
Probabilistic Programming and Inference
in Particle Physics

Atılım Güneş Baydin, Wahid Bhimji, Kyle Cranmer, Bradley Gram-Hansen, Lukas
Heinrich, Victor Lee, Jialin Liu, Gilles Louppe, Larry Meadows, Andreas Munk, Saeid
Naderiparizi, Prabhat, Lei Shao, Frank Wood

Atılım Güneş Baydin
gunes@robots.ox.ac.uk

International Centre for Theoretical Physics
Trieste, Italy, 9 April 2019

About me
http://www.robots.ox.ac.uk/~gunes/
I work in probabilistic programming and machine learning for science
● High-energy physics
● Space sciences, NASA Frontier Development Lab, ESA Gaia collaboration
● Workshop in Deep Learning for Physical Sciences at NeurIPS conference

Other interests: automatic differentiation, hyperparameter optimization, evolutionary
algorithms, computational physics

2https://dl4physicalsciences.github.io/
Exoplanetary atmospheres
https://arxiv.org/abs/1811.03390

NASA FDL
frontierdevelopmentlab.org

http://www.robots.ox.ac.uk/~gunes/
https://dl4physicalsciences.github.io/
https://arxiv.org/abs/1811.03390
http://www.frontierdevelopmentlab.org/

About me
http://www.robots.ox.ac.uk/~gunes/
I work in probabilistic programming and machine learning for science
● High-energy physics
● Space sciences, NASA Frontier Development Lab, ESA Gaia collaboration
● Workshop in Deep Learning for Physical Sciences at NeurIPS conference

Other interests: automatic differentiation, hyperparameter optimization, evolutionary
algorithms, computational physics

3https://dl4physicalsciences.github.io/
Exoplanetary atmospheres
https://arxiv.org/abs/1811.03390

NASA FDL
frontierdevelopmentlab.org

Automatic differentiation / differentiable programming

Baydin, A.G., Pearlmutter, B.A., Radul, A.A. and Siskind, J.M., 2018. Automatic differentiation in machine learning: a survey.
Journal of Machine Learning Research, 18, pp.1-43. https://arxiv.org/abs/1502.05767

https://docs.google.com/presentation/d/1aBX-wgGmO8Gfl2bdZQBWd
AlQjP_nj8_TLLceAbC-pKA/edit?usp=sharing

https://docs.google.com/presentation/d/1NTodzA0vp6zLljJ0v4vXpbz9z
_Pe8mWaNDtD5QdK3v4/edit?usp=sharing

http://www.robots.ox.ac.uk/~gunes/
https://dl4physicalsciences.github.io/
https://arxiv.org/abs/1811.03390
http://www.frontierdevelopmentlab.org/
https://arxiv.org/abs/1502.05767
https://docs.google.com/presentation/d/1aBX-wgGmO8Gfl2bdZQBWdAlQjP_nj8_TLLceAbC-pKA/edit?usp=sharing
https://docs.google.com/presentation/d/1aBX-wgGmO8Gfl2bdZQBWdAlQjP_nj8_TLLceAbC-pKA/edit?usp=sharing
https://docs.google.com/presentation/d/1NTodzA0vp6zLljJ0v4vXpbz9z_Pe8mWaNDtD5QdK3v4/edit?usp=sharing
https://docs.google.com/presentation/d/1NTodzA0vp6zLljJ0v4vXpbz9z_Pe8mWaNDtD5QdK3v4/edit?usp=sharing

Probabilistic
programming

Probabilistic models define a set of random variables and their
relationships
● Observed variables
● Unobserved (hidden, latent) variables

Probabilistic programming

5

Probabilistic models define a set of random variables and their
relationships
● Observed variables
● Unobserved (hidden, latent) variables HEP: Monte Carlo truth

Probabilistic programming

6

Probabilistic graphical models use graphs
to express conditional dependence
● Bayesian networks
● Markov random fields (undirected)

Probabilistic models define a set of random variables and their
relationships
● Observed variables
● Unobserved (hidden, latent) variables HEP: Monte Carlo truth

Probabilistic programming

7

Probabilistic programming extends this to
“ordinary programming with two added constructs”
(Gordon et al. 2014):
● Sampling from distributions
● Conditioning random variables by specifying

observed values

Probabilistic programming

8

Probabilistic models define a set of random variables and their
relationships
● Observed variables
● Unobserved (hidden, latent) variables HEP: Monte Carlo truth

Inference engines give us distributions over unobserved variables, given
observed variables (data)

Ordinary
program

Probabilistic
program

With a probabilistic program, we define a joint distribution of
unobserved and observed variables

Inference

9

Model writing is decoupled from running inference

After writing the program, we execute it using an inference engine

● Exact (limited applicability)
○ Belief propagation
○ Junction tree algorithm

● Approximate (very common)
○ Deterministic

■ Variational methods
○ Stochastic (sampling-based)

■ Monte Carlo methods
● Markov chain Monte Carlo (MCMC)
● Sequential Monte Carlo (SMC)

Inference engines

10

● Anglican (Clojure)
● Church (Scheme)
● Edward, TensorFlow Probability (Python, TensorFlow)
● Pyro (Python, PyTorch)
● Figaro (Scala)
● LibBi (C++ template library)
● PyMC3 (Python)
● Stan (C++)
● WebPPL (JavaScript)

For more, see http://probabilistic-programming.org

Probabilistic programming languages (PPLs)

11

http://probabilistic-programming.org

Large-scale simulators
as probabilistic programs

A stochastic simulator implicitly defines a probability
distribution by sampling (pseudo-)random numbers
→ already satisfying one requirement for probprog

Idea:
● Interpret all RNG calls as sampling from a prior distribution
● Introduce conditioning functionality to the simulator
● Execute under the control of general-purpose inference engines
● Get posterior distributions over all simulator latents conditioned

on observations

Interpreting simulators as probprog

13

A stochastic simulator implicitly defines a probability
distribution by sampling (pseudo-)random numbers
→ already satisfying one requirement for probprog

Advantages:
● Vast body of existing scientific simulators (accurate generative

models) with years of development: MadGraph, Sherpa, Geant4
● Enable model-based (Bayesian) machine learning in these
● Explainable predictions directly reaching into the simulator

(simulator is not used as a black box)
● Results are still from the simulator and meaningful

Interpreting simulators as probprog

14

Several things are needed:

● A PPL with with simulator control incorporated into design

● A language-agnostic interface for connecting PPLs to simulators

● Front ends in languages commonly used for coding simulators

Coupling probprog and simulators

15

Several things are needed:

● A PPL with with simulator control incorporated into design
pyprob

● A language-agnostic interface for connecting PPLs to simulators
PPX - the Probabilistic Programming eXecution protocol

● Front ends in languages commonly used for coding simulators
pyprob_cpp

Coupling probprog and simulators

16

https://github.com/probprog/pyprob

A PyTorch-based PPL

Inference engines:
● Markov chain Monte Carlo

○ Lightweight Metropolis Hastings (LMH)
○ Random-walk Metropolis Hastings (RMH)

● Importance Sampling
○ Regular (proposals from prior)
○ Inference compilation (IC)

pyprob

17

https://github.com/probprog/pyprob

https://github.com/probprog/pyprob

A PyTorch-based PPL

Inference engines:
● Markov chain Monte Carlo

○ Lightweight Metropolis Hastings (LMH)
○ Random-walk Metropolis Hastings (RMH)

● Importance Sampling
○ Regular (proposals from prior)
○ Inference compilation (IC)

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017
arXiv:1610.09900.

pyprob

18

https://github.com/probprog/pyprob

Transform a generative model implemented as a probabilistic program
into a trained neural network artifact for performing inference

Inference compilation

19

● A stacked LSTM core
● Observation embeddings,

sample embeddings, and
proposal layers specified by
the probabilistic program

Inference compilation

20

Proposal distribution parameters

21

https://github.com/probprog/ppx

Probabilistic Programming eXecution protocol
● Cross-platform, via flatbuffers: http://google.github.io/flatbuffers/
● Supported languages: C++, C#, Go, Java, JavaScript, PHP, Python,

TypeScript, Rust, Lua
● Similar to Open Neural Network Exchange (ONNX) for deep learning

Enables inference engines and simulators to be
● implemented in different programming languages
● executed in separate processes, separate machines across networks

22

PPX

https://github.com/probprog/ppx
http://google.github.io/flatbuffers/

23

24

PPX

https://github.com/probprog/pyprob_cpp
A lightweight C++ front end for PPX

pyprob_cpp

25

https://github.com/probprog/pyprob_cpp

Probprog and high-energy physics
“etalumis”

etalumis

Atılım Güneş Baydin
Bradley Gram-Hansen

27

Kyle Cranmer

Wahid Bhimji
Jialin Liu
Prabhat

Gilles Louppe Lei Shao
Larry Meadows
Victor Lee

Frank Wood
Andreas Munk
Saeid Naderiparizi

Lukas Heinrich

simulate

pyprob_cpp and
Sherpa

28

pyprob and
Sherpa

29

30

pyprob and
Sherpa

Main challenges
Working with large-scale HEP simulators requires several innovations
● Wide range of prior probabilities, some events highly unlikely and not

learned by IC neural network
● Solution: “prior inflation”

○ Training: modify prior distributions to be uninformative

○ Inference: use the unmodified (real) prior for weighting proposals

31

Main challenges
Working with large-scale HEP simulators requires several innovations
● Wide range of prior probabilities, some events highly unlikely and not

learned by IC neural network
● Solution: “prior inflation”

○ Training: modify prior distributions to be uninformative
HEP: sample according to phase space

○ Inference: use the unmodified (real) prior for weighting proposals
HEP: differential cross-section = phase space * matrix element

32

Main challenges
Working with large-scale HEP simulators requires several innovations
● Potentially very long execution traces due to rejection sampling loops
● Solution: “replace” (or “rejection-sampling”) mode

○ Training: only consider the last (accepted) values within loops
○ Inference: use the same proposal distribution for these samples

33

Experiments

Tau decay in Sherpa, 38 decay channels, coupled with an
approximate calorimeter simulation in C++

Tau lepton decay

35

Tau decay in Sherpa, 38 decay channels, coupled with an
approximate calorimeter simulation in C++

Tau lepton decay

36

Observation: 3D calorimeter depositions (Poisson)
○ Particle showers modeled as Gaussian blobs, deposited energy

parameterizes a multivariate Poisson
○ Shower shape variables and sampling fraction based on final

state particle

Monte Carlo truth (latent variables) of interest:
● Decay channel (Categorical)
● px, py, pz momenta of tau particle (Continuous uniform)
● Final state momenta and IDs

Probabilistic addresses in Sherpa
Approximately 25,000 addresses encountered

... 37

Common trace types in Sherpa
Approximately 450 trace types encountered
Trace type: unique sequencing of addresses (with different sampled values)

... 38

Common trace types in Sherpa
Approximately 450 trace types encountered

39

Common trace types in Sherpa
Approximately 450 trace types encountered

40

Common trace types in Sherpa
Approximately 450 trace types encountered

41

Inference results with MCMC engine
Prior

Inference results with MCMC engine
Prior

MCMC Posterior
conditioned on
calorimeter

7,700,000 samples
Slow and has to run single node

Convergence to true posterior
We establish that two independent RMH MCMC chains
converge to the same posterior for all addresses in Sherpa
● Chain initialized with random trace from prior
● Chain initialized with known ground-truth trace

Gelman-Rubin convergence diagnostic

Autocorrelation

Trace log-probability

Convergence to true posterior
Important:
● We get posteriors over the

whole Sherpa address
space, 1000s of addresses

● Trace complexity varies
depending on observed event

This is just a selected subset:

Inference
results with
IC engine

MCMC true posterior
(7.7M single node)

Inference
results with
IC engine

IC posterior
after importance
weighting320,000 samples

Fast “embarrassingly” parallel multi-node

IC proposal
from trained NN

MCMC true posterior
(7.7M single node)

Interpretability
Latent probabilistic structure of 10 most frequent trace types

48

Interpretability
Latent probabilistic structure of 10 most frequent trace types

49

Interpretability
Latent probabilistic structure of 10 most frequent trace types

50

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability
Latent probabilistic structure of 25 most frequent trace types

51

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability
Latent probabilistic structure of 100 most frequent trace types

52

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability
Latent probabilistic structure of 250 most frequent trace types

53

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability

54

What’s next?

● Science
○ Statistically measure distance between RMH and IC results
○ Uniform(0,1)-only control
○ Rare event simulation for compilation (“prior inflation”)
○ Control / not control

● Engineering
○ Batching of open-ended traces for NN training
○ Distributed training of dynamic networks (thanks to PyTorch)
○ Balancing distributed data generation and training nodes
○ User-friendly features: posterior code highlighting, etc.
○ Other simulators

Current and upcoming work

56

International Centre for Theoretical Physics
Trieste, Italy, 9 April 2019

Thank you for listening

Baydin, A.G., Heinrich, L., Bhimji, W., Gram-Hansen, B., Louppe, G., Shao, L., Prabhat, Cranmer, K., Wood, F. 2018.
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model arXiv preprint arXiv:1807.07706.

Gershman, S. and Goodman, N., 2014, January. Amortized inference in probabilistic reasoning. In Proceedings of the
Cognitive Science Society (Vol. 36, No. 36).

Gordon, A.D., Henzinger, T.A., Nori, A.V. and Rajamani, S.K., 2014, May. Probabilistic programming. In Proceedings of
the on Future of Software Engineering (pp. 167-181). ACM.

Le, T.A., Baydin, A.G. and Wood, F., 2017, April. Inference Compilation and Universal Probabilistic Programming. In
International Conference on Artificial Intelligence and Statistics (AISTATS) (pp. 1338-1348).

Le, Tuan Anh, Atılım Güneş Baydin, Robert Zinkov, and Frank Wood. 2017. “Using Synthetic Data to Train Neural
Networks Is Model-Based Reasoning.” In 30th International Joint Conference on Neural Networks, May 14–19, 2017,
Anchorage, AK, USA.

Le, Tuan Anh, Atılım Güneş Baydin, and Frank Wood. 2016. “Nested Compiled Inference for Hierarchical Reinforcement
Learning.” In NIPS 2016 Workshop on Bayesian Deep Learning, Barcelona, Spain, December 10, 2016.

58

References

Extra slides

Calorimeter
For each particle in the final state coming from Sherpa:

1. Determine whether it interacts with the calorimeter at all
(muons and neutrinos don't)

2. Calculate the total mean number and spatial distribution of
energy depositions from the calorimeter shower
(simulating combined effect of secondary particles)

3. Draw a number of actual depositions from the total mean
and then draw that number of energy depositions according
to the spatial distribution

• Minimize

• Using stochastic gradient descent with Adam
• Infinite stream of minibatches

 sampled from the model

Training objective and data for IC

61

Gelman-Rubin and autocorrelation formulae

62

Gelman-Rubin and autocorrelation formulae

63

