Strong Gravitational Lensing and ML: generative models for galaxies

Adam Coogan

Dark Machines workshop ICTP, 8-12 April 2019

GRavitation AstroParticle Physics Amsterdam

Model physics when possible, use machine learning for the rest

• Galaxies have diverse, complex morphologies (especially z≥2)

- Galaxies have diverse, complex morphologies (especially z≥2)
- Complex source → more accurate lens parameter inference

- Galaxies have diverse, complex morphologies (especially z≥2)
- Complex source → more accurate lens parameter inference

- Galaxies have diverse, complex morphologies (especially z≥2)
- Complex source → more accurate lens parameter inference

- Low-dimensional representation of data that:
 - Captures range of galaxy morphologies
 - Has a latent space compatible with Bayesian inference

- Low-dimensional representation of data that:
 - Captures range of galaxy morphologies
 - Has a latent space compatible with Bayesian inference

- Low-dimensional representation of data that:
 - Captures range of galaxy morphologies
 - Has a latent space compatible with Bayesian inference

- Low-dimensional representation of data that:
 - Captures range of galaxy morphologies
 - Has a latent space compatible with Bayesian inference

- Low-dimensional representation of data that:
 - Captures range of galaxy morphologies
 - Has a latent space compatible with Bayesian inference

- Low-dimensional representation of data that:
 - Captures range of galaxy morphologies
 - Has a latent space compatible with Bayesian inference

- Low-dimensional representation of data that:
 - Captures range of galaxy morphologies
 - Has a latent space compatible with Bayesian inference

Variational autoencoder

Train encoder, decoder by maximizing lower bound on p(data)

• Dataset: ~56,000 galaxies, redshifts ~ 1

Dataset: ~56,000 galaxies, redshifts ~ 1

S/N < 10

S/N ~ 20


```
S/N > 100
```

http://great3.jb.man.ac.uk/

Dataset: ~56,000 galaxies, redshifts ~ 1

S/N < 10

S/N ~ 20

S/N > 100

This talk: train on $\sim 10,000$ images with S/N = 15 - 50

Dataset: ~56,000 galaxies, redshifts ~ 1

S/N < 10

S/N ~ 20

This talk: train on $\sim 10,000$ images with S/N = 15 - 50

Encoder, decoder: deep convolutional neural networks

http://great3.jb.man.ac.uk/

Radford et al 2015 (DCGAN)

 $z \sim p(z) = N(0, I)$

$z \sim p(z) = N(0, I)$

$z \sim p(z) = N(0, I)$

$z \sim p(z) = N(0, I)$

z distribution for training data

$z \sim p(z) = N(0, I)$

z distribution for training data

 $\neq N(0, I) \rightarrow open issue with VAEs!$

$z \sim p(z) = N(0, I) \qquad \qquad \mathbf{z} \in \mathbf{z}$

z distribution for training data

 $\neq N(0, I) \rightarrow open issue with VAEs!$

Our approach: sample z from here to generate better galaxies

$$z \sim N(0, I) \xrightarrow{f_T \circ \ldots \circ f_2 \circ f_1(z)} z' \sim$$

 Compose invertible transformations with simple Jacobians to reshape distributions

$$z \sim N(0, I) \xrightarrow{f_T \circ \ldots \circ f_2 \circ f_1(z)} z' \sim$$

- Compose invertible transformations with simple Jacobians to reshape distributions
- Parametrize with neural networks

$$z \sim N(0, I) \xrightarrow{f_T \circ \ldots \circ f_2 \circ f_1(z)} z' \sim$$

- Compose invertible transformations with simple Jacobians to reshape distributions
- Parametrize with neural networks
- For our purposes: inverse autoregressive flows (**IAFs**), which enable efficient sampling of the latent variable

z distribution for training data

z samples from IAF fit

z distribution for training data

z samples from IAF fit

Generated galaxies

Lensing galaxies

True source

Observation

*Very preliminary, simplified analysis

Lensing galaxies

True source

Observation

Best-fit source

*Very preliminary, simplified analysis

Lensing galaxies

True source

Observation

Best-fit source

True Einstein radius: 2.3 Best-fit value: 2.29

*Very preliminary, simplified analysis

Conclusions

- Integrate galaxy VAE with full analysis pipeline
- Improve prior/latent distribution mismatch:
 - Fully incorporate flows with VAE
- Fix blurriness:
 - More flexible encoder? β/conditional-VAE, ...?
- Example of "differentiable programming" for physics + ML

Conclusions

- Integrate galaxy VAE with full analysis pipeline
- Improve prior/latent distribution mismatch:
 - Fully incorporate flows with VAE
- Fix blurriness:
 - More flexible encoder? β/conditional-VAE, ...?
- Example of "differentiable programming" for physics + ML

Lensing MNIST digits

Outputs from simplified analysis

Lensing MNIST digits

Outputs from simplified analysis

Best-fit source from VAE

Lensing MNIST digits

Outputs from simplified analysis

• Maximize a lower bound on $p(x^{(i)})$:

 $\text{ELBO}(x^{(i)}) = \mathbb{E}_{e(z|x^{(i)})} \left[\log d(x^{(i)}|z) \right] - \text{KL} \left[e(z|x^{(i)}) | | m(z) \right]$

Encoded means for MNIST

• Maximize a lower bound on $p(x^{(i)})$:

$$\text{ELBO}(x^{(i)}) = \mathbb{E}_{e(z|x^{(i)})} \left[\log d(x^{(i)} | z) \right] - \text{KL} \left[e(z | x^{(i)}) | | m(z) \right]$$

Encoded means for MNIST

• Maximize a lower bound on $p(x^{(i)})$:

$$\text{ELBO}(x^{(i)}) = \mathbb{E}_{e(z|x^{(i)})} \left[\log d(x^{(i)}|z) \right] - \text{KL} \left[e(z|x^{(i)}) | |m(z) \right]$$

Encoded means for MNIST

• Maximize a lower bound on $p(x^{(i)})$:

$$\text{ELBO}(x^{(i)}) = \mathbb{E}_{e(z|x^{(i)})} \left[\log d(x^{(i)}|z) \right] - \text{KL} \left[e(z|x^{(i)}) | |m(z) \right]$$

Encoded means for MNIST