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Probabilistic
programming



Probabilistic models define a set of random variables and their 
relationships
● Observed variables
● Unobserved (hidden, latent) variables

Probabilistic programming
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Probabilistic graphical models use graphs 
to express conditional dependence
● Bayesian networks
● Markov random fields (undirected)

Probabilistic models define a set of random variables and their 
relationships
● Observed variables
● Unobserved (hidden, latent) variables   HEP: Monte Carlo truth

Probabilistic programming
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Probabilistic programming extends this to 
“ordinary programming with two added constructs” 
(Gordon et al. 2014):
● Sampling from distributions
● Conditioning random variables by specifying 

observed values

Probabilistic programming
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Probabilistic models define a set of random variables and their 
relationships
● Observed variables
● Unobserved (hidden, latent) variables   HEP: Monte Carlo truth



Inference engines give us distributions over unobserved variables, given 
observed variables (data)

Ordinary 
program

Probabilistic 
program

With a probabilistic program, we define a joint distribution of 
unobserved and observed variables

Inference
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Model writing is  decoupled from running inference

After writing the program, we execute it using an inference engine

● Exact (limited applicability)
○ Belief propagation
○ Junction tree algorithm

● Approximate (very common)
○ Deterministic

■ Variational methods
○ Stochastic (sampling-based)

■ Monte Carlo methods
● Markov chain Monte Carlo (MCMC)
● Sequential Monte Carlo (SMC)

Inference engines
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● Anglican (Clojure)
● Church (Scheme)
● Edward, TensorFlow Probability (Python, TensorFlow)
● Pyro (Python, PyTorch)
● Figaro (Scala)
● LibBi (C++ template library)
● PyMC3 (Python)
● Stan (C++)
● WebPPL (JavaScript)

For more, see http://probabilistic-programming.org

Probabilistic programming languages (PPLs)
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Large-scale simulators
as probabilistic programs 



A stochastic simulator implicitly defines a probability 
distribution by sampling (pseudo-)random numbers 
→ already satisfying one requirement for probprog

Idea:
● Interpret all RNG calls as sampling from a prior distribution
● Introduce conditioning functionality to the simulator
● Execute under the control of general-purpose inference engines 
● Get posterior distributions over all simulator latents conditioned 

on observations

Interpreting simulators as probprog

13



A stochastic simulator implicitly defines a probability 
distribution by sampling (pseudo-)random numbers 
→ already satisfying one requirement for probprog

Advantages:
● Vast body of existing scientific simulators (accurate generative 

models) with years of development: MadGraph, Sherpa, Geant4
● Enable model-based (Bayesian) machine learning in these
● Explainable predictions directly reaching into the simulator

(simulator is not used as a black box)
● Results are still from the simulator and meaningful

Interpreting simulators as probprog
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Several things are needed:

● A PPL with with simulator control incorporated into design

● A language-agnostic interface for connecting PPLs to simulators 

● Front ends in languages commonly used for coding simulators

Coupling probprog and simulators
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Several things are needed:

● A PPL with with simulator control incorporated into design
pyprob

● A language-agnostic interface for connecting PPLs to simulators 
PPX - the Probabilistic Programming eXecution protocol

● Front ends in languages commonly used for coding simulators
pyprob_cpp

Coupling probprog and simulators
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https://github.com/probprog/pyprob 

A PyTorch-based PPL

Inference engines:
● Markov chain Monte Carlo

○ Lightweight Metropolis Hastings (LMH)
○ Random-walk Metropolis Hastings (RMH)

● Importance Sampling
○ Regular (proposals from prior)
○ Inference compilation (IC)

pyprob
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https://github.com/probprog/pyprob 

A PyTorch-based PPL

Inference engines:
● Markov chain Monte Carlo

○ Lightweight Metropolis Hastings (LMH)
○ Random-walk Metropolis Hastings (RMH)

● Importance Sampling
○ Regular (proposals from prior)
○ Inference compilation (IC)

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017 
arXiv:1610.09900.

pyprob
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Transform a generative model implemented as a probabilistic program 
into a trained neural network artifact for performing inference

Inference compilation
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● A stacked LSTM core
● Observation embeddings, 

sample embeddings, and 
proposal layers specified by 
the probabilistic program

Inference compilation
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Proposal distribution parameters
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https://github.com/probprog/ppx

Probabilistic Programming eXecution protocol
● Cross-platform, via flatbuffers: http://google.github.io/flatbuffers/ 
● Supported languages: C++, C#, Go, Java, JavaScript, PHP, Python, 

TypeScript, Rust, Lua
● Similar to Open Neural Network Exchange (ONNX) for deep learning

Enables inference engines and simulators to be
● implemented in different programming languages
● executed in separate processes, separate machines across networks
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PPX



https://github.com/probprog/pyprob_cpp 
A lightweight C++ front end for PPX

pyprob_cpp
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Probprog and high-energy physics
“etalumis”



etalumis

Atılım Güneş Baydin
Bradley Gram-Hansen

27

Kyle Cranmer

Wahid Bhimji
Jialin Liu
Prabhat

Gilles Louppe Lei Shao
Larry Meadows
Victor Lee

Frank Wood
Andreas Munk
Saeid Naderiparizi

Lukas Heinrich

simulate



pyprob_cpp and 
Sherpa
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pyprob and 
Sherpa
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pyprob and 
Sherpa



Main challenges
Working with large-scale HEP simulators requires several innovations
● Wide range of prior probabilities, some events highly unlikely and not 

learned by IC neural network
● Solution: “prior inflation” 

○ Training: modify prior distributions to be uninformative

○ Inference: use the unmodified (real) prior for weighting proposals
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Main challenges
Working with large-scale HEP simulators requires several innovations
● Wide range of prior probabilities, some events highly unlikely and not 

learned by IC neural network
● Solution: “prior inflation” 

○ Training: modify prior distributions to be uninformative
HEP: sample according to phase space

○ Inference: use the unmodified (real) prior for weighting proposals
HEP: differential cross-section = phase space * matrix element
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Main challenges
Working with large-scale HEP simulators requires several innovations
● Potentially very long execution traces due to rejection sampling loops
● Solution: “replace” (or “rejection-sampling”) mode

○ Training: only consider the last (accepted) values within loops
○ Inference: use the same proposal distribution for these samples 
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Experiments



Tau decay in Sherpa, 38 decay channels, coupled with an 
approximate calorimeter simulation in C++

Tau lepton decay
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Tau decay in Sherpa, 38 decay channels, coupled with an 
approximate calorimeter simulation in C++

Tau lepton decay
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Observation: 3D calorimeter depositions (Poisson)
○ Particle showers modeled as Gaussian blobs, deposited energy 

parameterizes a multivariate Poisson
○ Shower shape variables and sampling fraction based on final 

state particle

Monte Carlo truth (latent variables) of interest:
● Decay channel (Categorical)
● px, py, pz momenta of tau particle (Continuous uniform)
● Final state momenta and IDs



Probabilistic addresses in Sherpa
Approximately 25,000 addresses encountered
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Common trace types in Sherpa
Approximately 450 trace types encountered
Trace type: unique sequencing of addresses (with different sampled values)

... 38



Common trace types in Sherpa
Approximately 450 trace types encountered

39



Common trace types in Sherpa
Approximately 450 trace types encountered

40



Common trace types in Sherpa
Approximately 450 trace types encountered
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Inference results with MCMC engine
Prior



Inference results with MCMC engine
Prior

MCMC Posterior 
conditioned on 
calorimeter

7,700,000 samples 
Slow and has to run single node



Convergence to true posterior
We establish that two independent RMH MCMC chains 
converge to the same posterior for all addresses in Sherpa
● Chain initialized with random trace from prior
● Chain initialized with known ground-truth trace

Gelman-Rubin convergence diagnostic

Autocorrelation

Trace log-probability



Convergence to true posterior
Important:
● We get posteriors over the 

whole Sherpa address 
space, 1000s of addresses

● Trace complexity varies 
depending on observed event

This is just a selected subset:



Inference 
results with 
IC engine

MCMC true posterior
(7.7M single node)



Inference 
results with 
IC engine

IC posterior
after importance 
weighting320,000 samples

Fast “embarrassingly” parallel multi-node

IC proposal
from trained NN

MCMC true posterior
(7.7M single node)



Interpretability
Latent probabilistic structure of 10 most frequent trace types
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Interpretability
Latent probabilistic structure of 10 most frequent trace types
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Interpretability
Latent probabilistic structure of 25 most frequent trace types

51

px

py

pz

Decay 
channel

Rejection 
sampling

Rejection 
sampling

Calorimeter



Interpretability
Latent probabilistic structure of 100 most frequent trace types
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Interpretability
Latent probabilistic structure of 250 most frequent trace types
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Interpretability
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What’s next?



● Science
○ Statistically measure distance between RMH and IC results
○ Uniform(0,1)-only control
○ Rare event simulation for compilation (“prior inflation”)
○ Control / not control

● Engineering
○ Batching of open-ended traces for NN training
○ Distributed training of dynamic networks (thanks to PyTorch)
○ Balancing distributed data generation and training nodes
○ User-friendly features: posterior code highlighting, etc.
○ Other simulators

Current and upcoming work
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Thank you for listening
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Extra slides



Calorimeter
For each particle in the final state coming from Sherpa:

1. Determine whether it interacts with the calorimeter at all
(muons and neutrinos don't)

2. Calculate the total mean number and spatial distribution of 
energy depositions from the calorimeter shower
(simulating combined effect of secondary particles )

3. Draw a number of actual depositions from the total mean 
and then draw that number of energy depositions according 
to the spatial distribution



• Minimize

• Using stochastic gradient descent with Adam
• Infinite stream of minibatches

 sampled from the model

Training objective and data for IC
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Gelman-Rubin and autocorrelation formulae
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Gelman-Rubin and autocorrelation formulae
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