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Overview

e Goal:

Build an unsupervised ML tagger that can be used in new
physics searches at colliders

e How?
Latent Dirichlet Allocation (LDA) el

‘Probabilistic programming”:

Rajat Mani Thomas

‘Probabilistic Programming and Inference in Particle Physics”:
Atilim Gunes Baydin

e Why?
Model independence, data-driven, anomaly detection,
you can see what the machine learned



Jets and substructure

Events at colliders produce collimated bunch of hadrons initiated by some
underlaying event:
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a jet is defined by the algorithm you 0

used to cluster the particles



Jets and substructure

.anti-k‘, R=1 |

y Taken from:
M. Cacciari, G. P.
Salam, G. Soyez

Cambridge ARZQ (2008)
-Aachen iJ R2 iB

1- compute d;; for each particle in the final state

2 - if the minimum is d; g declare particle 7 a jet, and remove it from the list
3 - if the minimum is d;; combine particles ¢ and 5 and go back to step 1

4 - repeat until there are no particles left



Jets and substructure

What was the
initial process
that led to the
jet production?
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Jets and substructure

What was the
initial process emmmm
that led to the

jet production?

hadronization

i punerwor Jet substructure

Rubin, G. P. Salam

(2008) Un-cluster the jet by
opening subjets one by one

)
@)
4m BN BN BN BN BN BN BN BN BN BN BN BN BN BN B B BN BN = = = = = m ¢

jO — j1j27 mjl > mjg

study the
clustering
history of the
jet

the clustering
history
contains
information on
how the jet
formed



Jets and substructure
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Useful substructure observables:
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subjet mass

i punerwor Jet substructure

Rubin, G. P. Salam
(2008)
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Top tagging

Top tagqging: ‘was this jet seeded by a top-quark or not?’

Features:
Signal: top jets from &t production in the SM subjet mass
m;, ~ my (175GeV)
pp — tt — jj, (t — WD) <« mj, ~ my (80GeV)
mass drop
Features: My MW 645
o subjet mass mj, iz
Background: QCD dl'JetS smoothly decaying
M/ distribution, peaked at zero
. ~ mass drop
pp — 99 — JJ smoothly decaying

distribution, peaked at one

D. E. Kaplan, K.

Tagging tops manually (e.qg. the Johns-Hopkins (JH) top-tagger) renermann, m.o.

Schwartz and B.
1 - cluster with C/A and then uncluster Tweedie (2008)
2 - cuts are applied manually to filter out jets which have top-like features



Latent Dirichlet Allocation e

J. Lafferty (2003)
Characterising documents as a set of ‘topics’ or ‘themes’

LDA is based on a generative process for writing documents
Assumptions:  short distance physics is represented by a set of ‘themes’
A '‘theme’is a distribution over substructure features
a jet, or event, is represented by a list (document) of features

each jet, or event, can have different proportions of each
theme

A mixed sample of jets or events can be parameterised by a set of ‘latent’

hyper-parameters:
_ #themes (finite)
(v; theme concentration parameters N

i=1,...,K
B;; theme-feature matrix j=1,... N 4— #features



Latent Dirichlet Allocation e

J. Lafferty (2003)

The LDA process for generating jets or events:

theme-feature

/ matrix

theme concentration parameters



Latent Dirichlet Allocation e

J. Lafferty (2003)

The LDA process for generating jets or events:

the Dirichlet is a simplex from which
we will draw the theme proportions
for each document

it is a prior that allows us to increase
the probability of certain theme

v proportions to be selected



Latent Dirichlet Allocation e

J. Lafferty (2003)

The LDA process for generating jets or events:

from the Dirichlet, we draw the theme
proportions for a single jet or event
@

jet, or event




Latent Dirichlet Allocation e

J. Lafferty (2003)

The LDA process for generating jets or events:

to choose a feature for the jet or
event, we first draw a theme from the
theme proportions ‘
>
@ —h s

feature

jet, or event



Latent Dirichlet Allocation e

J. Lafferty (2003)

The LDA process for generating jets or events:

given the theme and the theme- "
feature matrix, a feature is chosen and
added to the jet or event \\\\

\4
1O+ 0O-@

feature

jet, or event



Latent Dirichlet Allocation e

J. Lafferty (2003)

The LDA process for generating jets or events:

this process is repeated for each
feature, and each jet or event, to be
generated

feature

jet, or event



Latent Dirichlet Allocation i

The probability of a jet being generated, given the choice of latent
parameters, is

p(J’lO«B)Z/ (wle) ] (Zp (tlw)p(flt, ))

J€J

The goal: to infer the latent parameters in the theme-feature matrix, by
analysing a collection of documents

How? Variational Bayesian methods, implemented using the
gensim software . renurek, » sojke

(2010)
M. D. Hoffman, D. M.
Blei, F. Bach (2010)



Latent Dirichlet Allocation e

J. Lafferty (2003)

The probability of a jet being generated, given the choice of latent
parameters, is

p(jla, B) = / p(wlo) TT (S ptlw)p(f1t. )

JASY

The goal: to infer the latent parameters in the theme-feature matrix, by
analysing a collection of documents

How? Variational Bayesian methods, implemented using the
gensim software . renurek, » sojke

(2010)
M. D. Hoffman, D. M.
Blei, F. Bach (2010)

(- Given a collection of jets or events, we can choose a number of themes, and «;,

then the LDA algorithm estimates the latent (;; .
We can disentangle short distance physics based on their features in the jet
. substructure, in an unsupervised way.




Latent Dirichlet Allocation e

J. Lafferty (2003)

a Useful substructure observables: A
: 2 2
o My My, mm(pT,lapm) AR?
Ojo = Y Mo » ? ) 2 1,2 (>
m.; m.; me

Y this is a feature in
the substructure

1 - un-cluster the jet, calculate the above observables at each stage

2 - bin the observables, and form a feature for each stage, from the observables
3 - form a ‘document’ describing each jet, and a mixed sample of different jets

4 - analyse these documents using LDA - find the ‘themes’ describing the physics

5 - use inference to identify themes in new jets - identify the origin of the jet



LDA top tagging

For our study:
1 - train LDA on mixed samples: S/B =1, 1/9, 1/99
>- pr € [350,450] GeV
3 - sample size: ~ 8 x 10*

4 - in accordance with S/B: «a = ]0.5,0.5], [0.9,0.1], [0.99,0, 01]



mj1/mj0

LDA top tagqging
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LDA top tagqging
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LDA top tagqging

Measure performance with ROC curves:
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G. Kasieczka, T.
Plehn, M. Russell, T.

results compared to JH top tagger (purple star) and DeepTop schell o
results have been k-folded, k=10, to estimate robustness



LDA new physics tagqging

Now for a NP process:

pp— W' — oW - WWW
mw: — 3 TeV, mey = 400 GeV
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LDA new physics tagqging

Now for a NP process:

pp— W' — oW - WWW

mw: — 3 TeV, mey = 400 GeV
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LDA new physics tagqging

Measure performance with ROC curves:
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results have been k-folded, k=10, to estimate robustness



Summary and next steps

e We use LDA as an unsupervised algorithm for disentangling signal and
background events even at low S/B

e The algorithm characterises physical features associated to S and B, we
can see what the algorithm learns

e The one algorithm can be used as a multi-purpose tagger:
tops, W/, other new physics

e Next steps:
- use more observables in tagging (n-subjettiness, jet shapes, ...)
- find a way to fix hyper-parameters without knowing S/B
- implement an LDA anomaly detector
- expand beyond di-jets, to signals interesting for DM
- use this algorithm in an unsupervised new physics search



