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The AI Revolution is Here



So many stunning real world successes in recent years.

Driven by:

• Growth in computational power

• Improvements in algorithms

• Increased quantity and quality of data

Prerequisite for deep learning: large, complex, and well-understood datasets.

The AI Revolution is Here

Many real world applications are limited by 
the quality and quantity of the data.



Big Data and Deep Learning

https://www.wired.com/2013/04/bigdata/

Pasquale Musella, ETH-Zurich seminar

The LHC is the perfect setting for deep 
learning!

The data is 

• large (billions of events on tape)

• complex (hundreds of particles per event)

• well-understood (Standard Model of particle physics).

Also, it is relatively easy to generate realistic 
simulated data.  
(Madgraph, Pythia, Herwig, Delphes, GEANT,…)
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A brief introduction to 
the LHC



An introduction to the LHC
The Large Hadron Collider is the 
largest and highest-energy particle 
accelerator in the world. 

It is part of CERN, located at the 
border of France and Switzerland, 
near the city of Geneva.

• 27 km long tunnel

• 100 m underground

• ~ $10 billion

• ~5,000 scientists from ~200 
countries



At the LHC, protons are accelerated to 99.9999991% of the speed of light, 
and collided together at four interaction points (ATLAS, CMS, LHCb, ALICE)

Beam energy: 6.5 TeV / proton
~ 300 trillion protons (in ~3000 bunches) in each beam

25 ns bunch spacing

video from the ATLAS experiment



An LHC Detector

Detector is cylindrical (symmetric around beam axis) 



Collision events at the LHC

raw event rate ~ GHz  => ~ 100 Hz after “triggering”
data rate:  ~ 1 GB/s ~ several PB/year



What is all this for?



The Standard Model of Particle Physics



Was established in the 1970s…

… and people have been trying (and failing) to break it ever since.



What else is there beyond the 
Standard Model? 

What is the next layer of fundamental 
matter and interactions?



The main tool in the search 
for new physics beyond the 
SM is the particle collider.

By smashing together 
elementary particles at higher 
and higher energies, we hope 
to create new particles. 

We attempt to “see” these 
new particles by studying the 
collision debris with very 
powerful detectors.



We know there’s new physics out there…
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Precision measurements of SM processes. 
Agreement between theory and experiment across ~9 orders of magnitude.

But no sign of it yet at the LHC…



Countless searches for new physics beyond the SM. 
So far no concrete evidence, only lower limits on the NP scale. 

But no sign of it yet at the LHC…



What does a typical search for new physics look like at the LHC?

Typical new physics production rates are 
many, many orders of magnitude smaller 
than SM processes.

Need a way to improve signal to noise 
to have any hope of seeing new physics.



What does a typical search for new physics look like at the LHC?

• Identify a “signal region” 
in the phase space, 
motivated by some model, 
where one expects S/N 
to be greatly enhanced. 

• Estimate SM background 
using combination of 
simulations and data-
driven methods (control 
regions)

• Compare data to SM 
prediction: announce 
discovery significance or 
set a limit on the model



This generally assumes we know what we’re looking for.  

➡ ML can still help in this case, by improving S/N — 
supervised learning, classification, regression

What if we don’t know what we’re looking for? Can we find 
the unexpected signal buried underneath all this raw data?

➡ ML can help in this case — unsupervised learning, 
clustering, anomaly detection

A promising path forward: 
Adapt sophisticated ML tools developed for real-world 

applications in order to improve data analysis at the LHC



The Landscape of ML



The Landscape of ML @ LHC

Machine 
Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

Regression

Anomaly 
Detection

Classification

top tagging
b tagging

W/Z tagging
q/g tagging

strange tagging
full event tagging

pile-up reduction

Generation

Dimensionality 
Reduction

CaloGAN
LaGAN
JUNIPR

Autoencoders
CWoLa

Triggering

Autoencoders
PCA

Clustering

Jet finding
algorithms

jet grooming



Recent progress in ML @ LHC

• Huge performance gains, especially for object classification

• Exploring the possibilities of learning physics directly from the data

• Developing new and unconventional ways of searching for new physics

In the rest of this talk, I will focus on some recent 
works that touch upon these points.



A benchmark problem: 
boosted top tagging

QCD boosted jet

g

q

q̄

vs.

This is a straightforward 
supervised classification 
problem in ML.

How to differentiate between 
these two types of jets?
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Figure 4: Distribution of the HTT V2 candidate mass (top), fRec (center) and DRopt (bottom) for
low pT jets (left) and high pT jets (right) reconstructed using CA15 jets. The percentage in the
legend indicates the fraction of entries shown in the plot with respect to the fiducial selection.
Events correspond to an average number of hµi = 20 pileup interactions and a bunch spacing
of 25 ns.
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Figure 3: Distribution of ungroomed n-subjettiness (top) at low pT (left) and high pT (right).
In addition, the softdrop n-subjettiness (bottom left) and the Qjet volatility (bottom right) are
shown for low pT jets clustered using CA15 jets. All distributions are shown after selecting on
the jet mass. The percentage in the legend indicates the fraction of entries shown in the plot
with respect to the fiducial selection. Events correspond to an average number of hµi = 20
pileup interactions and a bunch spacing of 25 ns.

Applying softdrop grooming before calculating the n-subjettiness clearly improves the discrim-
ination power for lower pT jets, especially for top quarks with a pT around 400 GeV, as shown
in Fig. 3 (bottom left). At the same time, for AK8 jets, the groomed n-subjettiness shows a more
stable performance as a function of the jet pT with respect to ungroomed one.

Finally, the Qjet volatility exhibits lower values for true top quarks, where the decay of a heavy
particle is responsible for the jet mass, than for backgrounds, where the clustering of radia-
tion into the jet dominates. However, after requiring a soft drop mass between 150 and 240
GeV (Fig. 3 bottom right), most of the separation power disappears. The deviation from one in
the efficiency reported in Fig. 3 is dominated by the applied softdrop mass selection.

Some obvious ideas: 

jet mass (mtop vs 0) jet substructure (3 vs 1)

QCD boosted jet

g

q

q̄

vs
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Figure 6: Single variable ROC curves (left) and z-score, defined as 1/#B at a signal efficiency
of 30% (right) calculated per-parton for objects passing the fiducial selection criteria for a high
pT sample. Each point on the ROC curve corresponds to a simple selection window using the
tagging variable. The z-score is determined using a likelihood estimator for the diagonal and a
BDT for the off-diagonal elements.
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Figure 7: ROC curves for calculated per-parton for objects passing the fiducial selection crite-
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corresponds to a set of simple selection windows on the given variables.

top tagging efficiency

QCD jet 
mistag rate

State of the art with cuts on kinematic quantities:

Can deep learning do better??

“ROC curve”



From
 tow

ardsdatascience.com

Jet constituents minv, τ21, τ32, … Cuts Top or QCDBDTDeep learning algorithm

By training on raw, low-level inputs, deep learning can achieve much better 
performance.

Deep neural networks automate and optimize the process of “feature engineering”.

Automated Feature Engineering



Data Representations

Although deep learning capable of building features from raw data, how we 
represent the data can still matter a lot. 

In the case of jets, some popular options are

• Four vectors (DNNs)

• Sequences (RNNs, LSTMs)

• Binary trees (RecNNs)

• Graphs (point clouds)

• Images (CNNs)



Jet Images
Can think of a jet as an image in eta and phi, with

• Pixelation provided by calorimeter towers

• Pixel intensity = pT recorded by each tower

Machine Learning and Jets

• We can represent jets in different ways
• We can utilize different classes of  models

10

Calorimeter

Image	from	B.	Nachman

Jet Images 12

Unrolled	slice	of	detector

Calorimeter	towers	as	pixels
Energy	depositions	as	intensity

Slide	from	B.	Nachman

Should be able to apply “off-the-shelf” NNs developed for image 
recognition to classify jets at the LHC! de Oliveira et al 1511.05190

Figure credit: 
B. Nachman



Top Tagging with CNNs
Macaluso & DS 1803.00107

Building on previous “DeepTop” tagger of Kasieczka et al 1701.08784

Other approaches also promising (DNNs, RecNNs, RNNs, LSTMs, GNNs, …)

QCDCMS

Jet sample

13 TeV

pT 2 (800, 900) GeV, |⌘| < 1

Pythia 8 and Delphes

particle-flow

match: �R(t, j) < 0.6

merge: �R(t, q) < 0.6

1.2M + 1.2M

Image
37⇥ 37

�⌘ = �� = 3.2

Colors (pneutralT , ptrackT , Ntrack, Nmuon)

Table 1: The two jet image samples used in this work.

1 Introduction

2

Individual images very sparse

Tops



Top Tagging with CNNs
Macaluso & DS 1803.00107

Building on previous “DeepTop” tagger of Kasieczka et al 1701.08784

Other approaches also promising (DNNs, RecNNs, RNNs, LSTMs, GNNs, …)

TopsCMS

Jet sample

13 TeV

pT 2 (800, 900) GeV, |⌘| < 1

Pythia 8 and Delphes

particle-flow

match: �R(t, j) < 0.6

merge: �R(t, q) < 0.6

1.2M + 1.2M

Image
37⇥ 37

�⌘ = �� = 3.2

Colors (pneutralT , ptrackT , Ntrack, Nmuon)

Table 1: The two jet image samples used in this work.

1 Introduction

2

Average images clearly different

QCD



Figure 1: Architecture of our CNN top tagger.

4 Image preprocessing

In the original DeepTop paper [30], the image preprocessing steps were found to actually

decrease the performance of the tagger. This is surprising since usually preprocessing

improves classifier performance.

The DeepTop preprocessing steps were as follows. First they pixelated the image

according to their detector resolution. Then they shifted such that the maximum pixel

intensity as defined by a 3x3 window was at the origin. Next, they rotated such that

the second maximum was in the 12 o’clock position, and they flipped to ensure that the

third maximum is in the right half plane. Finally, they normalized each image so that

the pixel intensities are between 0 and 1.

Our preprocessing steps di↵er from this in the following ways. First of all, we perform

all preprocessing before pixelating the image. This makes the most sense for the CMS

sample which separates the much-higher-resolution tracks from the calorimeter towers.

But it also appears to have some benefit even for the calo-only jets of the DeepTop

sample. Our first step is to calculate the pT -weighted centroid of the jet and the pT -

weighted principal axis. Then we shift so that the centroid is at the origin and we rotate

so that the major principal axis is vertical. In contrast to DeepTop, we flip along both

the L-R and the U-D axes so that the maximum intensity is in the upper right quadrant.

Finally, after doing all these transformations, we pixelate the image and then normalize

it to unit total intensity (i.e. divide by the total pT ).

To demonstrate the e↵ectiveness of our preprocessing steps, we show in fig. 2 the

average of 100k top and QCD jet images drawn from the high pT CMS jet sample, with

and without preprocessing. Although below we consider color images where the track

pT ’s and neutral pT ’s are considered separately, here we restrict ourselves to grayscale

images where they are added together. We see that even without preprocessing, the

average images are quite di↵erent, with the QCD jets being much more peaked than the

in this work.
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Top Tagging with CNNs
Macaluso & DS 1803.00107

DeepTop minimal Our final tagger

Training

SGD AdaDelta

⌘ = 0.003 ⌘ = 0.3 with annealing schedule

minibatch size=1000 minibatch size=128

MSE loss cross entropy loss

CNN architecture
8C4-8C4-MP2-8C4-8C4- 128C4-64C4-MP2-64C4-64C4-MP2-

64N-64N-64N 64N-256N-256N

Preprocessing
pixelate!center center!rotate!flip

! normalize ! normalize!pixelate

Sample size 150k+150k 1.2M+1.2M

Color p
calo
T = p

neutral
T + p

track
T (pneutralT , p

track
T , Ntrack, Nmuon)

Table 2: Summary of our final CNN tagger, together with the original DeepTop tagger.

5.2 Color

Inspired by [29], we also added color to our images from the CMS sample. (The DeepTop

sample was calo-only so we could not add color to them.) The four colors we used were

neutral and track pT per pixel, the raw number of tracks per pixel, and the number

of muons per pixel. The last color was not considered in [29], which focused on quark

vs. gluon tagging. Obviously, muons can be considered a crude proxy for b-tagging and

should play a role in any top tagger. (For more comments on b-tagging, see Section 7.)

Interestingly, we found that adding color to the images led to significant overfitting

for smaller training sample sizes. Evidently, while the color adds information to the

images, it also increases the noise, and with too few training examples, the network

learns to fit the noise. This problem went away when the training sample was increased

to 1.2M+1.2M, which is why we choose to place the color improvement last.

6 Final comparison

The full specifications of our final tagger are summarized in table 2 side-by-side with

those of the original DeepTop tagger.

Having gone through all the improvements (loss function, optimizer, CNN architec-
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QCD Tops

Top Tagging with CNNs
Macaluso & DS 1803.00107
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DeepTop minimal

Our final tagger

HTTV2+τ32 BDT
HTTV2+τ32 cut-based

0.0 0.2 0.4 0.6 0.8 1.0

1

10

100

1000

104

105

ϵS

1/
ϵ B

CMS jets

Figure 8: ROC curves comparing our best top tagger (black), the original DeepTop tagger (red), the

cut-based top-tagger from [36] using variables from HTTV2 and ⌧32 (blue dashed), and a BDT built

out of those same variables (blue solid), for the CMS jet sample.

directly against their “MotherOfTaggers” BDT ROC curve (i.e. without recasting it).

For the CMS jet sample, we include two taggers that are representative of the state-of-

the-art in top-tagging with high-level features: a cut-based top-tagger using variables

from HTTV2 and N-subjettiness, and a BDT built out of those same variables. The BDT

is trained on the same 1.2M+1.2M jets as our final CNN tagger. The BDT improves

the performance of the high-level cut-based tagger by a moderate amount.

For the DeepTop jet sample, the baseline tagger was already comparable to the

BDT, and our improvements to the former raise it above the BDT by a factor of ⇠ 2.

Meanwhile, for the CMS jet sample, it is surprising to see that the baseline tagger is

outperformed by even a simple cut-based tagger at lower tag e�ciencies. This again

highlights the importance of optimizing a tagger for each fiducial jet selection. Thanks

to the factor of 3–10 improvement over the baseline, our final CNN top tagger still shows

substantial gains (a factor of ⇠ 3 in background rejection) compared to the BDT. One
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Can achieve factor of ~3 improvement over cut-based approaches and BDTs!

95% accuracy

AUC=0.989
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Community top tagging comparison
Kasieczka, Plehn et al 1902.09914

Apples-to-apples 
comparison of various 
deep learning top taggers 
on a common dataset.



Community top tagging comparison
Kasieczka, Plehn et al 1902.09914SciPost Physics Submission

AUC Accuracy 1/✏B (✏S = 0.3) #Parameters

CNN [16] 0.981 0.930 780 610k
ResNeXt [32] 0.984 0.936 1140 1.46M

TopoDNN [18] 0.972 0.916 290 59k
Multi-body N -subjettiness 6 [24] 0.979 0.922 856 57k
Multi-body N -subjettiness 8 [24] 0.981 0.929 860 58k
RecNN 0.981 0.929 810 13k
P-CNN 0.980 0.930 760 348k
ParticleNet [45] 0.985 0.938 1280 498k

LBN [19] 0.981 0.931 860 705k
LoLa [22] 0.980 0.929 730 127k
Energy Flow Polynomials [21] 0.980 0.932 380 1k
Energy Flow Network [23] 0.979 0.927 600 82k
Particle Flow Network [23] 0.982 0.932 880 82k

GoaT (see text) 0.985 0.939 1440 25k

Table 1: Single-number performance metrics for all algorithms evaluated on the test sample.
We quote the area under the ROC curve (AUC), the accuracy, and the background rejection
at a signal e�ciency of 30%. The number of trainable parameters of the model is given as
well. Performance metrics for the GoaT meta-tagger are based on a subset of events.

investigate whether their combination into a meta-tagger might improve performance. Note
that this GoaT (Greatest of all Taggers) meta-tagger should not be viewed as a potential
analysis tool, but rather as a benchmark of how much unused information is available in cor-
relations that could be captured by a future approach. It is implemented as a fully connected
network with 5 layers containing 100-100-100-20-2 nodes. All activation functions are ReLu,
apart from the final layer where we use SoftMax. Training is performed with the Adam [42] op-
timizer with an initial learning rate of 0.001 and binary cross-entropy loss. We train for up to
50 epochs, but terminate if there is no improvement in the validation loss for two consecutive
epochs, so a typical training ends after 5 epochs. The training data is provided by individual
tagger output on the previous test sample and split intro three subsets: GoaT-training (160k
events), GoaT-testing (160k events) and GoaT-validation (80k events). Training/testing is
repeated ten times and for each repetition the events are randomly re-shu✏ed between the
three di↵erent subsets. In Tab. 1 we see that this combination of algorithms improves the best
individual tagger by more than 10% in the background rejection. We consider this number a
realistic estimate of the kind of improvement we can still expect for deep-learning top quark
identification.

In spite of the fact that our study gives some definite answers concerning deep learning
for simple jet classification at the LHC, a few questions remain open: first, we use jets in
a relatively narrow and specific pT -slice. Future e↵orts could explore softer jets, where the
decay products are not necessarily inside one fat jet; higher pT , where detector resolution
e↵ects become crucial; and wider pT windows, where stability of taggers becomes relevant.
The samples also use a simple detector simulation and do not contain e↵ects from underlying
event and pile-up.
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Further improvements to our CNN are possible.  
Have we found the optimal tagger?? 



Supervised vs Unsupervised ML

Top tagging is a prime example of supervised machine learning. 

It is a straightforward classification task with fully-labeled (QCD or top) 
datasets.

What if the data is not labeled — e.g. it is the actual LHC data and not 
simulation?

Can we apply ideas from unsupervised ML to discover patterns and 
features in the data? 

Can we discover unexpected new physics this way?



Statement of the problem

How can we use ML algorithms to discover the exotic new particle without 
knowing what it looks like?

Consider a collection of jets at the LHC. [See Jesse and Anders talks for more on jets.] 

Most will be from SM processes (quark/
gluon showering and hadronization). 

But a small fraction could be from an 
unknown (heavier) new physics particle 
with exotic properties.



This is a standard anomaly detection problem in data science!

Statement of the problem

unsupervised anomaly detection (clustering)

weakly-supervised anomaly detection (“one-
class classification”)

Train directly on the data 

Train on background-only (would probably need simulations for this)



Sample definitions
Same jet specifications as for top 
tagging study.  We used: 

• q/g jets as background, and 

• boosted tops and 400 GeV 
gluinos (decaying via RPV) as 
signal

We simulated 

• 1.2M jets of each type 

• using standard, open-source 
particle physics tools  
[Pythia8 and Delphes]

• and turned them into 37x37 
grayscale images.

q/g jets

boosted tops and RPV gluinos



A promising idea: deep autoencoders
Heimel et al 1808.08979;   Farina, Nakai & DS 1808.08992

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

An autoencoder maps an input into a “latent representation” and then 
attempts to reconstruct the original input from it.  

The encoding is lossy, so the decoding cannot be perfect. 

Latent layer

Some previous approaches:   
Aguilar-Saavedra et al, "A generic anti-QCD jet tagger” 1709.01087  
Collins et al, “CWoLa Hunting” 1805.02664  
Hajer et al “Novelty Detection Meets Collider Physics” 1807.10261



Deep autoencoders for anomaly detection
Heimel et al 1808.08979;   Farina, Nakai & DS 1808.08992
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By training the autoencoder on a set of “normal” events, 
it learns to reconstruct them well.

Then when the autoencoder encounters 
“anomalous” events that it was not 
trained on, its performance should be 
worse.

L =
1

N

NX

i=1

(xin
i � xout

i )2Quantify AE performance using 
reconstruction error:

Can use reconstruction error 
as an anomaly threshold!



Autoencoder architectureConvolutional Autoencoder
13

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-
US2-1C3

128C3 : 128 filters with

              a 3x3 kernel

MP2 : max pooling with

          a 2x2 reduction factor

32N : a fully-connected layer

         with 32 neurons

Autoencoder architecture :

US2 : up sampling with

          a 2x2 expansion factor

Encoder Latent space Decoder
M. Ke, C. Lin, Q. Huang (2017)

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-US2-1C3



Figure 3: Each panel represents the average of 100k jet images. Pixel intensity corresponds to the
total pT in each pixel. Upper row: original sample. Middle row: after reconstruction. Lower row:
pixel-wise squared error. Left column: QCD jets. Middle column: top jets. Right column: g̃ jets.

the more numerous low mass QCD jets at the expense of the rarer high mass QCD jets.

Meanwhile the CNN has learned information that is not as correlated with the mass,

e.g. details about the jet substructure.

In Table 1, we show the signal e�ciency at 90% and 99% background rejection

(which we refer to as E10 and E100 respectively). The values reported in each case are

the average over 5 independent training runs to ameliorate the intrinsic variance (apart

from PCA which is deterministic). We see that rejecting 99% of background will keep

more than 10% of the signals for both of the deep-learning-based autoencoders.

3.2 Choosing the latent dimension

Here we will explore the dependence of the autoencoder on the dimension of the latent

space. This is one of the most important choices to make in the design of an autoencoder

for anomaly detection. If the dimensionality is too low, the autoencoder is not able to

capture all the salient features of the training set. On the other hand, as the encoding

space gets larger, we get closer to the trivial representation. Hence we would like to find

8

QCD tops gluinos

Performance should be worse on “anomalous” events that autoencoder 
was not trained on.



Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

The algorithm works when trained on QCD backgrounds!

Can use reconstruction error as an anomaly threshold.



Fully unsupervised learning
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Figure 8: The performance of autoencoders in the unsupervised learning case where the training set
is contaminated with anomalous events. We take top jet samples for anomalous events. The horizontal
axis denotes the ratio of top jet samples in the whole training set with 100k samples. In the left and
right panels, the values of E10 and E100 for top jet signals are shown respectively. The blue, purple and
red curves denote the cases of the simple, 1d and 2d convolutional autoencoders (each dot representing
the average of 5 runs), gray for PCA.

anomalous events. The horizontal axis denotes the fraction of top jets in the entire

training set. In the left and right panels, the values of E10 and E100 for top jet signals

are shown respectively. For dense and CNN autoencoders, each point represents the

average of 5 runs. In every architecture, as the contamination ratio increases up to

0.1, the values of E10 and E100 tend to gradually decrease but the reduction is not

dramatic. This indicates that the contamination does not give a significant impact on

the performance of our autoencoders.

Just to emphasize how powerful this method potentially is, we see that with the

CNN autoencoder, even with 10% signal present in the training sample, the autoencoder

arrives at E100 ⇠ 0.1, so after this cut on reconstruction loss, we would end up with

S/B ⇠ O(1)!

Of course, without some way of estimating the background, this unsupervised method

of searching for new physics would still probably have limited utility. With just a pure

counting experiment (counting the number of events above some reconstruction error

threshold), we would have no way of knowing whether we have found new physics, unless

we knew beforehand what to expect from the SM background. In the next subsection,

we will explore the possibility of combining the autoencoder with a variable like jet mass,

in order to perform a bump hunt, with data-driven background estimates coming from

sidebands.
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Performance of AE surprisingly robust even up to 10% contamination!

Train on sample of QCD background “contaminated” with a small fraction of signal. 
Representative of actual data.

(Ex = signal efficiency at bg rejection = x)



Bump hunt with deep autoencoder

Figure 10: Jet mass histograms for QCD background and 400 GeV RPV gluinos, normalized to their
LO cross sections, before (left) and after (right) a cut on CNN autoencoder loss that rejects a factor of
1000 of the QCD background.

on CNN loss that reduce the QCD background by a factor of 10 (blue), 100 (orange),

and 1000 (green). The jet mass distribution is remarkably stable as we cut harder on

CNN loss. This makes it the superior autoencoder for doing a bump hunt in jet mass

for jet masses above ⇠ 300 GeV.

To illustrate the possibilities of searching for new physics in this way, by first “clean-

ing” the QCD background using the CNN autoencoder and then doing a bump hunt in

jet mass, we include Fig. 10. These are the jet mass histograms for QCD background

and 400 GeV gluinos, now normalized to the LO gluino and QCD cross sections, before

(left) and after (right) a cut on CNN autoencoder loss that removes a factor of 1000 of

the QCD background. Importantly, we have trained to autoencoder on a mixed sample

containing the expected fraction of gluino jets, corresponding to a contamination frac-

tion of 10�3. This would be representative of the actual data, if it really contained these

gluinos. We see that the S/B achievable here is ⇡ 25%. As can be seen clearly from

the histograms, this is an impressive improvement on the S/B before the cut (i.e. just

from the raw jet mass histogram), which is only ⇡ 4%. One could plausibly discover

new physics this way!

5 Discussion

In this paper, we have shown how autoencoders – machine-learning algorithms that learn

how to compress and decompress a sample of inputs – are potentially powerful new tools

for performing open-ended searches for new physics at the LHC. While autoencoders

have many real-world applications to anomaly detection, they have up till now not been

15

Can train directly on data that contains 400 GeV gluinos, 
use the AE to clean away “boring” SM events, 

and improve S/N by a lot 

Before AE cut After AE cut

Could really discover new physics this way!



Summary

Deep learning has revolutionized the field of artificial intelligence and has given 
birth to a number of stunning real-world applications.

The revolution is coming to high-energy physics!

In this talk, we gave an overview of deep learning applications to the LHC.  

Then we focused on two promising applications:

• Top tagging with jet images and CNNs (supervised learning)

➡ Enormous gains in performance over cut-based and shallow ML methods.

• Deep autoencoders for open-ended anomaly detection (unsupervised learning)

➡ Novel proposal for searching for new physics in the data without prejudice.



Summary

The Standard Model has withstood the test of time for over 40 years. 

Despite knowing that new physics beyond the SM is out there, we have yet to 
see any evidence for it at the LHC. 

We need more ideas for how to search for the unexpected at the LHC.

• Autoencoders for anomaly detection are a promising direction but there are surely many more!

Input from the ML experts in the audience 
would be most appreciated!



https://indico.cern.ch/event/809820/page/16782-lhcolympics2020

https://indico.cern.ch/event/809820/page/16782-lhcolympics2020




Thanks for your attention!

Sebastian Macaluso Yuichiro Nakai

Dipsikha Debnath Matt Buckley

Marco Farina

Scott Thomas
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Autoencoder architectures

We considered three autoencoder architectures (many more are possible):

• Principal Component Analysis (PCA)

• Dense NN

• Convolutional NN



Autoencoder architectures

We considered three autoencoder architectures (many more are possible):

• Principal Component Analysis (PCA)

• Dense NN

• Convolutional NN

Project onto the first d PCA eigenvectors z = Pdxin

Inverse transform to reconstruct original input xout = PT
d z = PT

d Pdxin



Autoencoder architectures

We considered three autoencoder architectures (many more are possible):

• Principal Component Analysis (PCA)

• Dense NN

• Convolutional NN

Simple Autoencoder
11

✓ Flatten a jet image into a single column vector.

Autoencoder with a single dense (fully-connected) layer 
as encoder and as decoder.

✓ Encoder and decoder are symmetric.

✓ The number of neurons in a hidden layer = 32.

✓ We use Keras with Tensorflow backend for implementation.

Training details

✦ The default Adam algorithm for optimizer. 

✦ Minibatch size of 1024 

✦ Early stopping : threshold = 0 and patience = 5

The number of images fed into the network at one time

To avoid overtraining

Flatten input into 
column vector

Single hidden 
layer with d=32

(dimension d)



Autoencoder architectures

We considered three autoencoder architectures (many more are possible):

• Principal Component Analysis (PCA)

• Dense NN

• Convolutional NN

Convolutional Autoencoder
13

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-
US2-1C3

128C3 : 128 filters with

              a 3x3 kernel

MP2 : max pooling with

          a 2x2 reduction factor

32N : a fully-connected layer

         with 32 neurons

Autoencoder architecture :

US2 : up sampling with

          a 2x2 expansion factor

Encoder Latent space Decoder
M. Ke, C. Lin, Q. Huang (2017)

128C3-MP2-128C3-MP2-128C3-32N-6N-32N-12800N-128C3-US2-128C3-US2-1C3



Choosing the latent dimension
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Figure 5: Left: Scree plot for PCA. Contribution to the variance of each principal component in
descending order. Right: average loss as a function of encoding space dimensions. Each dot corresponds
to the average of 5 independent training runs on the 100k training sample (apart from PCA, which is
deterministic and has no variance).

Figure 6: Dependence of performance of autoencoders in the weakly-supervised learning on number
of dimensions of latent space. The values of E10 and E100 for top jet signals are shown respectively in
the left and right panels. Each dot corresponds to the average of 5 independent training runs on the
100k training samples (apart from PCA, which is deterministic and has no variance).

(right) for the di↵erent autoencoders. We see the loss plateaus around the same place

for the various autoencoders, and that corresponds roughly to the elbow of the PCA

scree plot. The loss function first sharply decreases as more important and meaningful

features are learned by the encoded representation. It reaches a plateau supposedly

when only marginal information is added to the encoding space.

Following the above logic we choose k = 6 encoding dimensions for all of the autoen-

coders presented in the paper.

Finally, let’s examine the wisdom of our choice by looking at the top signal for

example. Shown in Fig. 6 is E10 and E100 for the top signal (averaged over 5 training

10

d too large → autoencoder becomes identity transform
d too small → autoencoder cannot learn all the features

Should choose the latent dimension in an unsupervised manner 
(ie without optimizing on a specific signal)

Can examine PCA eigenvalues or reconstruction loss vs latent 
dimension and look at where they are saturated.

We chose d=6



Robustness with other Monte Carlo

4 Training directly on data: unsupervised mode

4.1 Contamination study

In the previous section, we have explored how autoencoders can be trained on samples of

background-only jets, and then be used to discover signals such as top quarks and RPV

gluinos. This is a prime example of “one-class classification” and weakly-supervised

learning. It could potentially have direct applications to LHC searches for new physics,

provided the background sample can be validated somehow.

In this section, we will turn to a potentially much more exciting application of au-

toencoders in the form of unsupervised learning. Rather than train on a sample of

background-only jets, we will train on a sample of backgrounds “contaminated” by a

small fraction of signal events. We will see how, somewhat surprisingly, the autoencoder

still succeeds in detecting anomalies in the test set even though they are present in the

training set. Evidently, as long as the autoencoder doesn’t see “too many” anomalies in

the course of its training, its performance will be largely preserved.

Figure 8 shows how the amount of contamination with anomalous events in the

training set a↵ects the performance of autoencoders. Here, we use top jet samples for

Figure 7: Comparison of reconstruction error distributions between Pythia and Herwig generated
test samples, full colored histograms and outlines respectively. Gray is QCD and blue tops. The results
are obtained after training a CNN on the Pythia train dataset.

12



Correlation with jet mass
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Figure 9: The left figure shows the average mass in bins of increasing reconstruction error, for the
di↵erent autoencoder architectures. We see that the PCA and dense autoencoder losses are highly
correlated with jet mass all the way up to 400 GeV, while the CNN becomes uncorrelated for masses
above ⇠ 300 GeV. The right figure illustrates this with jet mass histograms for the QCD background.
We see that they are stable against increasingly hard cuts on the reconstruction error.

4.2 Correlation with jet mass

In this subsection, we will explore the correlation of the di↵erent autoencoders with jet

mass. We are motivated by how the autoencoder would be applied in the real world to

look for new physics. We are looking for subtle signals in an open-ended way buried

in the QCD background. Given that there is no reliable way to estimate the QCD

background other than data-driven methods, and given that we are not expecting to

achieve extremely high S/B significances, a pure counting experiment seems implausible.

Instead, we will still need another variable to side-band in order to estimate the QCD

background from the data. Since a large class of new physics starts from the decay of a

heavy new resonance, jet mass is an obvious candidate to side band in.

From this point of a view, the ideal autoencoder would be one whose reconstruction

error is minimally correlated with jet mass. We could then cut hard on the reconstruction

error to “clean” out the QCD background, and then look for a bump in the jet mass

distribution, confident that the autoencoder cut did not sculpt an artificial peak into

the jet mass distribution of the QCD background.

Shown in Fig. 9 (left) is the mean jet mass computed in bins of increasing autoencoder

loss, for the QCD background. We see that PCA (gray) and dense (blue) reconstruction

errors are correlated with jet mass all the way up to 400 GeV. So cutting on the PCA

loss is roughly equivalent to cutting on the jet mass. However, for CNNs the correlation

stops for jet masses above ⇠ 250–300 GeV. Equivalently, the jet mass distribution should

be stable against cutting on the CNN loss for cuts above ⇠ 10�6.

This is borne out in Fig. 9 (right). Here we see the jet mass distribution after cuts

14

Indeed, this is confirmed by looking at mean jet mass in bins 
of reconstruction error for the QCD background. 

CNN is no longer correlated with jet mass for m≳250 GeV



Correlation with jet mass

Figure 9: The left figure shows the average mass in bins of increasing reconstruction error, for the
di↵erent autoencoder architectures. We see that the PCA and dense autoencoder losses are highly
correlated with jet mass all the way up to 400 GeV, while the CNN becomes uncorrelated for masses
above ⇠ 300 GeV. The right figure illustrates this with jet mass histograms for the QCD background.
We see that they are stable against increasingly hard cuts on the reconstruction error.

4.2 Correlation with jet mass

In this subsection, we will explore the correlation of the di↵erent autoencoders with jet

mass. We are motivated by how the autoencoder would be applied in the real world to

look for new physics. We are looking for subtle signals in an open-ended way buried

in the QCD background. Given that there is no reliable way to estimate the QCD

background other than data-driven methods, and given that we are not expecting to

achieve extremely high S/B significances, a pure counting experiment seems implausible.

Instead, we will still need another variable to side-band in order to estimate the QCD

background from the data. Since a large class of new physics starts from the decay of a

heavy new resonance, jet mass is an obvious candidate to side band in.

From this point of a view, the ideal autoencoder would be one whose reconstruction

error is minimally correlated with jet mass. We could then cut hard on the reconstruction

error to “clean” out the QCD background, and then look for a bump in the jet mass

distribution, confident that the autoencoder cut did not sculpt an artificial peak into

the jet mass distribution of the QCD background.

Shown in Fig. 9 (left) is the mean jet mass computed in bins of increasing autoencoder

loss, for the QCD background. We see that PCA (gray) and dense (blue) reconstruction

errors are correlated with jet mass all the way up to 400 GeV. So cutting on the PCA

loss is roughly equivalent to cutting on the jet mass. However, for CNNs the correlation

stops for jet masses above ⇠ 250–300 GeV. Equivalently, the jet mass distribution should

be stable against cutting on the CNN loss for cuts above ⇠ 10�6.

This is borne out in Fig. 9 (right). Here we see the jet mass distribution after cuts
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The QCD jet mass distribution is stable against harder cuts on the 
reconstruction error, for the CNN autoencoder. 


