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Abstract

“All complexities should, if possible, be buried out of sight.”
— David J. Wheeler

So far, the only type of collection we learned about are lists.
Python provides more collections, in particular sets, tuples and dictio-
naries.
Each of these has special properties, making it suitable for particular
algorithms and data structures.
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Overview

• The set type
• The tuple type
• The dict type
• When to use what
• Iteration Revisited

It’s a Python programmer’s virtue to know when to use what.
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Storing Data Using Sets

• A set is an unordered collection of distinct items
• Unordered means the items have no particular order
• An item is in the set or not. That’s all.
• Distincst means any item appears at most once
• This is how you create a set object:

>>> vowels = {'a', 'e', 'i', 'o', 'u'}
>>> vowels
{'i', 'a', 'o', 'e', 'u'}

Notice the set displayed by the shell is unordered.
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Storing Data Using Sets

• Duplicates are removed when we create a set:

>>> vowels = {'a', 'e', 'a', 'a', 'i', 'o', 'u', 'u'}
>>> vowels
{'i', 'a', 'o', 'e', 'u'}

• It might surprise you that the following two sets are equal:

>>> {'a', 'e', 'i', 'o', 'u'} == {'a', 'e', 'a', 'a', 'i', 'o', 'u', 'u'}
True

Two sets are equal if they contain the same items.
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Storing Data Using Sets

• By now, it will not surprise you that a set is
yet another type:

>>> type(vowels)
<class 'set'>
>>> type({1, 2, 3})
<class 'set'>

• To create an empty set we have to
do this:

>>> set()
set()
>>> type(set())
<class 'set'>

It will soon become clear why we can’t use {} for an empty set.
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The Set Memory Model

set([2, 3, 5])

3
id1: int

5
id2: int

2
id3: int

id1 id2 id3

id4: set

set([2, 3, 5, 5, 2, 3])

3
id1: int

5
id2: int

2
id3: int

id1 id2 id3

id4: set

Constructing a set from a list removes duplicates.
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More on Creating Sets

• The function set takes at most one argument:

>>> set(2, 3, 4)
Traceback (most recent call last):
File ``<stdin>'', line 1, in <module>

TypeError: set expected at most 1 arguments, got 3

• A set can be created from another set:

>>> vowels = {'a', 'e', 'a', 'a', 'i', 'o', 'u', 'u'}
>>> vowels
{'i', 'a', 'o', 'e', 'u'}
>>> set({5, 3, 1})
{1, 3, 5}

• Or from a range (or any other generator):

>>> set(range(5))
{0, 1, 2, 3, 4}

Any sequence works. There are some we haven’t seen yet.
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Set Operations

• Python provides set operations known from maths like
intersection, add and remove

• The set operations are implemented as methods
• As usual, you can read all about them in the documentation

https://docs.python.org/3.6/library/stdtypes.html#set

• Or by using the help function:

>>> help(set)

Many set operations also have corresponding operators.

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 31

https://docs.python.org/3.6/library/stdtypes.html#set
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Set Operations

• Sets are mutable, that means we can change the value of set objects
• In particular, we can add or remove items:

>>> vowels = {'a', 'e', 'i', 'o', 'u'}
>>> vowels
{'i', 'a', 'o', 'e', 'u'}

>>> vowels.add('y')
>>> vowels
{'o', 'i', 'a', 'e', 'u', 'y'}

>>> vowels.remove('e')
>>> vowels
{'o', 'i', 'a', 'u', 'y'}

>>> vowels.clear()
>>> vowels
set()

Note again that sets are unordered.
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Set Methods & Operators

Method Call Operator
set1.difference(set2) set1 - set2

set1.intersection(set2) set1 & set2

set1.issubset(set2) set1 <= set2

set1.issuperset(set2) set1 >= set2

set1.union(set2) set1 | set2

set1.symmetric_difference(set2) set1 ^ set2

All of these create new objects.
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What Do Set Operations do for Us?

• Let’s start from this:

>>> lows = set([0, 1, 2, 3, 4])
>>> odds = set([1, 3, 5, 7, 9])

• And now let’s see what the method calls an operators do:

>>> lows.difference(odds)
{0, 2, 4}
>>> lows.intersection(odds)
{1, 3}
>>> lows.issubset(odds)
False
>>> lows.issuperset(odds)
False
>>> lows.union(odds)
{0, 1, 2, 3, 4, 5, 7, 9}
>>> lows.symmetric_difference(odds)
{0, 2, 4, 5, 7, 9}

>>> lows - odds
{0, 2, 4}
>>> lows & odds
{1, 3}
>>> lows <= odds
False
>>> lows >= odds
False
>>> lows | odds
{0, 1, 2, 3, 4, 5, 7, 9}
>>> lows ^ odds
{0, 2, 4, 5, 7, 9}

Remember the operators just call the methods.
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Iterating Over Sets

• Using this set:

>>> lows = set([0, 1, 2, 3, 4])

• We can do the following:

>>> for low in lows:
... print(low)
...
0
1
2
3
4

Iteration with for works for all sequences.
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Storing Data Using Tuples

• Tuples are immutable ordered sequences
• They are created as follows:

>>> bases = ('A', 'C', 'G', 'T')
>>> bases
('A', 'C', 'G', 'T')
>>> numbers = tuple([1, 2, 3])
(1, 2, 3)

• Tuples can be empty:

>>> type(())
<class 'tuple'>

• One-item tuples require special syntax:

>>> type((8))
<class 'int'>
>>> type((8,))
<class 'tuple'>

You can think of tuples as frozen lists.
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Storing Data Using Tuples

• We can use indices on tuples:

>>> bases = ('A', 'C', 'G', 'T')
>>> bases[1]
'C'

• We can iterate over tuples:

>>> bases = ('A', 'C', 'G', 'T')
>>> for base in bases:
... print(base)
...
A
C
G
T

Indexing does only work for ordered sequences.
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Tuples & Mutability: The Memory Model

>>> uk = ['UK', 82.0]
>>> germany = ['Germany', 81.0]
>>> france = ['France', 83.0]

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id1 id2

id3: list

0 1
id4 id5

id6: list

0 1
id7 id8

id9: list

uk id3

germany id6

france id9

There is no tuple yet – we’ll construct it from the variables.
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Tuples & Mutability: The Memory Model

>>> life_expectancies = (uk, germany, france)
>>> life_expectancies
(['UK', 82.0], ['Germany', 81.0], ['France', 83.0])

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id1 id2

id3: list

0 1
id4 id5

id6: list

0 1
id7 id8

id9: list

0 1 2
id3 id6 id9

id10: tuple

uk id3

germany id6

france id9

life_expactancies id10

The tuple contains references to objects, not variables.
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Tuples & Mutability: The Memory Model

>>> france = ['France', 83.5]
>>> life_expectancies
(['UK', 82.0], ['Germany', 81.0], ['France', 83.0])

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id1 id2

id3: list

0 1
id4 id5

id6: list

0 1
id7 id8

id9: list

0 1
id7 id11

id12: list

83.5
id11: float

0 1 2
id3 id6 id9

id10: tuple

uk id3

germany id6

france id9

life_expactancies id10

Note that the tuple has not changed.
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Tuples & Mutability: The Memory Model

>>> life_expectancies[0][1] = 82.5
>>> uk
['UK', 82.5]

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id1 id2

id3: list

0 1
id4 id5

id6: list

0 1
id7 id8

id9: list

0 1
id7 id11

id12: list

83.5
id11: float

82.5
id13: float

0 1 2
id3 id6 id9

id10: tuple

uk id3

germany id6

france id9

life_expactancies id10

The tuple is immutable. But the first item, a list, is mutable.
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Unpacking

• Python provides an elegant way for unpacking sequences

>>> uk, germany, france = life_expectancies
>>> germany
['Germany', 81.0]

>>> coordinates = [1.2, 0.0, 7.32]
>>> x, y, z = coordinates
>>> z
7.32

>>> print(*coordinates)

This works for all sequences.
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More Elegant Loops

• Tuples are useful for processing sequences in parallel
• Python provides the built-in function zip:

metals = ['Li', 'Na', 'K']
weights = [6.941, 22.98976928, 39.0983]

for items in zip(metals, weights):
print(items[0], items[1])

for metal, weight in zip(metals, weights):
print(metal, weight)

• The function enumerate provides indices and items:

for idx, metal in enumerate(metals):
print(idx, metal)

Use these features. They are more readable and robust than raw indices.
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Storing Data Using Dictionaries

• Suppose we want to count the number of
observations for each bird:

bird_counts = []

for line in observations_file:
bird = line.strip()
found = False

# Find bird in the list of bird counts.
for entry in bird_counts:

if entry[0] == bird:
entry[1] = entry[1] + 1
found = True

if not found:
bird_counts.append([bird, 1])

for entry in bird_counts:
print(entry[0], entry[1])

observations.txt

canada goose
canada goose
long-tailed jaeger
canada goose
snow goose
canada goose
long-tailed jaeger
canada goose
northern fulmar

This works. What do you think is not nice about it?
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Storing Data Using Dictionaries

• It would be nice if we could label items with something else than an index
• Python provides dictionaries for exactly that purpose:

>>> months = {'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4}
>>> months
{'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4}
>>> type(months)
<class 'dict'>

• Dictionary values are accessed via keys

>>> months['Feb']
2

• As usual, we can create empty dictionaries:

>>> type({})
<class 'dict'>

Dictionaries are mutable.
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Dictionaries: The Memory Model

>>> bird_counts = {'canada goose': 3, 'northern fulmar': 1}
>>> bird_counts
{'northern fulmar': 1, 'canada goose': 3}

id2 id4
#0 #1

id1 id3

id5: dict

bird_counts id5

’northern fulmar’
id2: str

’canada goose’
id4: str

1
id1: int

3
id3: int

A dictionary has parallell lists of keys and values.
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Dictionaries: The Memory Model

>>> bird_counts = {'canada goose': 3, 'northern fulmar': 1}
>>> bird_counts['canada goose']
3

id2 id4
#0 #1

id1 id3

id5: dict

bird_counts id5

’northern fulmar’
id2: str

’canada goose’
id4: str

1
id1: int

3
id3: int

A dictionary maps keys to values using hashes.
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Dictionaries: The Memory Model

>>> bird = 'northern fulmar'
>>> bird_counts[bird]
1

id2 id4
#0 #1

id1 id3

id5: dict

bird_counts id5

’northern fulmar’
id2: str

’canada goose’
id4: str

1
id1: int

3
id3: int

’northern fulmar’
id6: str

bird id6

The key lookup is based on a hash of the key’s value, not the key object.
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Updating and Checking for Membership

• Suppose we made a mistake:

>>> months = {'Jan':1, 'Feb':2, 'Mar':3, 'Apr':5}
>>> months
{'Jan':1, 'Feb':2, 'Mar':3, 'Apr':5}
>>> months['Apr'] = 4
>>> months
{'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4}

• The in operator checks for the presence of a key:

>>> 'Jan' in months
True
>>> 'May' in months
False

• We can update and retrieve items at the same time:

>>> months.get('May', 5)
5
>>> 'May' in months
True
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Dictionary Operation Examples

• We can get a list of the keys:

>>> months.keys()
['Jan', 'Feb', 'Mar', 'Apr', 'May']

• And of the items:

>>> months.items()
[1, 2, 3, 4, 5]

• Removing all keys and items:

>>> months.clear()
>>> months
{}

Check the documentations for more.
Practical Programming in Python — Physics Without Frontiers — ICTP 27 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Looping Over Dictionaries

• Looping over a dictionary works like with any other collection:

>>> for m in months:
... print(m, months[m])
...
Jan 1
Feb 2
Mar 3
Apr 4
May 5

Remember Python is all about how things behave.
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Storing Data Using Dictionaries

• Suppose we want to count the number of
observations for each bird:

bird_counts = []

for line in observations_file:
bird = line.strip()
found = False

# Find bird in the list of bird counts.
for entry in bird_counts:

if entry[0] == bird:
entry[1] = entry[1] + 1
found = True

if not found:
bird_counts.append([bird, 1])

for entry in bird_counts:
print(entry[0], entry[1])

observations.txt

canada goose
canada goose
long-tailed jaeger
canada goose
snow goose
canada goose
long-tailed jaeger
canada goose
northern fulmar

This works. What do you think is not nice about it?

Practical Programming in Python — Physics Without Frontiers — ICTP 29 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Storing Data Using Dictionaries

• Suppose we want to count the number of
observations for each bird:

bird_counts = {}

for line in observations_file:
bird = line.strip()
bird_counts[bird] = bird_counts.get(bird, 0) + 1

for bird in bird_counts:
print(bird, bird_counts[bird])

observations.txt

canada goose
canada goose
long-tailed jaeger
canada goose
snow goose
canada goose
long-tailed jaeger
canada goose
northern fulmar

This is much better!
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Exercises Lecture 11


