
Physics Without Frontiers

Practical Programming
in Python
Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 6: Summary & Exercises
Program Organization
Modules, Name Spaces, Main Programs, Libraries

“You can’t write perfect software.”
— Andrew Hunt, The Pragmatic Programmer

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/
https://pragprog.com/book/gwpy2/practical-programming


Lecture 6: Summary

In this lecture you learned the following:

• A module is a collection of functions and variables (in general objects) grouped together
in a file. To use a module, you must first import it using import module_name. After
it has been imported, you refer to its contents using module_name.function_name or
module_name.variable.

• Variable __name__ is created by Python and can be used to specify that some code should
only run when the module is run directly and not when the module is imported.

• Programs have to do more than just run to be useful; they have to run correctly. One way
to ensure that they do is to test them, which you can do in Python using module doctest



Lecture 6: Exercises

When writing code, only use Python concepts that have been introduced
in the lectures already.

Exercise 1:

Import module math, and use its functions to complete the following exercises. (You can call
dir(math) to get a listing of the items in math.)

a. Write an expression that produces the floor of -2.8.

b. Write an expression that rounds the value of -4.3 and then produces the absolute value
of that result.

c. Write an expression that produces the ceiling of the sine of 34.5.

Exercise 2:

In the following exercises, you will work with Python’s calendar module:

a. Visit the Python documentation website at
https://docs.python.org/release/3.6.6/py-modindex.html,
and look at the documentation on module calendar.

b. Import module calendar.

c. Using function help, read the description of function isleap.

d. Use isleap to determine the next leap year.

e. Use dir to get a list of what calendar contains.

f. Find and use a function in module calendar to determine how many leap years there
will be between the years 2000 and 2050, inclusive.

g. Find and use a function in module calendar to determine which day of the week July 29,
2019, will be.

https://docs.python.org/release/3.6.6/py-modindex.html


Exercise 3:

Create a file named exercise.py with this code inside it:

def average(num1, num2):
"""
Return the average of num1 and num2.

Examples:

>>> average(10,20)
15.0
>>> average(2.5, 3.0)
2.75

"""
return num1 + num2 / 2

a. Run exercise.py. Import doctest and run doctest.testmod().

b. Both of the tests in function average docstring fail. Fix the code and rerun the tests.
Repeat this procedure until the tests pass.


