

Fundación **BBVA**

Dark Matter Searches with Cherenkov Telescope Array

Salvatore Mangano On behalf of the CTA consortium Project supported by a 2018 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation CIEMAT / UPM, Madrid

Very-High-Energy Gamma-ray astronomy

Cherenkov Telescope Array (CTA)

Expectations on Indirect Dark Matter Searches

- Galactic Center
- Dwarf Spheroidal Galaxies
- Large Magellanic Cloud

Conclusion

Gamma-Rays Instruments

Earth's atmosphere is opaque for gamma-rays

Satellites

Cherenkov telescopes

Water Cherenkov detectors

Stereoscopic Detection

Primary

γ-ray enters the atmosphere

Electromagnetic cascade

Stereoscopy:

- Better background rejection
- Better angular resolution
- Better energy resolution

10 nanosecond snapshot

0.1 km² "light pool", a few photons per m².

Objective of CTA with respect to current instruments

- Improve sensitivity by an order of magnitude
- Extend energy range ~20 GeV to ~300 TeV
- Improve resolution: energy (10% @ 1TeV), angular (0.1° @ 1TeV)
- Survey full sky
- Observe fast transient phenomena
- Operate as open observatory (accept proposal)

Allow VHE gamma-ray astronomy to transit from source discovery to detailed source investigation

How to reach objective

- Build array of telescopes
- Use different telescope sizes
- Operate on sites in both hemispheres
- Improve collection area

4 LSTs

few large telescopes (~400 m² mirror area) for lowest energies ~km² array of medium-sized telescopes (~100 m² mirror area)

25 MSTs

large 7 km² array of small telescopes (few m² mirror area)

~70 SSTs

CTA Telescope Types

Three different sizes of telescope optimized for three different energy ranges

Large Size Telescope Status

Inauguration October 2018

Events December 2018

1st Large size telescope is in commissioning phase Small and medium size telescope prototypes exist Construction expected to be ready at northern site around 2022-2023

Science Themes: Dark Matter

Fritz Zwicky (1933, "dunkle Materie")

Missing mass (at different scales):

- Rotation curves, galactic dynamics
- Cluster dynamics
- Gravitational lensing
- Cluster collision, Bullet Cluster

Cosmic microwave background

Formation and evolution of galaxies

Classification of dark matter models according to mass

< 10⁻²² eV DM wavelength too large to fit inside ~kpc dwarf galaxies keV - 100 TeV range DM in thermal equilibrium with SM in early universe Taken from arxiv:1903.00492

Dark Matter Models

Indirect Dark Matter Detection

Goal: Identify DM

Final state: γ, ν, e, p 13

Annihilation of Dark Matter

Particle physics input from extension of Standard Model

Astrophysics (J-factor):

DM density distribution obtained from N-body simulations of DM clustering (Need to specify distribution of DM along line of sight) Annihilation $\sim \rho \cdot \rho$ Decay $\sim \rho$

Indirect Dark Matter Searches

Difficult to distinguish between:

- Dark Matter content
- Astrophysical background

Targets with different systematics:

- Galactic Halo
 - + large DM statistics
 - diffuse astrophysical background
 - astrophysical source confusion

• Dwarf Spheroidal Galaxies

- low DM statistics
- + low astrophysical background with small uncertainty

Spectral Lines

- + No background => smoking gun
- very low DM statistics

Galaxy Clusters

- + independent crosscheck
- astrophysical background

Observation in Key Science Projects

Key science projects:	DM search strategy (program of 10 years)						
Galactic Center Survey	First 3 years						
500 h (center)	 Observation of galactic halo (~500 h) 						
+300 h (10° * 10°)	 Additional obs. of best dSph (~300 h) 						
Dwarf Spheroidal Galaxies (dSph):	Follow-up observation:						
100 h (each)	Case of detection						
	if cross section large enough						
Large Magellanic Cloud (LMC):	check DM signal with dSph						
300 h (in six pointings)	 Case of no detection: choose best target to produce limits 						
Etc.							

Year	1	2	3	4	5	6	7	8	9	10		
Galactic halo	175 h	175 h	175 h	Taken from arXiv: 1709.07997								
Segue 1 (or best) dSph	100 h	100 h	100 h									
		in case of detection at GC, large σv										
Segue 1 (or best) dSph				150 h	150 h	150 h	150 h	150 h	150 h	150 h		
Galactic halo				100 h	100 h	100 h	100 h	100 h	100 h	100 h		
	in case of detection at GC, small σv											
Galactic halo				100 h	100 h	100 h	100 h	100 h	100 h	100 h		
	in case of no detection at GC											
Best Target				100 h	100 h	100 h	100 h	100 h	100 h	100 h		

Galactic Halo

Galactic Halo Deep exposure 500 h

Avoid inner region with astrophysical sources

Close by

Strong DM signal expected

Highly uncertain DM profile

Careful control of systematic effects

CTA perfectly suited:

- sensitivity
- energy resolution
- spatial resolution

Sensitivity to thermal cross section for WIMP masses between ~200 GeV to ~20 TeV

Galactic Halo DM Profile Uncertainity

Dwarf Spheroidal Galaxies

Taken from arXiv: 1709.07997

DM distribution fitted to reproduce observed stellar kinematics

- O(20) objects known
- O(1000) mass in dark matter / visible matter
- Large J-factor uncertainty on ultra-faint dwarfs

Main properties

- Large expected DM annihilation luminosity
- Low astrophysical background
- Combine analysis to improve sensitivity

Results from dwarf spheroidal galaxies (point-like for CTA) less constraining than galactic halo but have less systematic uncertainty

Simulated LMC Skymap

Preparing consortium publication: Maria Isabel Bernardos, Fabio Iocco, Pierrick Martin at al.

LMC Dark Matter Ingredients

cta

LMC Dark Matter Sensitivity

Constraints on LMC DM annihilation cross section for two channels

Results in agreement with previous studies Not competitive with Galactic Halo (other interesting searches) Results obtained with standard pipeline Enhance DM sensitivity with machine learning (Seen @ Daniel's Nieto talk on Monday) 22

Conclusion

CTA will open up high energy gamma-ray window to DM community in near future

- Science scope very ample
- Construction started, expected to be ready around 2022-2023
- First science run this year

CTA will devote significant observation time for DM searches with multiple strategies and targets

- Galactic Center (high DM flux, large uncertainty)
- Dwarf satellite galaxies (low DM flux, low uncertainty)
- Large Magellanic Cloud (independent cross check)
- More objects and analysis strategies (apply machine learning)

CTA has possibility to search for DM signal below thermal cross section for DM mass around TeV range

Fundación **BBVA**

GOBIERNO DE ESPAÑA DE EC Y COM

Energéticas, Medioambientales y Tecnológicas

Present Cherenkov Telescope Arrays

HESS (Namibia)

4 x 108 m² (since 2003) 1 x 614 m² (since 2012)

MAGIC (Spain)

2 x 236 m² (since 2003 / 2009)

VERITAS (Arizona)

World-Wide Cooperation

Possible Arrays Layout

Full Sky Survey

Galactic plus extragalactic science

Mainly extragalatic science

Sensitivity

