
Practical Programming
in Python

Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 3
Using and Designing Functions

What are functions?, Python Built-in Functions, Local Variables, Designing Functions

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Abstract

“No amount of genius can overcome obsession with detail.”
— Traditional

We describe the general concept of functions and functions in Python
specifically.
We will learn about some functions provided by Python and how to
design our own functions.
We will introduce a powerful new concept: local variables.
We will write our first program by combining functions.

Practical Programming in Python — Physics Without Frontiers — ICTP 1 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Overview

• You probably know functions from mathematics
• Functions in Python are similar
• Python provides many useful functions
• We define our own functions to group expressions and give them a name
• This way, we can reuse the expressions

Functions are important building blocks of programs.

Practical Programming in Python — Physics Without Frontiers — ICTP 2 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Functions Provided by Python

• Python provides many useful built-in functions
• For example, abs produces the absolute value of a number:

>>> abs(-3)
3
>>> abs(4.2)
4.2

• The above statements are function calls
• The general form of a function call is:

function_name([argument, ...])

We use functions by calling them with arguments.

Practical Programming in Python — Physics Without Frontiers — ICTP 3 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Function Arguments

• Arguments are expressions that appear in the parentheses of a function call
• In particular, the argument expression may contain variables:

>>> day_temperature = 5
>>> night_temperature = 8
>>> abs(day_temperature - night_temperature)
3

Arguments are the inputs to a function.

Practical Programming in Python — Physics Without Frontiers — ICTP 4 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Try this in the IDE Debugger (Examination Mode)

Carefully observe the evaluation order.

Practical Programming in Python — Physics Without Frontiers — ICTP 5 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Rules to executing a function call

1. Evaluate each argument expression, from left to right.
2. Pass the resulting values into the function.
3. Execute the function.

The function call produces a value.

Practical Programming in Python — Physics Without Frontiers — ICTP 6 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Function Calls in Arguments

• Functions produce values
• This means they can appear in expressions:

>>> abs(-5) + abs(1.4)
>>> 6.4

• Therefore we can use function calls as arguments:

>>> pow(abs(-3), round(3.2))
27

Nesting function calls is a very common technique in programming.

Practical Programming in Python — Physics Without Frontiers — ICTP 7 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Try this in the IDE Debugger (Examination Mode)

Carefully observe the evaluation order.

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Built-in Functions: Type Conversions

• Converting from one type to another is very useful
• For example, int and float can be used as functions:

>>> int(7.81)
7
>>> int(-5.2)
-5
>>> float(19)
19.0

Note that calling int does truncate, not round.

Practical Programming in Python — Physics Without Frontiers — ICTP 9 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Asking for Help

• If you are unsure, ask Python for help
• You can do this by calling the help function with an object or type as an argument:

>>> help(pow)
Help on built-in function pow in module builtins:

pow(x, y, z=None, /)
Equivalent to x**y (with two arguments) or x**y % z (with three arguments)

Some types, such as ints, are able to use a more efficient algorithm when
invoked using the three argument form.

The help function works for all built-ins. We will also make it work for our own objects.

Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Why We Want Your Own Functions

• The built-in functions are useful but have to be generic
• We often want functions that help us solve our specific problems
• For example, it would be nice to do this:

>>> convert_to_celsius(92.3)
33.5
>>> convert_to_celsius(13.1)
-10.5

• Python is not psychic, though:

>>> convert_to_celsius(92.3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'convert_to_celsius' is not defined

With functions we don’t have to repeat the same expression.

Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Defining Your Own Functions

• The general form of a function definition is:

def function_name([parameter, ...]):
block

• The block must contain at least one statement
• It usually contains one or more return statements:

return expression

• For example:

def convert_to_celsius(fahrenheit):
return (fahrenheit - 32) * (5 / 9)

Function definitions are Python statements that create function objects.
Practical Programming in Python — Physics Without Frontiers — ICTP 12 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Defining & Calling Functions

1. Python executes the function definition, creating a function object
2. Next, the function call convert_to_celsius(102) is executed,

this assigns 102 to the parameter fahrenheit
3. Now the return statement is executed, this involves evaluating

the returned expression (fahrenheit - 32) * (5 / 9)

4. When the function call is completed, Python continues
with the statement after the call

def convert_to_celsius(fahrenheit):
return (fahrenheit - 32) * (5 / 9)

convert_to_celsius(102)

rest of program...

1

3

2

4

Follow this in the IDE debugger.

Practical Programming in Python — Physics Without Frontiers — ICTP 13 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Words that are special to Python

• Some words are special to Python
• We can’t use them except as Python intends
• This is the full list:

False break else if not while

None class except import or with

True continue finally in pass yield

and def for is raise

as del from lambda return

assert elif global nonlocal try

The special words are called keywords. You can’t redefine them.

Practical Programming in Python — Physics Without Frontiers — ICTP 14 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Temporay Storage: Local Variables

• It is a good idea to break down complex computations
• This requires temporary storage, or local variables
• For example:

def quadratic(a, b, c, x):
quadratic_term = a * (x ** 2)
linear_term = b * x
constant_term = c
return quadratic_term + linear_term + constant_term

Python creates a local variable when an expression is assigned to it.

Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Temporay Storage: Local Variables

• Local variables can’t be used outside of the function:

>>> quadratic(3, 4, 1, 4.1)
67.82999999999998
>>> quadratic_term
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'quadratic_term' is not defined

>>> a
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'a' is not defined

Parameters are also local variables.

Practical Programming in Python — Physics Without Frontiers — ICTP 16 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• Can you predict what this code does?
• It is a bit confusing because of the

multiple use of x
• You have to understand local variables
• A local variable is local to a namespace
• Python creates a namespace when

executing a function call

When we call a function:

1. Evaluate the arguments left to right

2. Create a namespace to hold local
variables

3. Assign the argument values to the
parameters

4. Execute the function body

You can think of namespaces as different rooms.

Practical Programming in Python — Physics Without Frontiers — ICTP 17 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• From now on, we will reflect namespaces
in our memory model diagrams

• We will draw separate boxes for different
areas of computer memory

• Programmers call these boxes frames

Frames Objects

Frames for namespaces go here Objects go here

You can think of frames as pieces of scratch paper.

Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• Python is about to execute the function
definition

• We indicate the current line of the code
with a marker on the left

• When Python executes the function
definition it creates a function object and
assigns its address (id1) to the variable f in
the shell’s frame

Frames Objects

shell

f id1

ƒ ()
id1: function

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• Now Python executes the first assignment
in the shell

• This adds the variable x to the shell’s frame
• The variable x in the shell’s frame now

refers to the object of type int at address
id2 with the value 1

Frames Objects

shell

f id1

x id2

ƒ ()
id1: function

1
id2: int

Practical Programming in Python — Physics Without Frontiers — ICTP 20 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• Next the second assignment in the shell is
executed

• This involves evaluating the expression on
the right hand side of the assignment

• First, the expression x + 1 is evaluated
• The value of x in the shell’s frame is 1
• The expression evaluates to 2

• The value 2 is assigned to the parameter x

Frames Objects

shell

f id1

x id2

f

x id3

ƒ ()
id1: function

1
id2: int

2
id3: int

Practical Programming in Python — Physics Without Frontiers — ICTP 21 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• Now Python executes the function body
• The local variable x is doubled via an

augmented assignment operator
• The local variable x now refers to the

object at address id4 which is of type int

and has the value 4

• No variable refers to the object at id3
anymore

Frames Objects

shell

f id1

x id2

f

x id4

ƒ ()
id1: function

1
id2: int

2
id3: int

4
id4: int

Practical Programming in Python — Physics Without Frontiers — ICTP 22 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• Next, the return statement is executed
• This finishes the first function call
• The first part of the assignment expression

is evaluated
• It results in the object of type int with the

value 4 at address id4

Frames Objects

shell

f id1

x id2

f

x id4

return value id4

ƒ ()
id1: function

1
id2: int

2
id3: int

4
id4: int

Practical Programming in Python — Physics Without Frontiers — ICTP 23 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• We are now back to evaluating the
expression x + 2 in the shell

• This yields an object of type int of value 3

at the memory address id5
• The function parameter x now refers to

the object at address id5

Frames Objects

shell

f id1

x id2

f

x id5

ƒ ()
id1: function

1
id2: int

2
id3: int

4
id4: int

3
id5: int

Practical Programming in Python — Physics Without Frontiers — ICTP 24 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• Python executes the first statement
in the function

• The local variable x is doubled via an
augmented assignment operator

• The local variable x now refers to the
object at address id6 which is of type int

and has the value 6

Frames Objects

shell

f id1

x id2

f

x id6

ƒ ()
id1: function

1
id2: int

2
id3: int

4
id4: int

3
id5: int

6
id6: int

Practical Programming in Python — Physics Without Frontiers — ICTP 25 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• The return statement for the second
function call is executed

• The second part of the assignment
expression is evaluated

• It results in the object of type int with the
value 6 at address id6

Frames Objects

shell

f id1

x id2

f

x id6

return value id6

ƒ ()
id1: function

1
id2: int

2
id3: int

4
id4: int

3
id5: int

6
id6: int

Practical Programming in Python — Physics Without Frontiers — ICTP 26 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Detailed Function Definition & Call Example

>>> def f(x):
... x *= 2
... return x
...
>>> x = 1
>>> x = f(x + 1) + f(x + 2)

• The right hand side of the assignment
is fully evaluated

• It results in an object of type int with the
value 10 at address id7

• The variable x in the shell’s frame now
refers to the object at address id7

Frames Objects

shell

f id1

x id7

ƒ ()
id1: function

1
id2: int

2
id3: int

4
id4: int

3
id5: int

6
id6: int

10
id7: int

Python does all this for you. As a good programmer you need to know these details.

Practical Programming in Python — Physics Without Frontiers — ICTP 27 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Memory Model: Object Identities

>>> n = 17
>>> id(n)
10919936

>>> help(id)
Help on built-in function id in module builtins:

id(obj, /)
Return the identity of an object.

This is guaranteed to be unique among simultaneously existing objects.
(CPython uses the object's memory address.)

• You can use the built-in function id to find an object’s identity
• This is not just cool but very helpful
• Note that objects can be equivalent while not being identical

Identities are unique. Their meaning under the hood depends on the Python
implementation.

Practical Programming in Python — Physics Without Frontiers — ICTP 28 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Try this in the IDE Shell

Familiarize yourself with the object inspector.

Practical Programming in Python — Physics Without Frontiers — ICTP 29 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Aliasing & Caching

>>> n = 17
>>> m = n
>>> k = 17

• Several variables can refer to
the same object

• This is called aliasing

Frames Objects

shell

n id1

m id1 17
id1: int

Aliasing will become more interesting with mutable objects.

Practical Programming in Python — Physics Without Frontiers — ICTP 30 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Aliasing & Caching

>>> n = 17
>>> m = n
>>> k = 17

• Keeping objects around in case they might
be used is called caching

• Python automatically caches small objects
• This is notable for small integers

Frames Objects

shell

n id1

m id1

k id1

17
id1: int

You don’t have to worry about memory management in Python.

Practical Programming in Python — Physics Without Frontiers — ICTP 31 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Structure of Good Functions

• Writing a good function
requires planning

• What is the name of the function?
• What are the parameters?
• What does the function return?
• The function must be

documented well
• Examples are an important part of

the documentation

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

Good naming and documentation are very important.

Practical Programming in Python — Physics Without Frontiers — ICTP 32 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Structure of Good Functions

• The first line is the function header def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the order of appearance, not the order you should think about things.

Practical Programming in Python — Physics Without Frontiers — ICTP 33 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Structure of Good Functions

• The first line is the function header
• This is followed by the docstring

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the order of appearance, not the order you should think about things.

Practical Programming in Python — Physics Without Frontiers — ICTP 34 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Structure of Good Functions

• The first line is the function header
• This is followed by the docstring

• One line summary

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the order of appearance, not the order you should think about things.

Practical Programming in Python — Physics Without Frontiers — ICTP 35 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Structure of Good Functions

• The first line is the function header
• This is followed by the docstring

• One line summary
• Detailed description

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the order of appearance, not the order you should think about things.

Practical Programming in Python — Physics Without Frontiers — ICTP 36 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Structure of Good Functions

• The first line is the function header
• This is followed by the docstring

• One line summary
• Detailed description
• Examples

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the order of appearance, not the order you should think about things.

Practical Programming in Python — Physics Without Frontiers — ICTP 37 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Structure of Good Functions

• The first line is the function header
• This is followed by the docstring

• One line summary
• Detailed description
• Examples

• Function body

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the order of appearance, not the order you should think about things.

Practical Programming in Python — Physics Without Frontiers — ICTP 38 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Designing Your Own Functions

• Think of the examples first
• What are the function parameters?
• What exactly should the function do?
• The examples should cover

edge cases
• For example, what happens

when the two days are the same?

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the function design recipe we recommend to follow.

Practical Programming in Python — Physics Without Frontiers — ICTP 39 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Designing Your Own Functions

• Next, think of the short description
• If you can’t come up with one,

this indicates a problem
• It should fit on one line
• Make it prescriptive, not descriptive

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the function design recipe we recommend to follow.

Practical Programming in Python — Physics Without Frontiers — ICTP 40 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Designing Your Own Functions

• Now it’s time to write the
function header

• The name should clearly convey
what the function does

• Pick meaningful parameter names
• Make it easy for other programmers

to use your function

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the function design recipe we recommend to follow.

Practical Programming in Python — Physics Without Frontiers — ICTP 41 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Designing Your Own Functions

• Now write the function description
• This should be a short paragraph

describing what the function does
• Make it clear to other programmers

what the inputs and the
return value are

• If it is useful for users of your
function you can also briefly
mention how the function works

• You can omit this for very simple
functions

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the function design recipe we recommend to follow.

Practical Programming in Python — Physics Without Frontiers — ICTP 42 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Designing Your Own Functions

• Finally, write the function body
• The body should be reasonably short
• If it has many lines think about a way

to break it up
• That said, functions sometimes need

to be a bit lengthy

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the function design recipe we recommend to follow.

Practical Programming in Python — Physics Without Frontiers — ICTP 43 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Designing Your Own Functions

• Now test your function
• Try all examples
• If one does not work, something is

wrong with the function body
• Then you might need more tests to

figure out what is wrong

def days_difference(day1, day2):
"""
Return the number of days between day1 and day2.

The two days are assumed to be in
the range 1-365, that is they
indicate a day of the year.

Examples:

>>> days_difference(200, 224)
24
>>> days_difference(47, 47)
0
>>> days_difference(100, 99)
-1

"""
return day2 - day1

This is the function design recipe we recommend to follow.

Practical Programming in Python — Physics Without Frontiers — ICTP 44 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Running a Program in the IDE

There seem to be no results.

Practical Programming in Python — Physics Without Frontiers — ICTP 45 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Running a Program in the IDE

We used the print function to show results. We will learn other ways to run programs later.

Practical Programming in Python — Physics Without Frontiers — ICTP 46 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Functions That Don’t Return a Value

• You can write a function without a
return statement

• How can this possibly be useful?
• In fact it is a bad sign
• But it can be useful or necessary
• You need to know what happens

>>> def f(x):
... x *= 2
...
>>> res = f(3)
>>> res

Why does this not cause an error?

Practical Programming in Python — Physics Without Frontiers — ICTP 47 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Functions That Don’t Return a Value

• There is no error because all
functions in Python return a value

• If you do not write a return

statement None is returned
• You can also explicitly return None

• It makes no difference

>>> def f(x):
... x *= 2
...
>>> res = f(3)
>>> print(res)
None
>>> id(res)
10748000

>>> def f(x):
... x *= 2
... return None
...
>>> res = f(3)
>>> print(res)
None
>>> id(res)
10748000

We will learn more about the None object later. It is very useful.

Practical Programming in Python — Physics Without Frontiers — ICTP 48 / 49

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exercises Lecture 3

