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Part 1: Introduction to direct detection





… of the parameters 
of the halo model. 
Constraining the halo 
itself with observations 
is another issue 
entirely! 





Spin-Independent Spin-Dependent q2 suppressed

Normal, dominant
A2 enhancement

Smaller but 
measurable

Forget about 
direct detection
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Xenon: XENON, LUX/LZ, PandaX
Argon: DarkSide, ArDM, WArP

XMASS, DEAP

DAMA/LIBRA
COSINE, SABRE

CRESST

SuperCDMS
EDELWEISS

PICO

CoGeNT

DAMIC
SENSEI

CCDs



Requirements for a DM detector

1. Emit detectable light (photons), charge (electrons) or heat

2. Large mass

3. High atomic number

4. Low-radioactivity

5. Deep underground

Future: directional sensitivity
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XENON collaboration



Image: S. Breur



XENON collaboration



XENON collaboration



Image:
L. Grandi



*: proof-of-concept result
from my PhD thesis (UvA 2018)



Part 2: XENON1T data analysis









[https://github.com/XENON1T]

Data pipeline
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https://github.com/XENON1T


Processor & simulator calibration

Keeping the cycle virtuous:
- Humans examine processed events
- Simulator contains (mostly) physical models
- Simulator injects statistical variation, processor must be generic

Processor and simulator: [https://github.com/XENON1T/pax] 24
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https://github.com/XENON1T/pax


Backgrounds
Extrinsic Intrinsic

Electronic recoil Radiogenic γ, β
222Rn progeny (β)

85Kr (β)
v-electron scattering

136Xe ββ

Nuclear recoil Radiogenic neutrons
Cosmogenic (μ-induced) n Coherent ν-nucleus sc.

Other backgrounds:
 
Accidental coincidences
Events from unusual regions (gas, cathode)

S1/S2 discrimination

LXe self-shieldingInstrumented water shield
10m high, 10m diam.

85Kr distillation

Gran Sasso mountain
3.6 km water eq.

[https://arxiv.org/abs/1406.2374]

[arxiv:1612.04284]

Illustration only
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https://arxiv.org/abs/1406.2374
https://arxiv.org/abs/1612.04284




ER calibration NR calibration Science data

This data is from XENON1T’s first science run; we since took a longer run, but the principle is the same.





Want to hear more or discuss about 
statistical issues in direct detection?

https://indico.cern.ch/event/769726/

Stockholm
31 July - 2 August 2019
Open for abstracts now

https://indico.cern.ch/event/769726/




Hogenbirk, E. et al. JINST 13 (2018) no.05, 
P05016 arXiv:1803.07935



Part 3: Machine learning



Position reconstruction

Can you beat the machine?
https://pelssers.github.io/reconstruct/

Legend: 
TPF: TopPatternFit, likelihood maximizer 
NN: Neural net (old-style, few-layer, fully-connected)
RWM: Iterated weighted mean over shrinking set
MP: Maximum PMT
WM: Weighted mean

Javascript game 
by Bart Pelssers

https://pelssers.github.io/reconstruct/


Super-unofficial plot



Reconstruction using BOLFI 

~15% improvement over
likelihood fitter

(because the likelihood is incomplete)

Work by Bart Pelssers and Umberto Simola 
JINST 14 (2019) / arXiv:1810.09930 

Basic idea:
Sample position from prior/posterior
Run simulator
Measure goodness of fit (summary stat.)
Update posterior
Repeat

https://arxiv.org/abs/1810.09930


Density Estimation Likelihood Free Inference

Emulate simulator with deep neural net

Pydelfi learns sampling distribution 
p(data | parameters)

Comparable to BOLFI in accuracy 
but much faster.

Preliminary

Work by Bart Pelssers and Justin Alsing 
Using Pydelfi: arxiv:1903.00007

https://github.com/justinalsing/pydelfi
https://arxiv.org/abs/1903.00007


Learning light maps: fitting Work from the LUX collaboration
JINST 13 (2018), arXiv:1710.02752

Reconstruct positions
Fit light maps
Repeat

https://arxiv.org/abs/1710.02752


Work from the LUX collaboration
JINST 13 (2018), arXiv:1710.02752

5mm
wires!

Learning light maps: fitting

https://arxiv.org/abs/1710.02752


Colors: TPF positionsPCA

LLE
NOT truth values!!

Learning light maps: embedding Work in progress
Jelle Aalbers, Chris Tunnell



Learning light maps: embedding Work in progress
Jelle Aalbers, Chris Tunnell

No cables are swapped!





Fine print: Most experiments have different runs, often each with different fiducial 
volumes and background levels. LUX has a position-dependent likelihood, so there is 
more than one relevant background level in their fiducial volume(s). On this slide keV 
should be read as keV electronic recoil equivalent (keVee). XENON10’s fiducial 
low-energy ER background was 600 events/(ton keV day). The “march of progress” is 
a misleading caricature of the rich and branching evolution of the great apes. Any 
resemblance between the ape-men and scientists working in the field is purely 
accidental.  

Fiducial mass

Low-energy background

XENONnT, LZ
 
Several tonnes



Rare radioactive decays   t1/2= 1021 - 1022 years!

Double beta decay Neutrinoless 
double beta decay



Elastic neutrino-nucleus scattering

Solar neutrinos
8B

Galactic supernovae







E. Aprile et. al. PRL 122, 141301
[arXiv 1902.03234]



Data from M. Escudero et al.
JCAP 2016.12 pp. 029–029
.[arXiv:1609.09079]

(Fine print: these are only 
the simplest thermal-relic 

WIMP models)



Backup slide

Signal efficiency
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Dominant signal loss is from 3 PMT S1 coincidence requirement
Example WIMP spectrum shown here is for m = 50 GeV


