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Lecture 3: Summary

In this lecture you learned the following:

• A function definition introduces a new variable that refers to a function object. Thereturn
statement describes the value that will be produced as a result of the function when this
function is done being executed.

• A parameter is a variable that appears between the parentheses of a function header.

• A local variable is a variable that is used in a function definition to store an intermediate
result in order to make code easier to write and read.

• A function call tells Python to execute a function.

• An argument is an expression that appears between the parentheses of a function call.
The value that is produced when Python evaluates the expression is assigned to the cor-
responding parameter.

• If you made assumptions about the values of parameters or you know that your function
won’t work with particular values, write a precondition to warn other programmers.



Lecture 3: Exercises

When writing code, only use Python concepts that have been introduced
in the lectures already.

Exercise 1:

Two of Python’s built-in functions are min and max. In the Python shell, execute the following
function calls:

a. min(2, 3, 4)

b. max(2, -3, 4, 7, -5)

c. max(2, -3, min(4, 7), -5)

Exercise 2:

For the following function calls, in what order are the subexpressions evaluated?

a. min(max(3, 4), abs(-5a))

b. abs(min(4, 6, max(2, 8)))

c. round(max(5.572, 3.258), abs(-2))

Exercise 3:

Following the function design recipe, define a function that has one parameter, a number, and
returns that number tripled.

Exercise 4:

Following the function design recipe, define a function that has two parameters, both of which
are numbers, and returns the absolute value of the difference of the two. Hint: Call built-in
function abs.

Exercise 5:

Following the function design recipe, define a function that has one parameter, a distance in
kilometers, and returns the distance in miles. (There are 1.60934 kilometers per mile.)



Exercise 6:

Following the function design recipe, define a function that has three parameters, grades be-
tween 0 and 100 inclusive, and returns the average of those grades.

Exercise 7:

Following the function design recipe, define a function that has four parameters, all of them
grades between 0 and 100 inclusive, and returns the average of the best 3 of those grades.
Hint: Call the function that you defined in the previous exercise.

Exercise 8:

Complete the examples in the docstring and then write the body of the following function:

def weeks_elapsed(day1, day2):
"""
Return the number of full weeks between two days.

Day1 and day2 are days in the same year.

Examples:

>>> weeks_elapsed(3, 20)
2
>>> weeks_elapsed(20, 3)
2
>>> weeks_elapsed(8, 5)

>>> weeks_elapsed(40, 61)

"""

Exercise 9:

Consider this code:

def square(n):
"""
Return the square of n.

Examples:

>>> square(3)
9

"""



In the table below, fill in the Example column by writing square, num, square(3), and 3 next
to the appropriate description.

Description Example
Parameter
Argument
Function name
Function call

Exercise 10:

Write the body of the square function from the previous exercise.


