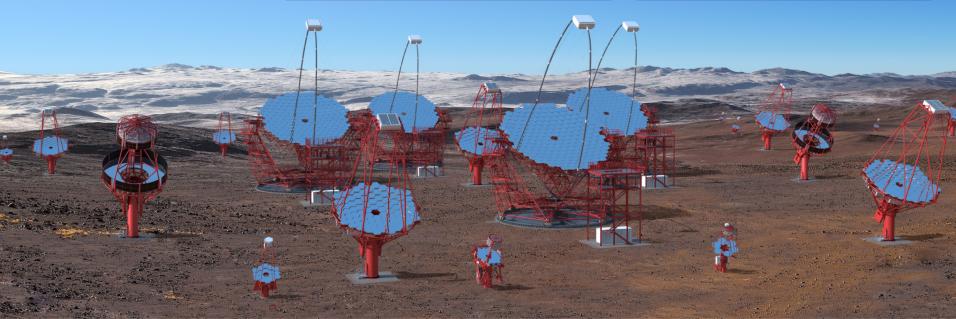
12 m ø modified Davies-Cotton reflector 9.7 m ø Schwarzschild-Couder reflector 7° - 8° FoV

Best sensitivity in the 100 GeV – 10 TeV range

High-energy range:

4 m ø Davies-Cotton reflector 4 m ø Schwarzschild-Couder reflector 9 - 10° FoV

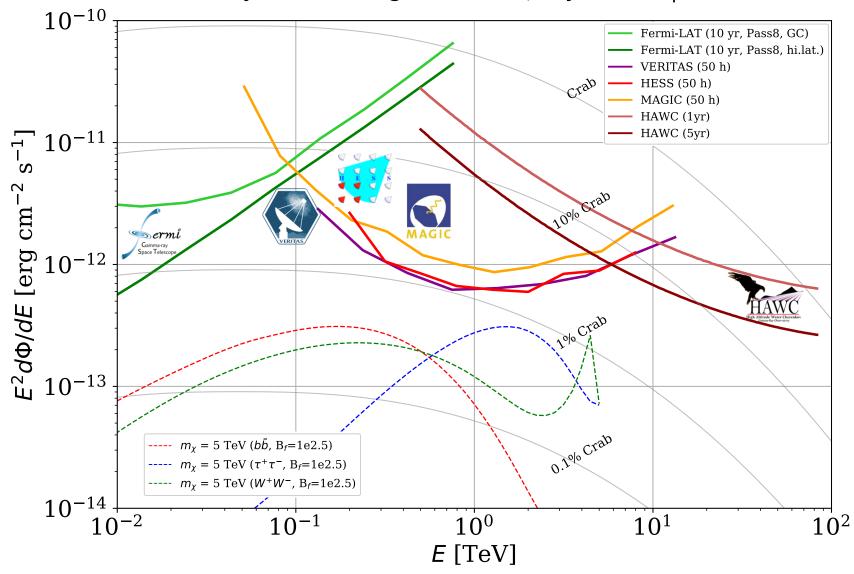
Several km² area at multi-TeV energies



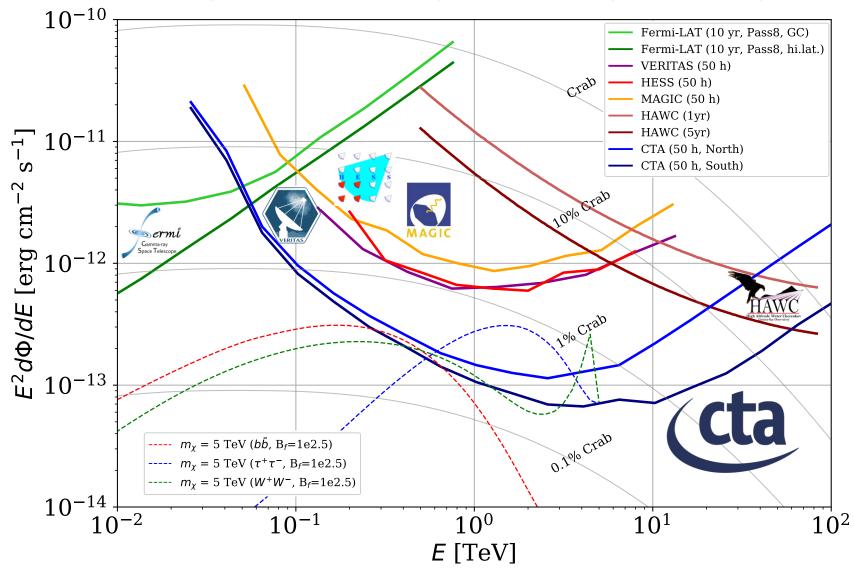
www.cta-observatory.org/

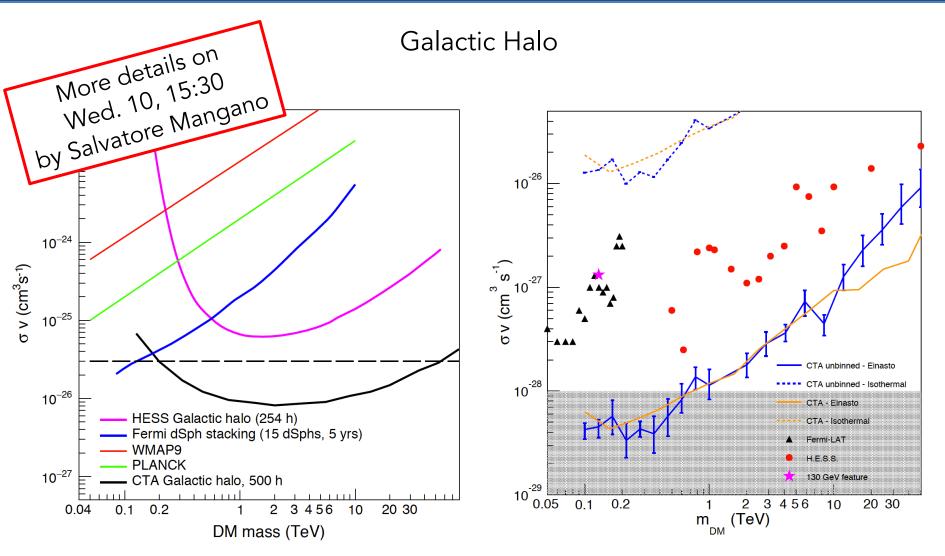
Science with CTA, arXiv:1709.07997

Sensitivity of current-generation γ -ray telescopes

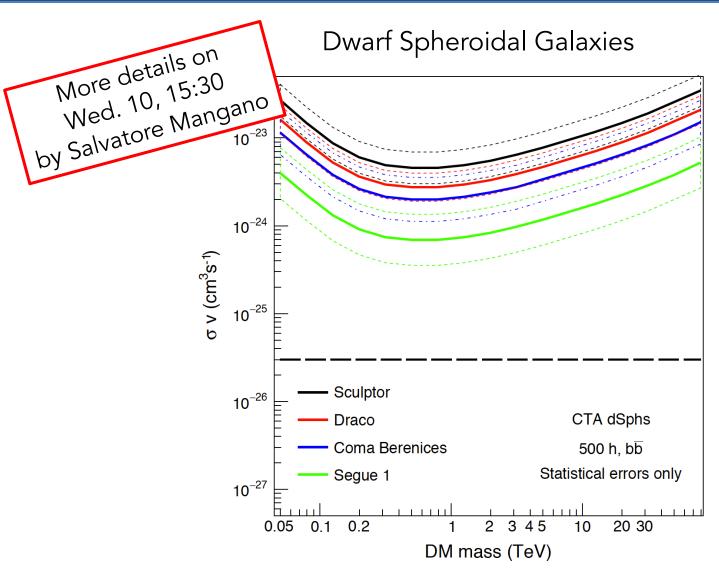


Sensitivity of CTA: the next-generation γ -ray observatory

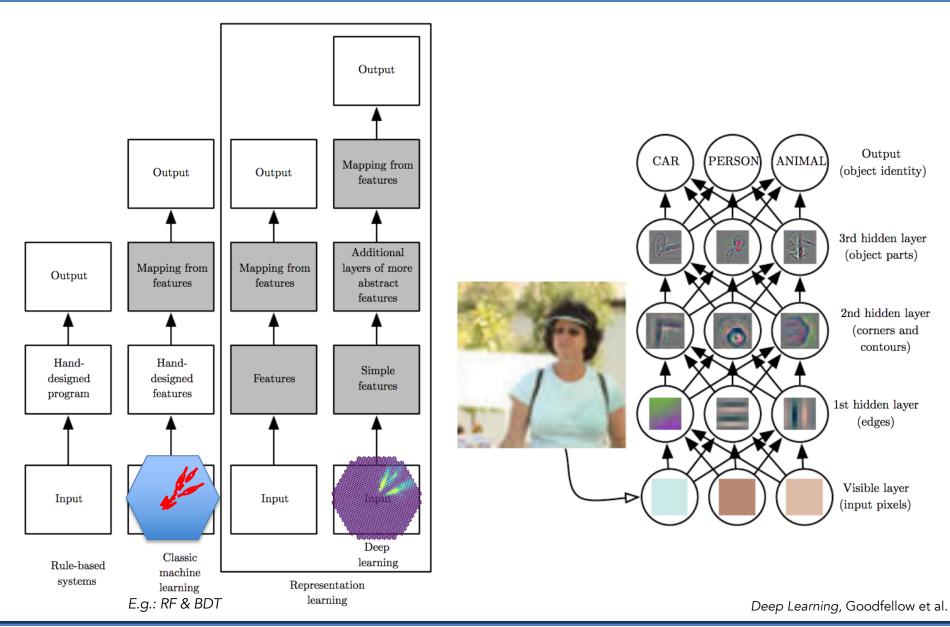




Science with CTA, arXiv:1709.07997

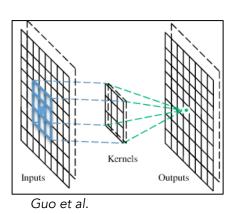


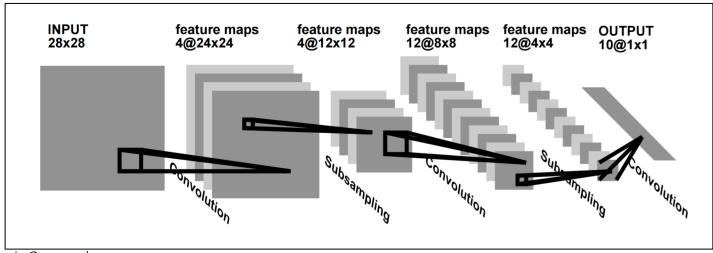
Science with CTA, arXiv:1709.07997



Convolution

Convolutional Neural Network (CNN)





LeCunn et al.

- DL capable of extracting and mapping image features automatically with unprecedented classification accuracy. Hyper-active CS research field constantly improving
- Many HEP/Astro experiments already exploring/utilizing the technique (LIGO, LHC, MicroBooNe, NOVa, etc...)

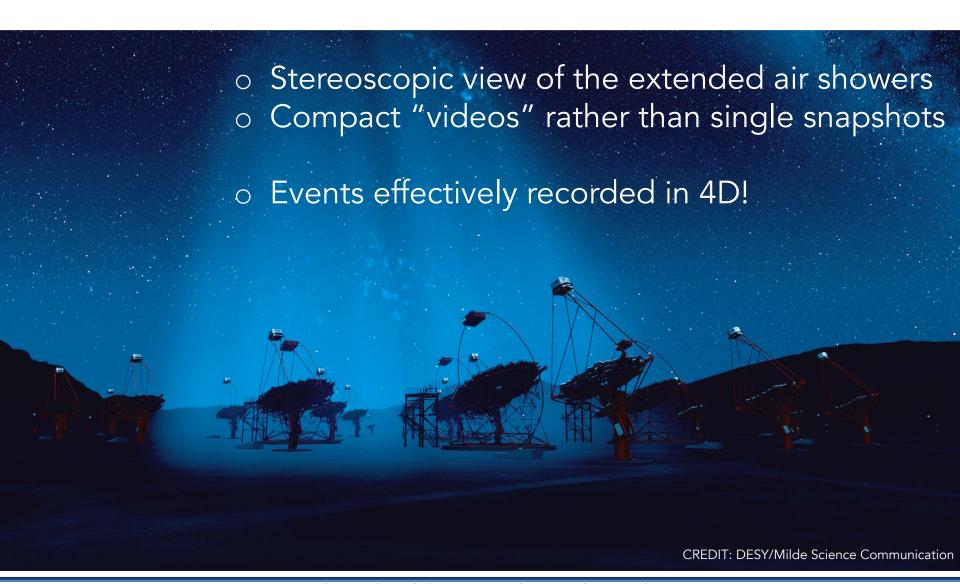
Method:

- Use deep learning to reconstruct CTA events from non-parameterized images
 - Performance enhancement -> better sensitivity to DM

But there are risk...

D MC reliability (e.g. network selecting some features from your MC not present in real data)

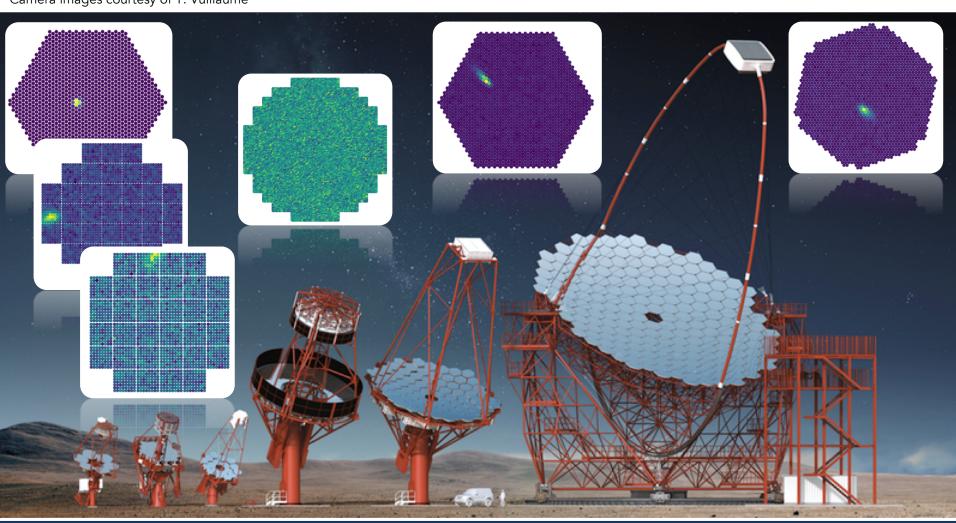
Stereoscopy:



• Heterogeneity of instruments:

Heterogeneity of instruments:

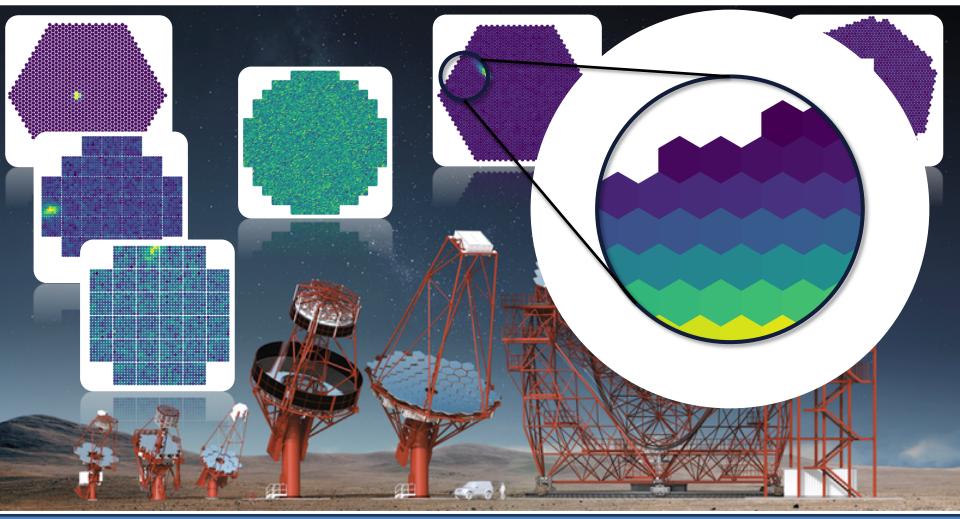
Camera images courtesy of T. Vuillaume



Heterogeneity of instruments:

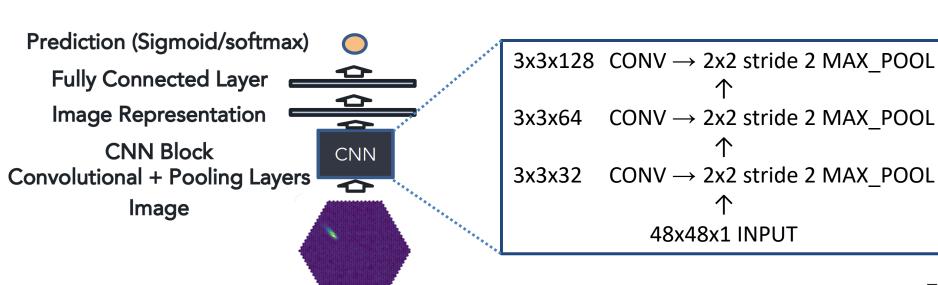
Camera images courtesy of T. Vuillaume

Hexagonal pixels



DL can actually classify CTA events!

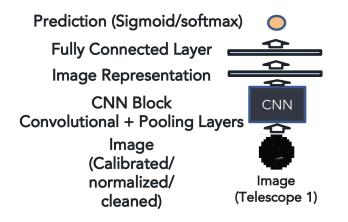
CTLearn: single telescope model



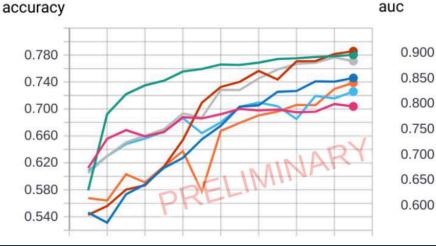
DL can actually classify CTA events!

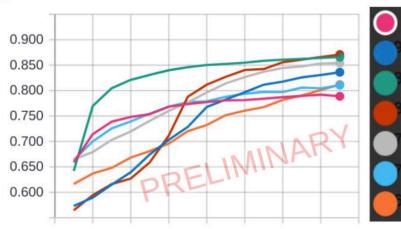
CTLearn: single telescope model

https://github.com/ctlearn-project/



Telescope Type	Gamma Images	Proton Images	Validation Accuracy	Validation AUC
LST	89165	90426	70.38%	0.7887
MSTF	360787	379533	74.60%	0.8360
MSTN	414502	443704	78.04%	0.8659
MSTS	307498	294714	78.57%	0.8709
SST1	213795	207996	77.11%	0.8542
SSTA	221810	228042	72.59%	0.8105
SSTC	217940	218312	73.90%	0.8118



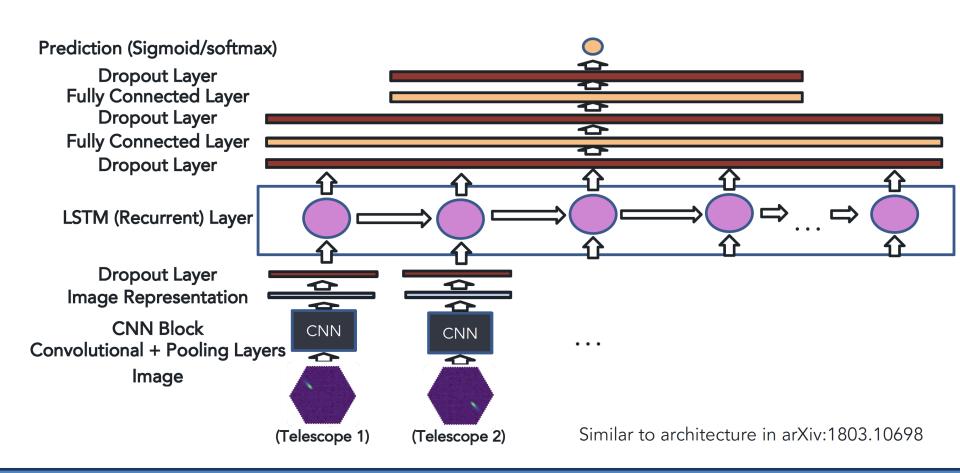


LST

Tackling the stereo challenge:

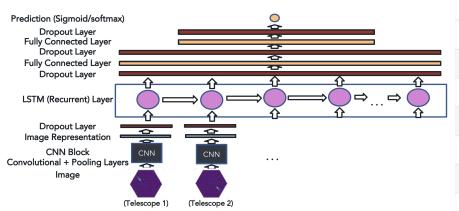
CTLearn: CNN-RNN model

https://github.com/ctlearn-project/

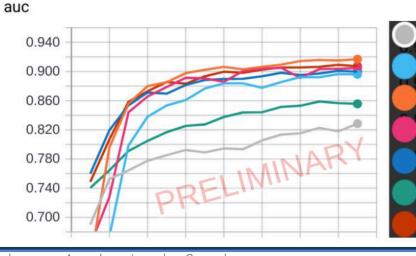


Tackling the stereo challenge:

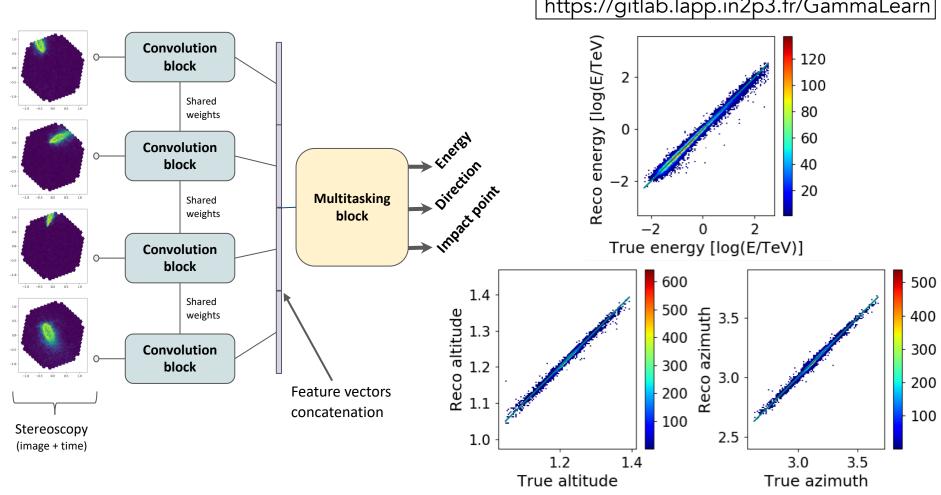
CTLearn: CNN-RNN model



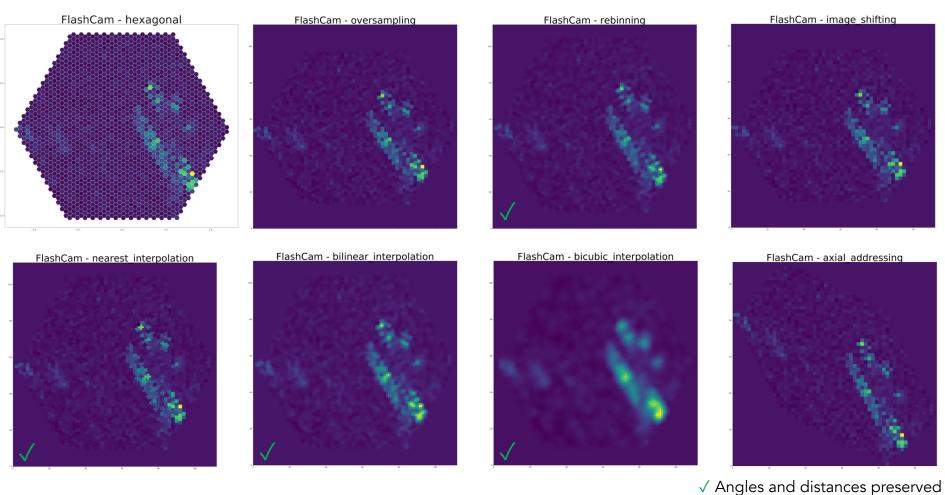
Telescope Type	Total Events	Validation Accuracy	Validation AUC
LST	85401	73.43%	0.8285
MSTF	249813	80.23%	0.8961
MSTN	269362	83.10%	0.9169
MSTS	223051	81.18%	0.9048
SST1	197878	81.47%	0.8997
SSTA	183669	75.27%	0.8556
SSTC	190638	80.64%	0.9072



Tackling the stereo challenge:



Tackling the hexagonal-pixel challenge:



Tackling the hexagonal-pixel challenge:

Convolution

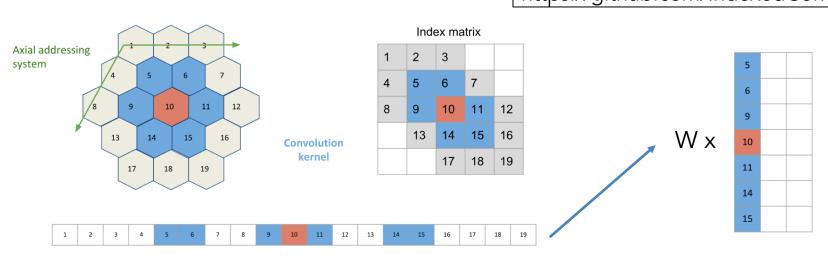
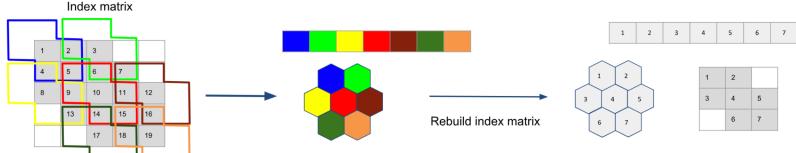


Image stored as a vector

Pooling



(M. Jacquemont et al. 2019)

Conclusions & Outlook

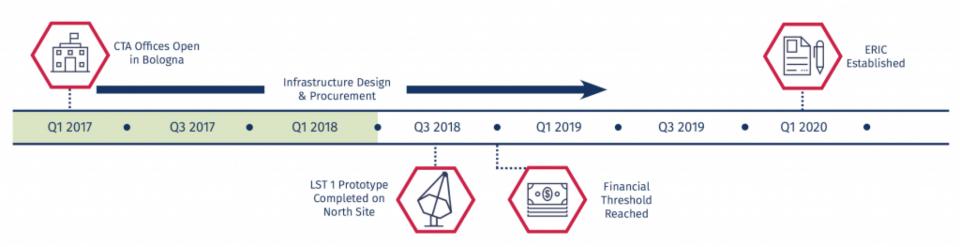
- o Gamma-ray telescopes and IACTs in particular are competitive DM probes
- o Current-generation IACTs have enhanced their performances through ML
- Next-generation IACT may profit from latest developments in ML
 - Any gain in performance can be translated into better sensitivity to DM
- Ongoing efforts to exploit deep learning as an event reconstruction method for CTA
 - Event reconstruction over non-parametrized single images demonstrated!
 - Working on optimizing architectures

Current Phase

Backup

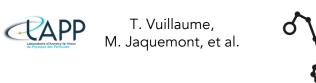
First Pre-Production Telescopes on Site

Pre-Construction



- o 2022: Beginning of observatory operations
- o 2025: Construction project completion

Hexagonal convolutions:



https://github.com/IndexedConv

Comparison of the loss for regression task with hexagonal and standard kernels

