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Abstract

“Should array indices start at 0 or 1? My compromise of 0.5 was re-
jected without, I thought, proper consideration.”

— S. Kelly-Bootle

We will see that it is next to impossible to write useful programs with-
out storing collections of of data.
So far we have seen numbers, Boolean values, strings, functions and a
few other types. Objects of these types, once created, can’t be mod-
ified. Lists are introduces as the first example of a mutable type in
Python.
The ability to change lists and the many operations and methods avail-
able for lists makes them very powerful.
You will use a lot of lists in your programs.
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Overview

• Why we need to store collections of data
• Lists as the first example of a container for storing collections
• Mutability: lists can be changed
• Operations on lists
• Slicing
• List methods

Lists are the most common collection type in Python.
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Example: Counting Whales

• The data is taken from the Gray Whales Count 2016

• Day 1 is February 16, 2016
• The last observation day in 2016, day 101,

was May 26
Day Whales Sighted
1 6

2 3

3 5

4 19

5 15

6 15

7 21

. . .

The full table has 101 rows!
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How Can We Represent this Data Set?

• Given what we have seen so far, we would have to
create seven variables for just this one week

• To track the whole observation period we would
need 101 variables

• And explicitely reference each of them by name in
our program

6
id1: int

3
id2: int

5
id3: int

19
id4: int

15
id5: int

21
id6: int

day1 id1

day2 id2

day3 id3

day4 id4

day5 id5

day6 id5

day7 id6

. . .

This is a programming nightmare.
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List Expressions
• The general form of a list expression is:

[expression1, expression2, ..., expressionN]

• The empty list is expressed as:

[]

• The list itself is an object
• It contains items or elements
• The items contain the memory addresses of other objects
• The items are ordered an can be accessed via indices

The indices start at 0 not 1! We will motivate this choice soon.
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List Variables

• We can use a list to keep track of the one week (or a whole year!) of whale counts
• That is, we can use a list to keep track of the seven int objects containing the counts:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales
[6, 3, 5, 19, 15, 15, 21]

• A list is an object that can be assigned to a variable:

0 1 2 3 4 5 6
id1 id2 id3 id4 id5 id5 id6

id7: list

whales id7

6
id1: int

3
id2: int

5
id3: int

19
id4: int

15
id5: int

21
id6: intlist element, item

list variable

list object

list index

We can now refer to a collection by a name.
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Using Indices: Referring to List Items

• To refer to an item we put the index in brackets after a reference to a list:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales[0]
6
>>> whales[1]
3
>>> whales[5]
15
>>> whales[6]
21

• Using a list index that is out of range results in an error:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales[999]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

Because indices start from 0 the highest valid index is N-1.
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Using Indices: Referring to List Items

• Python allows us to use negative indices as well:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales[-1]
21
>>> whales[-2]
15
>>> whales[-7]
6

• Negative indices can also be out of range:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales[-17]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

Negative indices are useful because we don’t need to know the length of the list.
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Variables Referring to List Items

• Each item is a reference to an object
• That means we can assign it to a variable:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> third = whales[2]
>>> print('Third day:', third)
Third day: 5

Frames Objects

shell

whales id7

third id3

[6, 3, 5, 19, 15, 15, 21]
id7: list

5
id3: int

The concept of aliasing becomes very important with lists.
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The Empty List

• We have learned about the empty string in Lecture 4
• There is also an empty list
• The empty list (like all lists) is expressed with brackets:

>>> whales = []

• An empty list has no items
• So any attempt to index it results in an error:

>>> whales[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> whales[-1]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

In a Boolean expressions the empty list evaluates to False.
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Lists Are Heterogeneous

• Python lists can contain any kind of data
• In particular, items can have different types:

>>> krypton = ['Krypton', 'Kr', -157.2, -153.4]
>>> krypton[1]
'Kr'
>>> krypton[2]
-157.2

This is very useful. In practice, Python list items tend to have the same type.

Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Modifying Lists

• Suppose you made a typo when defining a list of noble gases:

>>> nobles = ['helium', 'none', 'argon', 'krypton', 'xenon', 'radon']

• This is the result in the memory model:

0 1 2 3 4 5
id1 id2 id3 id4 id5 id6

id7: list

nobles id7

’helium’
id1: str

’none’
id2: str

’argon’
id3: str

’krypton’
id4: str

’xenon’
id5: str

’radon’
id6: str

Collections can be large; it would not be practical to redefine them as a whole.
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Modifying Lists

• Python allows us to mutate the list, that is, change the list’s contents:

>>> nobles[1] = 'neon'
>>> nobles
['helium', 'neon', 'argon', 'krypton', 'xenon', 'radon']

• This is the result in the memory model:

0 1 2 3 4 5
id1 id8 id3 id4 id5 id6

id7: list

nobles id7

’helium’
id1: str

’none’
id2: str

’argon’
id3: str

’krypton’
id4: str

’xenon’
id5: str

’radon’
id6: str

’neon’
id8: str

We say lists are mutable (can be changed/modified/mutated).
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Mutable vs. Immutable

• List are mutable
• That is, an expression like L[i] can appear

on the left hand side of an assignment
• This means “look up the memory address

at index i so it can be overwritten”:

>>> nobles[1] = 'neon'

• Strings are immutable
• An expression like S[i] can not appear on

the left hand side of an expression
• Some methods appear to change strings,

but in fact they do create new strings:

>>> name = 'Darwin'
>>> capitalized = name.upper()
>>> print(capitalized, id(capitalized))
DARWIN 140471607498096
>>> print(name, id(name))
Darwin 140471607498040

Understanding mutability is very important for Python programmers.
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List Functions

• We have already seen plenty of Python’s built-in functions
• Some, like len(), work on lists
• There are more we haven’t seen yet because they only make sense for collections

Function Description Requirements
len(L) Return the number of items in list L None
max(L) Return the maximum value in list L Items can be compared
min(L) Return the minimum value in list L Items can be compared
sum(L) Return the sum of the values in list L Items can be added
sorted(L) Return a sorted copy of list L Items can be compared

The above functions, including sorted(), do not mutate the list L.
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List Functions: Examples

• Different isotopes of chemical elements can be stable or radioactive
• Radioactive isotopes often have different half-lives
• For instance, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242

>>> half_lives = [887.7, 24100.0, 6563.0, 14.0, 373300.0]
>>> len(half_lives)
5
>>> max(half_lives)
373300.0
>>> min(half_lives)
14.0
>>> sum(half_lives)
404864.7
# creates a new list
[14.0, 887.7, 6563.0, 24100.0, 373300.0]
>>> half_lives
[887.7, 24100.0, 6563.0, 14.0, 373300.0]

Note again that the list half_lives was not changed.
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Operations on Lists

• Built-in Python types also provide operators
when they make sense

• We have seen the usual examples for numbers
• We also have seen that + concatenates strings
• This operation makes sense for lists, too:

>>> original = ['H', 'He', 'Li']
>>> final = original + ['Be']
>>> final
['H', 'He', 'Li', 'Be']
>>> original
['H', 'He', 'Li']

0 1 2 3
id1 id2 id3 id5

id7: list

final id7

’H’
id1: str

’He’
id2: str

’Li’
id3: str

’Be’
id5: str

0 1 2
id1 id2 id3

id4: list

original id4
0
id5

id6: list

Note that this also does not mutate the original list – a new list is created.
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The List Type

• A Python list is a type
• Python complains if you try to use functions or operators that are

not defined for the involved types:

>>> ['H', 'He', 'Li'] + 'Be'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate list (not "str") to list

Python is not weakly typed.
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List Operators: Repetition

• Lists can be repeated with the * operator:

>>> metals = ['Fe', 'Ni']
>>> metals * 3
['Fe', 'Ni', 'Fe', 'Ni', 'Fe', 'Ni']

Please don’t call this multiplication.

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


List Operators: Deletion

• Since lists are mutable, you can delete an item from a list
• This is done with the del operator:

>>> metals = ['Fe', 'Ni']
>>> del metals[0]
>>> metals
['Ni']

Note that del takes an index, not a value.
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List Operators: Containment

• We can use the in operator to determine containment:

>>> nobles = ['helium', 'neon', 'argon', 'krypton', 'xenon', 'radon']
>>> gas = input('Enter a gas: ')
Enter a gas: argon
>>> if gas in nobles:
... print('{} is noble.'.format(gas))
...
argon is noble.

• Unlike with strings, operator in can’t be used to check for sub-lists:

>>> [1, 2] in [0, 1, 2, 3]
False

Why do you think Python allows to check for sub-strings but not sub-lists?
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Example: C. elegans – “The Worm”

• C. elegans – “The Worm” – is a small worm,
roughly ∼1 mm in size

• It is studied a lot in biology because it possesses
many features of “higher” organisms

• You can learn more about it here

• Biologists label its appearances and behaviour
(phenotypes) with three-letter codes

• Some of these labels are less useful because
they are hard to distinguish in practice

• For example, “Dpy” and “Sma”

Label Phenotype
Emp embryonic lethality
Him high incidence of males
Unc uncoordinated
Lon long
Dpy dumpy: short and fat
Sma small
. . .

Given a full list, how can we extract the more useful labels?
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Slicing Lists

• Python has a convenient notation for taking a slice of a list: L[i:j]

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_phenotypes
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> useful_labels = celegans_phenotypes[0:4] # take the first four elements
>>> useful_labels
['Emb', 'Him', 'Unc', 'Lon']

’Emb’
id1: str

’Him’
id2: str

’Unc’
id3: str

’Lon’
id4: str

’Dpy’
id5: str

’Sma’
id6: str

0 1 2 3 4 5
id1 id2 id3 id4 id5 id6

id7: list

celegans_phenotypes id7

0 1 2 3
id1 id2 id3 id4

id8: list

useful_labels id8

Slicing a list creates a new list.
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Cloning Lists

• Taking a whole slice clones (copies) a list: L[:]

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_copy = celegans_phenotypes[:] # make a copy (clone) the list
>>> celegans_phenotypes[5] = 'Lvl' # this does not change (mutate) the clone!
>>> celegans_phenotypes
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']
>>> celegans_copy
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

’Emb’
id1: str

’Him’
id2: str

’Unc’
id3: str

’Lon’
id4: str

’Dpy’
id5: str

’Sma’
id6: str

’Lvl’
id9: str

0 1 2 3 4 5
id1 id2 id3 id4 id5 id9

id7: list

celegans_phenotypes id7

0 1 2 3 4 5
id1 id2 id3 id4 id5 id6

id8: list

celegans_copy id8

Mutating the original does not change the clone.
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Aliasing: What’s in a Name?

• Aliasing is one of the reasons the notion of mutability is important
• A change to the original mutates the alias and vice versa

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_alias = celegans_phenotypes # create an alias (a new name for the same object)
>>> celegans_phenotypes[5] = 'Lvl' # this does change (mutate) the alias!
>>> celegans_phenotypes
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']
>>> celegans_alias
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

’Emb’
id1: str

’Him’
id2: str

’Unc’
id3: str

’Lon’
id4: str

’Dpy’
id5: str

’Sma’
id6: str

’Lvl’
id9: str

0 1 2 3 4 5
id1 id2 id3 id4 id5 id9

id7: list
celegans_phenotypes id7

celegans_alias id7

An alias is a name referring to the same object as another name.
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Mutable Parameters

• Parameters are just variables
• If parameters are mutable, a function can change them:

def remove_last_item(L):
"""
Return L with the last item removed.

Precondition:

len(L) > 0

Examples:

>>> remove_last_item([1, 3, 2, 4])
[1, 3, 2]

"""
del L[-1]
return L

• Do we need to return L in this case to make the function useful?

In general it is a bad idea to change mutable parameters in a function.
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Common List Methods

Method Description
L.append(v) Append the value v to the list L
L.clear() Remove all items from list L
L.count(v) Return the number of occurrences of v in L
L.extend(l) Append the items in l to L
L.index(v) Return the index of the first occurrence of v in L
L.index(v, beg) Return the index of the first occurrence of v in L at or after the index beg
L.index(v, beg, end) Return the index of the first occurrence of v between indices beg (inclusive)

and end (exclusive)
L.insert(i, v) Insert the value v at index i, shifting subsequent items to make room
L.pop() Remove and return the last item in the non-empty list L
L.remove(v) Remove the first occurrence of v from the list L
L.reverse() Reverse the order of items in the list L
L.sort() Sort the items in L in ascending order
L.sort(reverse=True) Sort the items in L in descending order
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Where Did My List Go?

• Python programmers sometimes forget that many list methods return None

• As a result, lists sometimes seem to disappear:

>>> colors = 'red orange yellow green blue purple'.split()
>>> colors
['red', 'orange', 'yellow', 'green', 'blue', 'purple']
>>> sorted_colors = colors.sort()
>>> print(sorted_colors)
None

• The string method sort changed the list but doesn’t return the modified list:

>>> colors
['blue', 'green', 'orange', 'purple', 'red', 'yellow']

Why is it OK for methods (as opposed to functions) to do this?



Working with a List of Lists

• List items can have any type, in particular they can be lists themselves
• This is called a nested list
• For example, life expectancies in different countries

>>> life_expectancies = [['UK', 82.0], ['Germany', 81.0], ['France', 83.0]]

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id4 id5

id6: list

0 1
id1 id2

id3: list

0 1
id7 id8

id9: list

0 1 2
id3 id6 id9

id10: list

life_expectancies id10

Nesting is a common way to build data structures.
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Referring to a Sub-list

• We can assign sub-lists to variables

>>> life_expectancies = [['UK', 82.0], ['Germany', 81.0], ['France', 83.0]]
>>> uk = life_expectancies[0]
>>> uk
['UK', 82.0]
>>> uk[0]
'UK'
>>> uk[1]
82.0

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id4 id5

id6: list

0 1
id1 id2

id3: list

0 1
id7 id8

id9: list

0 1 2
id3 id6 id9

id10: list

life_expectancies id10

uk id3

alias to sub-list

Modifying the alias (reference) will change the original.
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Exercises Lecture 8


