Practical Programming
in Python

Inspired by ‘Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 7: Using Methods
Types, Classes, Methods, Object Orientation

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

. m
(CTP) International Centre -
for Theoretical Physics

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Abstract

“Any sufficiently advanced technology is indistinguishable from magic.”
- Arthur C. Clarke

We have seen functions in several different contexts: functions inside
modules and functions we have defined ourselves.

A method is a different kind of function that is attached to a particular
type.

There are methods attached to str, int or float, for example.

In this lecture we'll learn how to use methods and how they differ from
the functions we have seen so far.

Practical Programming in Python — Physics Without Frontiers — ICTP 1/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Overview

+ Modules, classes, methods
+ Calling methods

+ Object orientation

+ Exploring string methods

+ Methods special to Python

Methods are efficient and readable. Know the types you use.

Practical Programming in Python — Physics Without Frontiers — ICTP 2/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Classes

+ We learned that modules are objects that can contain functions and other variables
+ Classes are a similar kind of object
+ You have been using classes all along: they are how Python represents types

>>> help(str)

class str(object)

str(object='"') -> str

str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.__str__() (if defined)
or repr(object).

encoding defaults to sys.getdefaultencoding().

errors defaults to 'strict'.

|

We will explore some methods of the str class now.

Practical Programming in Python — Physics Without Frontiers — ICTP 3/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

String Methods

+ At the top of the string documentation we find this:

| str(bytes_or_buffer[, encoding[, errors]]) -> str

| Create a new string object from the given object.

+ This shows how to use str as a function
+ We can call it to create a string object, for example:
>>> str(17)

117¢
>>> str(5.34)
'5.34"

We can say that the str functions converts other types to strings.

Practical Programming in Python — Physics Without Frontiers — ICTP

4/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

String Methods

« Further down we find this:

capitalize(...)
S.capitalize(-> str

Return a capitalized version of S, i.e. make the first character
have upper case and the rest lower case.

- We call a method of class str much like a function in module math:

>>> str.capitalize('turing')
'Turing'

Every method in class str requires a string object as a first argument.

Practical Programming in Python — Physics Without Frontiers — ICTP 5/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

String Methods

+ This requirement is not documented because all str methods
require a string as a first argument

+ More generally, all class methods require an object of the class type
as the first argument

Python programmers are supposed to know this

Let’s look at two more examples from the str type:

>>> str.center('Sonnet 43', 26)

! Sonnet 43 !

>>> str.count('How do I love thee? Let me count the ways.', 'the')
2

Check the str documentation for these two methods.

Practical Programming in Python — Physics Without Frontiers — ICTP 6/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Object Oriented Way

+ We learned that all class methods require an object of the class type
as the first argument

+ Python provide a shorthand for this common task where the object
appears first and then the method call

+ Here we meet the dot operator . again - just like when calling functions
from a module:

>>> 'turing'.capitalize()
'Turing'

>>> 'Sonnet 43'.center(26)

! Sonnet 43 !

>>> 'How do I love thee? Let me count the ways.'.count('the')
2

Python does the translation for us. We will use this notation from now on.

Practical Programming in Python — Physics Without Frontiers — ICTP

7/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Object Oriented Way

« The help documentation for methods also uses this form

- Let’s have a look at the documentation of the lower method of class str:
>>> help(str.lower)
Help on method_descriptor:

lower(. ..
S.lower() -> str

Return a copy of the string S converted to lowercase)

« Contrast this with the documentation of math.sqrt:

>>> help(math.sqrt)
Help on built-in function sqrt in module math:

sqrt(...)
sqrt(x)

Return the square root of x.

Note that the math.sqrt documentation shows no prefix object.

Practical Programming in Python — Physics Without Frontiers — ICTP 8/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

What Obiject Orientation Is

* The term object oriented describes a style of programming

* In this style, the objects are the main focus when thinking about solutions to
problems

» We tell objects to do things by calling their methods to manipulate their
values and communicate with other objects

* This is different from imperative or procedural programming that focusses on
free functions that take objects as arguments

* There are more styles of programming, for example functional programsming
which focusses on functions and their combinations (this one is very
interesting and requires quite a different mindset)

* Python supports all of these to some extent

* Itis the programmer's - your - job to choose what best fits the problem you
want to solve

Practical Programming in Python — Physics Without Frontiers — ICTP 9/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Object Oriented Way: Expressions

+ The general form of a method call is a follows:

expression.method_name(arguments)

+ So far, we have seen examples where expression was a literal object
+ But any expression can be used, in particular a variable
« It just has to evaluate to the type that has the method you call:

>>> ('TTA' + 'G' * 3).count('T")

§>> dna = 'TTA' + 'G' * 3

>>> dna.count('G")
3

Methods can be called on the result of an expression, if the result type implements them.

Practical Programming in Python — Physics Without Frontiers — ICTP 10/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Object Oriented Way: Evaluation Order

1. Evaluate expression, for example:
(TTA" + 'G' * 3)

This produces a single object object.

2. Now that we have an object, evaluate the method arguments left to right.

In our DNA example, the argumentis 'T'.

3. Pass the resulting objects into the method.
In our DNA example, our code is equivalent to:

str.count('TTAGGG', 'T')

4. Execute the method
When the method call finishes, it produces a value.

Practical Programming in Python — Physics Without Frontiers — ICTP

1/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Spend some time reading about string methods using

>>> help(str)

or at
https://docs.python.org/3.6/library/stdtypes.html#text-sequence-type-str

Then we will explore some of the methods together

https://docs.python.org/3.6/library/stdtypes.html#text-sequence-type-str

Exploring String Methods

+ The method startswith takes a string « The methods lstrip, rstrip and strip
argument and returns True if the objects it remove whitespace from the front, the
is called for (to the left of the .) starts with back and from both, respectively:
the argument string:

>>> compound = ' \n Methyl \n butanol \n'
>>> compound. lstrip()

>>> 'species'.startswith('a') 'Methyl \n butanol \n'

False >>> compound.rstrip()

>>> 'species'.startswith('spe') ' \n Methyl \n butanol'

True >>> compound.strip()

'Methyl \n butanol'

- There is also an endswith method:] o o
+ The whitespace inside the string is not

>>> 'species'.endswith('a"') affected
False

>>> 'species'.endswith('es')

True

Methods of built-ins are very efficient. Use them.

Practical Programming in Python — Physics Without Frontiers — ICTP 13/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exploring String Methods

+ The documentation of the format method is quite daunting
+ A few examples should clear things up

>>> 'there are {0} {1}!'.format(4, 'lights')
"there are 4 lights!

+ The position numbers can be omitted:

>>> 'there are {} {}!'.format(4, 'lights')
'there are 4 lights!'

+ We use the position numbers to control order:

>>> '"{0}" is derived from the {2} "{1}"'.format('December', 'decem', 'Latin')
'"December" is derived from the Latin "decem"'

It is good practice to use position numbers.

Practical Programming in Python — Physics Without Frontiers — ICTP 14 /22

https://docs.python.org/3.6/library/string.html#formatstrings
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exploring String Methods

+ We can specify the number of decimal places for a float in a replacement field
+ This will round the float number accordingly:

>>> import math

>>> 'Pi rounded to {0} decimal places is {1:.2f}.'.format(2, math.pi)
'Pi rounded to 2 decimal places is 3.14.'

>>> 'Pi rounded to {0} decimal places is {1:.3f}.'.format(3, math.pi)

'Pi rounded to 3 decimal places is 3.142.°'

+ Formatting is also useful for integers:

>>> integer_table = '{0:4}\n{1:4}\n{2:4}\n{3:4}'.format (1000, 42, 234, 7)
>>> print(integer_table)
1000
42
234
7

Formatting numbers with the format method is very common.

Practical Programming in Python — Physics Without Frontiers — ICTP 15722

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Chaining Method Calls

+ Python programmers often chain method calls:

>>> 'Computer Science'.swapcase().endswith('ENCE")
True

+ Chained calls are evaluated left to right:

'Computer Science'.swapcase().endswith('ENCE")
L |

|—+—|

' COMPUTER sCIENCE'.endswith('ENCE")
L |

1

True

Chaining method calls is useful. Keep your code readable.

Practical Programming in Python — Physics Without Frontiers — ICTP 16 /22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Types & Classes

.

Classes are the way Python implements types
+ This means int and float are classes, too

+ We say objects are instances of classes. For example,
the integer 42 is an instance of the class int

+ Itis possible to call help on an object, rather than the class:

>>> help(42)
Help on int object:

class int(object)

| int(x=0) -> integer

| int(x, base=10) -> integer
[...]

Until we learn how to create our own classes we'll use objects of built-in types.

Practical Programming in Python — Physics Without Frontiers — ICTP 17/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Methods Special to Python

« Let’s look further down in the documentation of int:

>>> help(int)
[...]

__abs__(self, /)
abs(self)

__add__(self, value, /)
Return self+value.
ol

|
|
|
|
|
oo
+ The underscores __ signify methods that are special to Python
+ These methods are called when a built-in function is called with an instance of the class
+ Operators are also functions in Python
+ For example, when Python encounters operator +,

it calls the appropriate __add__ method

This gives some insight into how Python works under the hood.

Practical Programming in Python — Physics Without Frontiers — ICTP 18/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Methods Special to Python

+ To nobody’s surprise str also provides special methods:

>>> help(str)
o]
| _—_add__(self, value, /)

| Return self+value.
ool

+ The string method __add__ is called when we concatenate strings
with operator +:

>>> 'TTA' + 'GGG"
'TTAGGG'

>>> 'TTA'.__add__('GGG"')
'TTAGGG'

Python programmers almost never call these methods directly.

Practical Programming in Python — Physics Without Frontiers — ICTP

19/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Methods Special to Python

+ Let’s look at a few more examples for class int:

>>> abs(-3)
3

>>> (-3).__abs__()
3

+ Of course, we can also add integers this way:

>>> 2 + 7

9

>>> 2 .__add__(7)
9

+ Note the space added after 2. Why is that necessary?
Keep in mind that Python uses methods to handle all these operators.

Practical Programming in Python — Physics Without Frontiers — ICTP 20/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Variables Special to Python

+ Just like special methods there are special variables

+ They are also marked with double underscores __

+ The variable __doc__ is automatically created from a docstring
+ Let’s see how this works when we define a function:

>>> def square(x): >>> print(square.__doc__)
con e Return the square of the number x.
Return the square of the number x.

Examples:
Examples:
>>> square(3.0)
>>> square(3.0) 9.0
9.0

return x * x

« Try help(square) and compare

Every object keeps track of its docstring in the variable _doc_.

Practical Programming in Python — Physics Without Frontiers — ICTP 21/22

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exercises Lecture 7

