Magnifying (unknown) rare clusters to increase the chance of detection, using unsupervised learning

Erzsébet Merényi Department of Statistics and Department of Electrical and Computer Engineering Rice University, Houston, Texas

Learning Without a Teacher

(unsupervised learning)

Learning Without a Teacher

(unsupervised learning)

Self-Organizing Map: model-free structure learner Machine learning analog of biological neural maps in the brain

Self-Organizing Map: model-free structure learner Machine learning analog of biological neural maps in the brain

rzsebet@rice.edu

Map magnification in SOMs (Magnification of Vector Quantizers, in general)

```
pdfs of SOM weight vectors (VQ prototypes) and inputs
  related by
  Q(w) = const · P(w)<sup>α</sup>
where
  Q(w) is pdf of prototype vectors
  P(w) is pdf of input vectors
  and
```

 α is the Magnification Exponent – an inherent property of a given Vector Quantizer

(Zador, 1982; Bauer, Der, and Hermann, 1996)

What does α mean?

If data dimensionality = d,		
• <i>α</i> = 1	equiprobabilistic mapping	
	(max entropy mapping, information theoretical optimum)	
■ α = d/(d+2)	minimum MSE distortion quantization	
■ α = d/(d+p)	minimum distortion in p norm	
 α < 0 	enlarges representation of low-frequency	
	inputs	

- Kohonen's SOM (KSOM) attains $\alpha = 2/3$ (under certain conditions) (*Ritter and Schulten, 1986*). Not ideal by any of the above measures.

- Conscience SOM (CSOM) attains $\alpha = 1$ (D. DeSieno, 1988)

- α of KSOM or CSOM cannot be changed (not a parameter of the algorithm);

BDH: Modification of KSOM to allow control of α (Bauer, Der and Hermann, 1996)

KSOM learning rule: $w_j(t+1) = w_j(t) + \varepsilon(t) h_{j,r(v)}(t) (v - w_j(t))$ winner index Time-decreasing learning rate Idea: Modify the learning rate $\varepsilon(t)$ in KSOM to force the local adaptabilities to depend on the input density P at the lattice position, r, of prototype w_r. Require $\varepsilon_r = \varepsilon_0 P(w_r)^m$, where m is a free parameter that will allow control of α . How to do this when P(w_r) is unknown? Use the information already acquired by the SOM and exploit

$P(w_r) \propto Q(w_r) P'(r)$

where P'(r) is the winning probability of the neuron at r.

Approximate $Q(w_r)$ and P'(r) by quantities the SOM has learnt so far

Compute $P(w_r) \propto Q(w_r)P'(r)$: $Q(w_r) \propto 1/vol \quad vol = Volume of the Voronoi polyhedron of w_r$ $vol \propto |v - w_r|^d$

 $\label{eq:P'(r)} P'(r) \propto 1/(\Delta t_r), \\ \Delta t_r \propto \mbox{(present t value - last time neuron r won)}$

Substitute into $P(w_r) \propto Q(w_r)P'(r)$ to get

$$\varepsilon_{r}(t) = \varepsilon_{0}(t) \left[\frac{1}{\Delta t_{r}} \left(\frac{1}{|v - w_{r}|^{d}} \right) \right]^{m}$$
(1)

Update weight vectors (prototypes) of ALL SOM lattice neighbors by using ϵ_r of the winning neuron.

Controlling α through m in the learning rate formula

- Given α = 2/3 for KSOM, it can be shown that a "desired" SOM magnification with exponent α' is related to m as
 Q(w) = const · P(w)^{α'} = const P(w)^{(2/3)*(m+1)}
- Now we have a free parameter to control α
- EXAMPLE: to achieve max entropy mapping, we want $\alpha' = 1$. $\alpha' = 2/3 \text{ (m+1)} = 1 \rightarrow \text{set m} = 3/2 - 1 = 0.5 \text{ in eq. (1)}$
- EXAMPLE: to achieve $\alpha' = -1$ negative magnification, set m = -3/2 -1 = -2.5

Theory guarantees success only for

- 1. 1-D input data
- 2. n-D data, if and only if $P(\mathbf{v}) = P(v_1)P(v_2)...P(v_n)$ (i.e., the data are independent in the different dimensions)

1 and 2 \rightarrow "Allowed" data Rest \rightarrow "Forbidden" data

Central question:

Can BDH be used for "forbidden" data?

Carefully designed controlled experiments suggest YES.

(Merényi, Jain, Villmann, IEEE TNN 2007).

Magnification control for higher-dimensional data I. Noiseless, 6-D 5-class synthetic data cube

 128×128 pixel image where a 6-D vector is associated with each pixel (16,384 6-D patterns)

5 classes:

Class	No. of inputs
A	4095
U	1 (rare class)
С	4096
E	4096
К	4096

 $0.004 \le Pairwise correlation coefficients \le 0.9924$

 \Rightarrow "Forbidden" data

(Merényi et al. IEEE TNN 2007)

SOM learning without and with magnification I: Noiseless, 6-D 5-class synthetic data cube

Only 1 PE represents the rare class U (PE = Processing Element = neuron)

U now represented by 10 PEs!

(Merényi et al. IEEE TNN 2007)

Magnification control for higher-dimensional data II. Noiseless, 6-D 20-class synthetic data set

128 × 128 pixel image where each pixelis a 6-D vector (16,384 6-D patterns).20 classes:

Class	No. of inputs
A,B,D,E,G,H,K,L,N,O,P	1024
С	1023
F	1008
Ι	979
J	844
М	924
Q	16
R	1
S	100
Т	225

 $0.008 \le
ho \le 0.6 \Rightarrow$ "Forbidden data"

Finding rare patterns, DarkMachines Workshop April 9, 2019

(Merényi et al. IEEE TNN 2007)

SOM learning without and with magnification II: Noiseless, 6-D 20-class synthetic data set

KSOM (no magnification)

R: 1PE, **Q**: 1 PE

R: 4 PEs, **Q**: 7PEs

(Merényi et al. IEEE TNN 2007)

Finding rare patterns, DarkMachines Workshop April 9, 2019

We assume now that the Conscience algorithm achieves a magnification of $\alpha_{achieved}$ = 1.

We compare a BDH SOM with $\alpha_{desired} < 0$ to a Conscience SOM of the same data, to see if known small clusters have larger areal representation in the BDH SOM.

We also use a verified supervised class map to see if either Conscience or BDH SOM shows new discovery.

α < 0 magnification for 8-D real data: discovery of rare clusters

> Data: 8-D spectral image of Ocean City, Maryland. 512 x 512 pixels, very noisy

(Merényi et al. IEEE TNN 2007)

Finding rare patterns, DarkMachines Workshop April 9, 2019

Comparison of BDH and Conscience SOM

Real Data: Ocean City, 8-D 512 x 512 pixel image

Rare clusters detected by Conscience SOM

Real Data: Ocean City

$\alpha = 1$ magnification: special case of max. entropy mapping

6-D synthetic data cube with 8 classes

Deviations from the exact 4:2:1 proportions can be due to the small size of the SOM, integer arithmetic, and the formation of *inter-cluster gaps*

Finding Clusters of Rare Materials on Mars

Data: VIS-NIR Spectral Imagery, Imager for Mars Pathfinder; Colors: clusters

Example: ALMA hyperspectral image – spectral variations

NeuroScope structure discovery from ALMA data HD 142527 protoplanetary disk (data: Isella 2015)

(Merényi, Taylor, Isella, Proc. IAU 325, 2016)

not a heat map!

Clusters found in HD142527 Data: ALMA image cube of HD142527 (Isella, 2015)

More discovery within one molecular line

(Merényi, Taylor, Isella, Proc. IAU 325, 2016)

E. Merényi, Rice U erzsebet@rice.edu

More discovery from the combination of lines Finding rare patterns, DarkMachines Workshop April 9, 2019

Discovery in large 194-D hyperspectral image with CSOM

Left: Clusters identified by a Conscience SOM. Right: Clusters shown in the spatial image.

(Merényi, 2000; Villmann and Merényi, 2001)

E. Merényi, Rice U erzsebet@rice.edu

Density matching (max. entropy mapping) by Conscience SOM, 194-band hyperspectral data

SOM cells allocated to clusters is proportional to the # if pixels in the clusters.

(Merényi, ISCI 2000)

In Summary

- Predictability of the magnification exponent for "forbidden" data: $\alpha_{achieved}$ = 1 verified
- Negative magnification for "forbidden" data magnifies the rare classes in the BDH SOM
- Applicability of BDH may be justified for a broader range of data than the theory supports
- We used SOM magnification for rare clusters in data with
 - ~ 6 200-D feature vectors, some very noisy
 - ~ 2.5 6*10^5 patterns, some with subtle differences
 Promise for DM search?
- Behavior of BDH is worth (and needs!) more investigation to assess applicability for complex, high-D data with extremely rare clusters.

Note on mass-processing perspectives for pipelines

(Example numbers for the 6-D synthetic and 200-D hyperspectral image)

- Do SOM learning in parallel hardware : < 5 15 sec / 1M</p>
 - Practically automatic
 - Dedicated mid-level FPGA implementation, could be much faster for more \$\$ (Lachmair et al., Neurocomputing 2013)
 - SOM size matters
- Cluster the SOM prototypes <u>automatically</u> with SOM-derived CONN graph as input to graph-segmentation algorithms: < 1 sec
 - Results comparable to interactive segmentation by expert. (Merényi and Taylor, WSOM+ 2017)
- Scales linearly with # of samples, and (within large range) with # of feature dimensions

References

- Bauer, H-U., Der, R., Herrmann, M. (1996) Controlling the Magnification of Self-Organizing Feature Maps. *Neural Computation* <u>8:4</u>, pp 757-771.
- Zador, P. L. (1982) Asymptotic quantization error of continuous signals and the quantization dimension. *IEEE Trans. Inf. Theory*, vol., IT-28, no. 2, pp. 139-149.
- Ritter, H. and Schulten, K. (1986) On the Stationary State of Kohonen's Self-Organizing Sensory Mapping. *Biol. Cybern*. <u>54</u>, 99-106.
- DeSieno, D. (1988) Adding a Conscience to Competitive Learning, *Proc. Int. Conf. Neural Netw.* Vol I, pp I-117-I-127.
- <u>Taşdemir, K., and Merényi, E. (2011) A Validity Index for Prototype Based Clustering of Data Sets with Complex</u> <u>Structures.</u> *IEEE Trans. Sys. Man and Cyb., Part B.* 02/2011; Vol. 41, No. 4, pp 1039 - 1053. DOI: 10.1109/TSMCB.2010.2104319
- Merényi, E., Taşdemir, K., Zhang, L. (2009) <u>Learning highly structured manifolds: harnessing the power of SOMs.</u> Chapter in *"Similarity based clustering", Lecture Notes in Computer Science* (Eds. M. Biehl, B. Hammer, M. Verleysen, T. Villmann), Springer-Verlag. LNAI 5400, pp. 138 – 168.
- Taşdemir, K, and Merényi, E. (2009) <u>Exploiting the Data Topology in Visualizing and Clustering of Self-Organizing</u> <u>Maps</u>. *IEEE* Trans. *Neural Networks* 20(4) pp 549 – 562.
- Merényi, E., Taylor, J. and Isella, A. (2016), Deep data: discovery and visualization. Application to hyperspectral ALMA imagery. *Proc. Int'l Astronomical Union*, *12*(S325), 281-290. doi:10.1017/S1743921317000175
- Farrand, W. H., Merényi. E., Johnson, J., Bell, J. III (2008) <u>Comprehensive mapping of spectral classes in the imager</u> for Mars Pathfinder Super Pan, The Int'l J. of Mars Science and Exploration, Mars 4, 33-55, 2008; doi:10.1555/mars.2008.0004
- Lachmair, J., Merényi, E., Porrmann, M., Rückert, U. (2013) <u>A Reconfigurable Neuroprocessor for Self-Organizing</u> <u>Feature Maps</u>. *Neurocomputing* 112, pp 189-199.
- Merényi, E., Taylor, J. (2017) SOM-empowered Graph Segmentation for Fast Automatic Clustering of Large and Complex Data. *Proc. 12th WSOM+ 2017, Nancy, France, June 27-29, 2017. 9pp.*On-line: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8019995

