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● Published in ICLR 2018, https://arxiv.org/abs/1711.00165 

● Open source code : https://github.com/brain-research/nngp

Based on

https://arxiv.org/abs/1711.00165
https://github.com/brain-research/nngp
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Motivation

● Recent success with deep neural networks (DNN)

○ Speech recognition

○ Computer vision

○ Natural language processing

○ Machine translation

○ Game playing (Atari, Go, Dota2, ...)

● However, theoretical understanding is still far behind

○ Physicist way of approaching DNN: treat it as a complex `physical’ system 

○ Find simplifying limits that we could understand. Expand around (perturbation theory!)

○ We will consider overparameterized or infinitely wide limit

■ Other options (large depth, large data, small learning rate, … )



Why study overparameterized neural networks?

● Often wide networks generalize better!



Why study overparameterized neural networks?

● Often larger networks generalize better!

Y. Huang et al., GPipe, 2018
arXiv: 1811.06965



Why study overparameterized neural networks?

● Allows theoretically simplifying limits (thermodynamic limit)

● Large neural networks with many parameters as statistical mechanical systems

● Apply obtained insights to finite models

Ising model simulation,
Credit: J. Sethna (Cornell)



Bayesian deep learning
● Usual gradient based training of NN : maximum likelihood (or maximum posterior) estimate

○ Point estimate
○ Does not provide posterior distribution

● Bayesian deep learning : marginalize over parameter distribution
○ Uncertainty estimates
○ Principled model selection
○ Robust against overfitting 

● Why don’t we use it then?

○ High computational cost (estimating posterior weight dist)
○ Rely on approximate methods (variational / MCMC): does not provide enough benefit



Bayesian deep learning via GPs

● Our suggestion

○ Exact GP equivalence to infinitely wide, deep networks
○ Works for any depth
○ Bayesian inference of DNN, without training!

● Benefits
○ Uncertainty estimates
○ Principled model selection
○ Robust against overfitting 

● Problem
○ High computational cost (estimating posterior weight dist.)
○ Rely on approximate methods (variational / MCMC)



Main Results:

● Correspondence between Gaussian processes and priors for infinitely wide, deep neural networks.

● We implement the GP (will refer to as NNGP) and use it to do Bayesian inference. We compare its 
performance to wide neural networks trained with stochastic optimization on MNIST & CIFAR-10.

Motivations:

● To understand neural networks, can we connect them to objects we better understand? 

● Function space vs parameter space point of view

● An algorithmic aspect: perform Bayesian inference with neural networks?

Deep Neural Networks as GPs



Reminder: Gaussian Processes

GP provides a way to specify prior distribution over certain class of functions

Recall the definition of a Gaussian process:

For instance, for the RBF(radial basis function) kernel, 

Samples from GP with RBF Kernel



Gaussian process Bayesian inference 

Bayesian inference involves high-dimensional integration in general

For GP regression, can perform inference exactly because all the integrals are Gaussian 

Conditional / Marginal distribution of a Gaussian is also a Gaussian

Result (Williams 97) is:

Reduces Bayesian inference to doing linear algebra. (Typically cubic cost in training samples)



GP Bayesian inference

Prior with RBF Kernel Posterior with RBF Kernel



Gaussian process

Non-parametric: models distribution over non-linear functions
Covariance function (and mean function) 

Probabilistic, Bayesian: uncertainty estimates, model comparison, robust against overfitting

Simple inference using linear algebra only (no sampling required)
Exact posterior predictive distribution

Cubic time cost and quadratic memory cost in training samples

Few example of recent HEP papers utilizing GPs
Bertone et al., Accelerating the BSM interpretation of LHC data with machine learning, 1611.02704 
Frate et al., Modeling Smooth Backgrounds & Generic Localized Signals with Gaussian Processes, 1709.05681
Bertone et al., Identifying WIMP dark matter from particle and astroparticle data, 1712.04793

Further read: A Visual Exploration of Gaussian Processes, Gortler et al., Distill, 2019

https://distill.pub/2019/visual-exploration-gaussian-processes/


The single hidden layer case

Radford Neal, “Priors for Infinite Networks,” 1994.

Neal observed that given a neural network (NN) which:

● has a single hidden layer
● is fully-connected
● has i.i.d. prior over parameters (such that it give a sensible limit)

Then the distribution on its output converges to a Gaussian Process (GP) in the limit of infinite layer 
width.



The single hidden layer case
Inputs: 

Parameters:

Priors over parameters:

Network:  

Uncentered covariance



   Note that zi and zj are independent because they have Normal joint and zero covariance

The single hidden layer case
Inputs: 

Parameters:

Priors over parameters:

Network:  

Uncentered covariance

Sum of i.i.d. random variables

Multivariate C.L.T.



The single hidden layer case

Infinitely wide neural networks are Gaussian processes:

Completely defined by compositional kernel  



Extension to deep networks



Extension to deep networks



Extension to deep networks



Reference for more formal treatments

● A. Matthews et al., ICLR 2018
○ Gaussian Process Behaviour in Wide Deep Neural Networks
○ https://arxiv.org/abs/1804.11271

● R. Novak et al., ICLR 2019
○ Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes
○ https://arxiv.org/abs/1810.05148
○ Appendix E

https://arxiv.org/abs/1804.11271
https://arxiv.org/abs/1810.05148


At layer L, kernel is fully deterministic given the kernel at layer L-1

For ReLU / Erf (+ few more), closed form solution exists

For general activation function, numerical 2d Gaussian integration can be done efficiently

Also, empirical Monte Carlo estimates works for complicated architectures!

Few comments about the NNGP Covariance Kernel

ReLU: ArcCos Kernel
(Cho & Saul 2009)



Experimental setup

● Datasets: MNIST, CIFAR10

● Permutation invariant, fully-connected model, ReLU/Tanh activation function

● Trained on mean squared loss

● Targets are one-hot encoded, zero-mean and treated as regression target 

○ incorrect class -0.1, correct class 0.9

● Hyperparameter optimized

○ Weight/bias variance, optimization hyperparameters (for NN)

● NN: `SGD’ trained opposed to Bayesian training. 

● NNGP: standard exact Gaussian process regression, 10 independent outputs



Empirical comparison: best models



Performance of wide networks approaches NNGP

Performance of finite-width, fully-connected deep NN + SGD → 
NNGP with exact Bayesian inference
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NNGP hyperparameter dependence Test accuracy

Good agreement with signal propagation study (Schoenholz et al., ICLR 2017)
: interesting structure remains at the “critical” line for very deep networks



Uncertainty

● Neural networks are good at making predictions, but does not naturally provide 
uncertainty estimates

● Bayesian methods naturally incorporates uncertainty

● In NNGP, uncertainty of NN’s prediction is captured by variance in output



Uncertainty: empirical comparison

Empirical error is well correlated with uncertainty predictions

X: predicted uncertainty

Y: realized MSE

* averaged over 100 
points binned by 
predicted uncertainty



Tractable learning dynamics of overparameterized deep neural networks
● Wide Deep Neural Networks evolve as Linear Models, arXiv 1902.06720
● Bayesian inference VS gradient descent training
● Replace a deep neural network by its first-order Taylor expansion around initial 

parameters

Next steps

Overparameterization limit opens up interesting angles to further analyze 
deep neural networks
● Practical usage of NNGP 

● Extensions to other network architectures

● Systematic finite width corrections



Thanks to the amazing collaborators

Yasaman Bahri, Roman Novak, Jeffrey Pennington,  Sam Schoenholz,
Jascha Sohl-Dickstein, Lechao Xiao, Greg Yang (MSR)



ICML Workshop: Call for Papers

● 2019 ICML Workshop on Theoretical Physics for Deep Learning 

● Location: Long Beach, CA, USA
● Date: June 14 or 15, 2019
● Website: https://sites.google.com/view/icml2019phys4dl
● Submission: 4 pages short paper until 4/30 

● Invited speakers: Sanjeev Arora(Princeton), Kyle Cranmer(NYU), David Duvenaud 
(Toronto, TBC),  Michael Mahoney(Berkeley), Andrea Montanari(Stanford), Jascha 
Sohl-Dickstein(Google Brain), Lenka Zdeborova(CEA/Saclay)

● Organizers: Jaehoon Lee(Google Brain), Jeffrey Pennington(Google Brain), Yasaman 
Bahri(Google Brain), Max Welling(Amsterdam), Surya Ganguli(Stanford), Joan 
Bruna(NYU)

https://sites.google.com/view/icml2019phys4dl


Thank you for your attention!


