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Abstract

“In theory, practice is simple.”
— Trygve Reenskaug

This lecture introduces a very important kind of control flow: repeti-
tion.
We don’t want to write the same expression or instruction hundreds
of times in our programs – that’s clearly a job for a machine.
Now we’ll learn how to write them once and use loops to repeat in-
structions and how to control when to stop the repetition.
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Overview

• Processing items in a list
• Processing characters in strings
• Ranges of numbers
• The concept of iteration
• Nesting loops
• Controlling loops

Without repetition – loops – programs would not be very useful.
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Processing Items in a List

• With what what we have learned so far, we would need to access
list items one by one:

>>> velocities = [0.0, 9.81, 19.62, 29.43]
>>> print('Metric:', velocities[0], 'm/sec;', 'Imperial:', velocities[0] * 3.28, 'ft/sec')
Metric: 0.0 m/sec; Imperial: 0.0 ft/sec
>>> print('Metric:', velocities[1], 'm/sec;', 'Imperial:', velocities[1] * 3.28, 'ft/sec')
Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec
>>> print('Metric:', velocities[2], 'm/sec; ', 'Imperial:', velocities[2] * 3.28, 'ft/sec')
Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec
>>> print('Metric:', velocities[3], 'm/sec; ', 'Imperial:', velocities[3] * 3.28, 'ft/sec')
Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec

We clearly don’t want to do this for thousands of values.
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Processing Items in a List

• Python provides the for loop that lets you process list elements:

>>> velocities = [0.0, 9.81, 19.62, 29.43]
>>> for velocity in velocities:
... print('Metric:', velocity, 'm/sec;', 'Imperial:', velocity * 3.28, 'ft/sec')
...
Metric: 0.0 m/sec; Imperial: 0.0 ft/sec
Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec
Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec
Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec

Now we can process all items with one statement.
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Processing Items in a List

• The general form of a for loop is:

for variable in list:
block

• The loop variable is assigned to the first item in the list, and the loop block
– the body of the for loop – is executed

• The loop variable is then assigned the second item in the list and the loop body
is executed again
. . .

• Finally, the loop variable is assigned the last item of the list and the loop body
is executed one last time

Each execution of the loop body is an iteration.
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Looping Over Items in List velocities

Iteration Loop variable value Output String
1st velocities[0] 'Metric: 0.0 m/sec; Imperial: 0.0 ft/sec'

2nd velocities[1] 'Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec'

3rd velocities[2] 'Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec'

4th velocities[3] 'Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec'
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Processing Items in a List

• It is possible to use a previously defined variable as the loop variable:

>>> speed = 2
>>> velocities = [0.0, 9.81, 19.62, 29.43]
>>> for speed in velocities:
... print('Metric:', speed, 'm/sec')
...
Metric: 0.0 m/sec
Metric: 9.81 m/sec
Metric: 19.62 m/sec
Metric: 29.43 m/sec

• The loop variable keeps its value after the last iteration:

>>> print('Final:', speed)
Final: 29.43

Note that the last print statement is not part of the loop.
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Processing Characters in Strings

• We can also loop over characters in a string
• The general form is:

for variable in str:
block

• For example, we can loop over a string an print the uppercase characters:

>>> theory = 'Quantum Field Theory'
>>> for ch in theory:
... if ch.isupper():
... print(ch)
...
Q
F
T

How many iterations are in this loop?
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Ranges of Numbers

• Python provides the built-in function range that generates a sequence of integers
• With a single argument, as in range(stop), the sequence starts at 0 and ends with
stop - 1

>>> range(4)
range(0, 4)

• We can loop over this sequence:

>>> for num in range(4):
... print(num)
0
1
2
3

We can loop over all kinds of sequences – iterables – in Python.
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Ranges of Numbers: Converting to Lists

• We can construct a list from a range:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

• Here are some more examples:

>>> list(range(3))
[0, 1, 2]
>>> list(range(1))
[0]
>>> list(range(0))
[]

Note that range specifications are consistent with indexing and slicing.

Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Ranges of Numbers: Changing the Lower Bound

• We can also pass two arguments to the range function:

>>> list(range(1, 5))
[1, 2, 3, 4]
>>> list(range(1, 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5, 10))
[5, 6, 7, 8, 9]

By default, the step size is one.
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Ranges of Numbers: Changing the Step Size

• The step size can be specified with a third argument
• Here is a list of the leap years in the first half of the 21st century:

>>> list(range(2000, 2050, 4))
[2000, 2004, 2008, 2012, 2016, 2020, 2024, 2028, 2032, 2036, 2040, 2044, 2048]

• Descending sequences can be produced with negative step sizes:

>>> list(range(2048, 1999, -4))
[2048, 2044, 2040, 2036, 2032, 2028, 2024, 2020, 2016, 2012, 2008, 2004, 2000]

What do you think this expression produces: list(range(2, 8, -2))?
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Processing Lists Using Indices

• What if we want to change the items in a list?
• For example, we might want to double all values in a list

• The following does not work:

>>> values = [4, 10, 3, 8, -6]
>>> for num in values:
... num *= 2
...
>>> values
[4, 10, 3, 8, -6]

Why does this not work as intended?
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Processing Lists Using Indices

• Iteration is on the left, indexing on the right
• This is the memory model when the loop starts:

>>> values = [4, 10, 3, 8, -6]
>>> for num in values:
... num *= 2
...

4
id1: int

10
id2: int

3
id3: int

8
id4: int

-6
id5: int

0 1 2 3 4
id1 id2 id3 id4 id5

id6: list

values id6

num id1

>>> values = [4, 10, 3, 8, -6]
>>> for idx in range(len(values)):
... values[idx] *= 2
...

4
id1: int

10
id2: int

3
id3: int

8
id4: int

-6
id5: int

0
id7: int

0 1 2 3 4
id1 id2 id3 id4 id5

id6: list

values id6

idx id7

Note that num is referring to a value in the list while idx is not.
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Processing Lists Using Indices

• Iteration is on the left, indexing on the right
• This is the memory model after the first iteration:

>>> values = [4, 10, 3, 8, -6]
>>> for num in values:
... num *= 2
...

4
id1: int

10
id2: int

3
id3: int

8
id4: int

-6
id5: int

0 1 2 3 4
id1 id2 id3 id4 id5

id6: list

values id6

num id4

>>> values = [4, 10, 3, 8, -6]
>>> for idx in range(len(values)):
... values[idx] *= 2
...

4
id1: int

10
id2: int

3
id3: int

8
id4: int

-6
id5: int

0
id7: int

0 1 2 3 4
id4 id2 id3 id4 id5

id6: list

values id6

idx id7

Doubling num in the loop body does not mutate the list.
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Processing Lists Using Indices

• Let’s see what happens when all iterations are done:

>>> values = [4, 10, 3, 8, -6]
>>> for idx in range(len(values)):
... values[idx] *= 2
...
... print(values)
[8, 20, 6, 16, -12] 8

id4: int
20

id9: int
6

id10: int
16

id11: int
-12

id12: int

4
id1: int

0 1 2 3 4
id4 id9 id10 id11 id12

id6: list

values id6

idx id1

All elements have been doubled. The list has been mutated.
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Processing Parallel Lists Using Indices

• Sometimes data from one list corresponds to data from another
• For example, consider these two lists:

>>> metals = ['Li', 'Na', 'K']
>>> weights = [6.941, 22.98976928, 39.0983]

• We can process them in parallel using indices:

>>> for i in range(len(metals)):
... print(metals[i], weights[i])
...
Li 6.941
Na 22.98976928
K 39.0983

We will learn about more elegant ways of doing this later.
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Nesting Loops in Loops

• The loop block can contain another loop
• In the code on the right, the inner loop is

executed once for each item in outer

• The print function is called
len(outer)*len(inner) times

>>> outer = ['Li', 'Na', 'K']
>>> inner = ['F', 'Cl', 'Br']
>>> for metal in outer:
... for halogen in inner:
... print(metal + halogen)
...
...
LiF
LiCl
LiBr
NaF
NaCl
NaBr
KF
KCl
KBr

Nesting often indicates something complicated is going on.

Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Nesting Loops in Loops

• Inner and outer loops can use the same list
• For example, in the code on the right
• Each outer iteration prints a row
• Let’s have a look at the third iteration:

1 i is assigned 3, the third item in numbers
2 The row number, 3, is printed
3 This inner loop header is executed once

per outer iteration
4 The inner loop body is executed five

times. The first time it prints 3, then 6,
and so on

5 A newline is printed after the row is
completed

Avoid modifying lists in these scenarios.

def print_table(n):
"""
Print multiplication table.

Print the multiplication table
for numbers 1 through n inclusive.

Examples:

>>> print_table(5)
1 2 3 4 5

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

"""
# The numbers to include in the table.
numbers = list(range(1, n + 1))

# Print header
for i in numbers:

print('\t' + str(i), end='')
print()

# Print the numbered table rows
for i in numbers:

print(i, end='')
for j in numbers:

print('\t' + str(i * j), end='')
print()

1

2

3

4

5

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Looping Over Nested Lists

• We can also loop over lists in lists (nested lists):

>>> elements = [[ 'Li', 'Na', 'K'], ['F', 'Cl', 'Br']]
>>> for inner_list in elements:
... print(inner_list)
...
['Li', 'Na', 'K']
['F', 'Cl', 'Br']

• To print one element per line we can loop over the inner list:

>>> elements = [[ 'Li', 'Na', 'K'], ['F', 'Cl', 'Br']]
>>> for inner_list in elements:
... for item in inner_list:
... print(item)
...
Li
Na
K
F
Cl
Br

Nested data structures are very common.
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Looping Over Ragged Lists

• Nested lists don’t have to be the same length
• Nested lists with inner lists of varying length are called ragged lists
• Python makes it easy to access ragged lists without knowing their length:

>>> info = [['Isaac Newton', 1643, 1727],
... ['Charles Darwin', 1809, 1882],
... ['Alan Turing', 1912, 1954, 'alan@bletchley.uk']]
>>> For record in info:
... print(len(record), end='')
... for field in record:
... print('', field, end='')
... print()
3 Isaac Newton 1643 1727
3 Charles Darwin 1809 1882
4 Alan Turing 1912 1954 alan@bletchley.uk

Ragged data structures can be hard to handle due to missing items.
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Looping Until a Condition is Reached

• To make for loops work Python needs to know when to stop iterating without
the programmer’s help

• There are many situations where this is not possible
• For example, when user input is involved: does the user want to quit or not?
• The general form of the while statement is:

while expression:
block

• The expression is also called the loop condition
• The loop condition is checked; if it is True the block is executed
• This is repeated until the loop condition is False

We use while loops when the number of iterations depends on data items at run time.
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Looping Until a Condition is Reached

p < 2*p0 block
True

False

• Let’s calculate the time it takes a bacterial
colony to double its population

• With P being the population, r the growth
rate per minute and t the time in minutes,
we have:

P(t + 1) = P(t) + rP(t)

def p_doubled(p0, r):
t = 0
p = p0
while p < 2*p0:

p += r * p
print(round(p))
t += 1

print("P doubled in", t, "min.")
print("Final P:", round(p))

>>> p_doubled(1000, 0.21)
1210
1464
1772
2144
P doubled in 4 min.
Final P: 2144

You can think of a while loop as a repeated if statement.
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Infinite Loops

p != 2*p0 block
True

False condition changed

• Let’s change the condition to require the
population to be exactly doubled

• This does not work well, except for very
few combinations of P0 and r

• Python displays inf if the values are too
large to be represented as a float

def p_doubled(p0, r):
t = 0
p = p0
while p != 2*p0: # condition changed

p += r * p
print(round(p))
t += 1

print("P doubled in", t, "min.")
print("Final P:", round(p))

>>> p_doubled(1000, 0.21)
1210
1464
1772
2144
2594
3138
*** several thousand lines later ***
inf
inf
*** and so on forever ***

Infinite loops are a common symptom of bugs.
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Repetition Based on User Input

• We now can keep asking the user for input:

text = ""
while text != "quit":

text = input("Please enter a chemical formula (or 'quit' to exit): ")
if text == "quit":

print("exiting program...")
elif text == "H2O":

print("Water")
elif text == "NH3":

print("Ammonia")
elif text == "CH4":

print("Methane")
else:

print("Unknown compound")

• The program will exit when the user types quit:

Please enter a chemical formula (or 'quit' to exit): H2O
Water
Please enter a chemical formula (or 'quit' to exit): quit
exiting program...

Note that the loop variable is defined before the loop header.
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Controlling Loops Using Break & Continue

• As a rule, for and while loops execute the whole block on each iteration
• Sometimes it is useful to be able to break that rule
• Python provides two ways to control the loop from within the block:

• break terminates the loop immediately
• continue skips ahead to the next iteration

• Python also provides a loop else statement which is executed if and only if
there was no break in the loop:

for expression:
block

else:
block (iff no break)

while expression:
block

else:
block (iff no break)

These all have their place. But use them with great care. Keep your code readable.
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The Break Statement

• We demonstrate the break statement with compound formula program
• From the user’s perspective the behaviour does not change
• The following is not an infinite loop:

while True:
text = input("Please enter a chemical formula (or 'quit' to exit): ")
if text == "quit":

print("exiting program...")
break

elif text == "H2O":
print("Water")

elif text == "NH3":
print("Ammonia")

elif text == "CH4":
print("Methane")

else:
print("Unknown compound")

In situations like this explicit loop conditions are easier to read.
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The Break Statement

• Sometimes a loop’s task is finished early
• Without break, the loop has to finish

iterating
• For example, we might want to know the

index of the first digit in a string
• There is no need to continue iterating

when we have found it

In this case break should be considered.

>>> s = 'C3H7'
>>> idx = -1
>>> for i in range(len(s)):
... if idx == -1 and s[i].isdigit():
... idx = i
...
>>> idx
1

i < len(s)

idx == 1
and

s[i].isdigit()

block

True

True
False

False
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The Break Statement

• We can simplify the code using break

• The if statement is much simpler now
• One can argue the code is more readable
• But what if there is no digit in the string?
• Or if the string is empty?
• That’s a problem, because we omitted the

definition
>>> idx = -1

• We could just add it back in, but there is
another way. . .

It is a good thing if programs do less.

>>> s = 'C3H7'
>>> for i in range(len(s)):
... if s[i].isdigit():
... idx = i
... break
...
>>> idx
1

i < len(s) s[i].isdigit()

break

True

True
False

False
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The Loop Else Statement

• Python provides the loop else statement
• It is executed when the loop finished

iterating without interruption
• In particular, if there was no break

• It can be very useful to check for
unexpected circumstances

• The readability can be debated

Some despise this syntax. We think it’s OK.

>>> s = 'ABCDE'
>>> for i in range(len(s)):
... if s[i].isdigit():
... idx = i
... break
... else:
... print('Warning: no digit found.')
... idx = -1

i < len(s) s[i].isdigit()

breakelse

True

TrueFalse

False
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The Continue Statement

• We can also “bend the rules” with the
continue statement

• For example, we might want to sum up
all digits in a string

• We don’t want to process letters
• One way of doing this is to skip letters

with the continue statement

This works. But is it a good idea?

>>> s = 'C3H7'
>>> total = 0
>>> count = 0
>>> for i in range(len(s)):
... if s[i].isalpha():
... continue
... total += int(s[i])
... count += 1
...
>>> print(total, count)
10 2

i < len(s)

s[i].isalpha()

rest of loop

continue
True

True

False

False
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The Continue Statement

• We don’t want to process letters
• That is, “if it is a digit, process it.”
• If you say “if”, write if

• It is much more readable here

Only use continue to avoid deep nesting

>>> s = 'C3H7'
>>> total = 0
>>> count = 0
>>> for i in range(len(s)):
... if s[i].isdigit():
... total += int(s[i])
... count += 1
...
>>> print(total, count)
10 2

i < len(s)

s[i].isdigit()

if-block

False

True

True

False
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Exercises Lecture 9


