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Introduction 

DM searches channels at collider : Mono jet/W/top/photon

Signal : Monojet + MET                      Model : Axion-like particles (ALPs)/WIMPs

 ALPs could look like MET if they decay outside the detector volume 

Caterina Doglioni’s talk 



Plan

• Collider stable particles (Long lived particles)


• First comparison: Axions could be very light (collider stable) 
whereas typical DMs are not (we expect distinction) 

• Multi-dimensional density information?


• Supervised to Unsupervised algorithms 


• New physics?    


• Anomaly detection 



ALPs-Photon coupling 

K. Mimasu and V. Sanz, JHEP06(2015)173



ALPs gluon coupling

K. Mimasu and V. Sanz, JHEP06(2015)173



Effective interactions: WIMPs 
with SM

mq

M2
χ† χq̄q

See, for example : ATLAS analysis, Eur.Phys.J. C75 (2015) 299



Analysis set-up : mono-jet  

BP1: ALPs     

BP2 : Simplified dark matter models : heavy mediator decays to DM 
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Assumption : very well understanding of the  background
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1D distributions



Preliminary Results

Supervised Learning (at the moment) before trying  
the semi-supervised/unsupervised algorithms



Logistic regression

ϵS1

Features : pj
T, ηj, ϕj

: Correct identification of ALPs

ϵS2 : BP2 events labelled as  ALPs



DNN 

• Hidden Layers:(after 5, same 
performance)  


• Epochs : (>100, same)


• Activation function : ReLU


• Loss function : Binary cross-
entropy



Multi-dimensional probability 
information



2D distributions : mono-jet 
Binning: 29   29 (50K events per image) ×

ηj : [−4,4]

pj
T : [130,2000]GeV



Data processing : events to 
images 

• Information of correlation  between variables exists in 2D 
histograms 


• Little point (yet) in using 3D, 4D,..histograms


• Able to run CNN


• N=1000 no of events per image


• Training : Validation : Test Sample = 320:40:40 images


• Hidden layers: 2, Loss function: Binary cross-section, 
Activation functions : ReLU    



Training the DNN  (pT:[130,1000]GeV)



DNN training  rates 



Testing against events with 20 
events/image



CNN training rates 



Comparison of scores for 
density plots

● DNN accuracies: 

−Training: ~100%

−Test: ~100%

−Against data of 20 events/image: ~89.6%


● DNN mean absolute errors:

−Training: ~2.11x10-5


−Test: ~1.36x10-5


−Against data of 20 events/image: ~0.165

● CNN accuracies:


−Training: ~100%

−Test: ~100%

−Against data of 20 events/image: ~83.7%


● CNN mean absolute errors:

−Training: ~2.14x10-5


−Test: ~3.29x10-5


−Against data of 20 events/image: ~0.332



Summary and next steps 
● Parton level event generation for ALPs and simplified 

models 
● Able to distinguish between signals when only a small 

number of events are present 
● Looking to explore further the relations of events/image 

between datasets: is it a correct approach ? 
● Compare to expected number of events/timeframe from 

LHC – requires knowledge of cross sections and model 
parameters 

● Analysis with different DM/collider stable models and 
incorporate showering/hadronisation, detector effects, 
NLO effects  & SM background. 

● Move towards unsupervised learning algorithms 

(p j1
T , p j2

T , ηj1, ηj2, MET, Δϕjj, ΔϕMETj1, ΔϕMETj2)



Thanks 

Suggestions/Questions ?



Small batch size 



Data Sample 1 (pT:[130,1000]GeV)



DNN (image recognition)

2D images : information of density is 1D array inout for NN

40 events per image 

Hidden Layers : 2,  Loss function :  Binary cross-entropy,  Activation function :  ReLU



Data Sample 2 (PT :[130,2000]GeV)

Algorithm has an information of rare events also



Same Performance …

Dropouts ?


