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Abstract

“You wanted a banana but what you got was a gorilla holding the ba-
nana and the entire jungle.”

— Joe Armstrong

We have worked with objects from the very beginning of this course.
Using objects is not the same as Object Oriented programming.
Object Oriented Programming is a programming paradigm that is quite
fashionable. Practical programmers need to know at least a little bit
about it. Good programmers do not blindly follow paradigms.
For Python programmers, it is most important to understand user de-
fined types.
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Overview

• User defined types
• The Book type
• Encapsulation
• Polymorphism
• Inheritance
• A case study

We will focus on user defined types. OO design is beyond the scope of this course.
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defining your Own Types

• Let’s say we need to keep track of books
• Every record of a book contains things like author, title, publisher price and ISBN

python_book = Book(
'Practical Programming',
['Campbell', 'Gries', 'Montojo'],
'Pragmatic Bookshelf',
'978-1-93778-545-1',
25.0)

print('{0}\nwas written by {1} authors.'.format(
python_book.title,
python_book.num_authors()))

survival_book = Book(
"New Programmer's Survival Manual",
['Carter'],
'Pragmatic Bookshelf',
'978-1-93435-681-4',
19.0)

print('{0}\nwas written by {1} authors.'.format(
survival_book.title,
survival_book.num_authors()))

• There is a problem: this code does not run

What does this code do?
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Defining Our Own Types

• You might have guessed that we created two objects of type Book

• You probably also guess the output:

Practical Programming
was written by 3 authors.

New Programmer's Survival Manual
was written by 3 authors.

Python doesn’t know about the Book type yet.
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Understanding the Problem Domain

• The code expresses what we want to do
with books

• The idea of the Book type comes from the
problem domain

• The problem domain determines the
features we need

• We decided what information we need to
keep track of

• Often we need multiple related types to
reflect the problem domain

OO Design Steps

1. Understand the problem domain: you
need to know what your users want

2. Figure out what types you need: start
with the nouns in the problem
domain

3. Write the classes for the types: you
need to tell Python what your types
are and what they can do

4. Test your code

It is important to think things through before you write code.
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Another Way to Check for Types

• We have used the function type before
• Python also provides the function isinstance:

>>> isinstance('abc', str)
True
>>> isinstance(51.3, str)
False

• Python also has a class object
• Every other class is based on object:

>>> isinstance('abc', object)
True
>>> isinstance(51.3, object)
True

We say every class is derived from class object.
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The Book Class

• This is the simplest class we can write:

>>> class Book:
... """Information about a book."""
...

• Much like str, Book is a type:

>>> type(str)
<class 'str'>
>>> type(Book)
<class 'Book'>

The keyword class tells Python we are defining a type.
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The Book Class

• Let’s use our new type:

>>> ruby_book = Book()
>>> ruby_book.title = 'Programming Ruby'
>>> ruby_book.authors = ['Thomas',
... 'Fowler',
... 'Hunt']

• The first assignment creates a Book object
• The second assignment creates title

variable inside the Book object
• The third assignment creates another

variable inside the Book object

’Thomas’
id4: str

’Fowler’
id5: str

’Hunt’
id6: str

0 1 2
id4 id5 id6

id7: list

’Programming Ruby’
id3: str

title id3

authors id7

Book

id2: Book

ruby_book id2

Book
id1: class

Book id1

The variables inside the Book object are called instance variables.
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The Book Class

• We can access the instance variables like
this:

>>> ruby_book.title
'Programming Ruby'
>>> ruby_book.authors
['Thomas', 'Fowler', 'Hunt']

’Thomas’
id4: str

’Fowler’
id5: str

’Hunt’
id6: str

0 1 2
id4 id5 id6

id7: list

’Programming Ruby’
id3: str

title id3

authors id7

Book

id2: Book

ruby_book id2

Book
id1: class

Book id1

This is similar to what we learned about modules.
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Adding a Method to the Book Class

• We have used methods before:

>>> str.capitalize('browning')
'Browning'
>>> 'browning'.capitalize()
'Browning'

• We would like to be able to do something like this:

>>> Book.num_authors(ruby_book)
3
>>> ruby_book.num_authors()
3

Methods define the behaviour of classes.
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Adding a Method to the Book Class

• We can add a method to the Book class as follows:

class Book:
"""Information about a book."""

def num_authors(self):
"""Return the number of authors"""
return len(self.authors)

• Assuming we have a module book.py, we can call the method like this:

import book
>>> ruby_book = book.Book()
>>> ruby_book.title = 'Programming Ruby'
>>> ruby_book.authors = ['Thomas', 'Fowler', 'Hunt']
>>> book.Book.num_authors(ruby_book)
3
>>> ruby_book.num_authors()
3

All methods expect a class instance as first argument. The name self is a convention.
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The book Module

• Let’s assume the class is defined in book.y

• When we import book the definition gets executed

>>> import book

Frames Objects

Book id3book

id4: module

__init__ id1

num_authors id2

Book

id3: class

__init__(self, . . . )
id1: method

num_authors(self, . . . )
id2: method

book id4

shell

The class definition is just a complicated statement.
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Object Initialization: Constructors

• Previously we have added variables to an object instance
• This is not what we normally do
• Instead we add the variables in the constructor method
• Constructor methods have a special name: __init__

"""Information about a book."""

def __init__(self, title, authors, publisher, isbn, price):
self.title = title
self.authors = authors
self.publisher = publisher
self.isbn = isbn
self.price = price

You can do anything in a constructor that you can do in other methods.
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Object Creation

• Python executes the constructor when an object is created:

>>> python_book = Book(
'Practical Programming',
['Campbell', 'Gries', 'Montojo'],
'Pragmatic Bookshelf',
'978-1-93778-545-1',
25.0)

>>> python_book.title
'Practical Programming'
>>> python_book.authors
['Campbell', 'Gries', 'Montojo']
>>> python_book.publisher
'Pragmatic Bookshelf'
>>> python_book.ISBN
'978-1-93778-545-1'
>>> python_book.price
25.0

You almost always want to define __init__ for your classes.
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Memory Model After Creating Book Object

Frames Objects

’Campbell’
id7: str

’Gries’
id8: str

’Montojo’
id9: str

0 1 2
id7 id8 id9

id10: list

authors id10

title id6

publisher id11

isbn id12

price id13

Book

’Practical Programming’
id6: str

’Pragmatic Bookshelf’
id11: str

’978-1-93778-545-1’
id12: str

25.0
id13: float

id5: Book

Book id3book

id4: module

__init__ id1

num_authors id2

Book

id3: class

__init__(self, . . . )
id1: method

num_authors(self, . . . )
id2: method

book id4

python_book id5

shell

Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Tracing a Method Call

>>> python-book.num_authors()

Frames Objects

’Campbell’
id7: str

’Gries’
id8: str

’Montojo’
id9: str

0 1 2
id7 id8 id9

id10: list

authors id10

title id6

publisher id11

isbn id12

price id13

Book

’Practical Programming’
id6: str

’Pragmatic Bookshelf’
id11: str

’978-1-93778-545-1’
id12: str

25.0
id13: float

id5: Book

Book id3book

id4: module

__init__ id1

num_authors id2

Book

id3: class

__init__(self, . . . )
id1: method

num_authors(self, . . . )
id2: method

book id4

python_book id5

shell

self id5

Book.num_authors
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Tracing a Method Call

3

Frames Objects

’Campbell’
id7: str

’Gries’
id8: str

’Montojo’
id9: str

0 1 2
id7 id8 id9

id10: list

authors id10

title id6

publisher id11

isbn id12

price id13

Book

’Practical Programming’
id6: str

’Pragmatic Bookshelf’
id11: str

’978-1-93778-545-1’
id12: str

25.0
id13: float

id5: Book

Book id3book

id4: module

__init__ id1

num_authors id2

Book

id3: class

__init__(self, . . . )
id1: method

num_authors(self, . . . )
id2: method

3
id14: int

book id4

python_book id5

shell

self id5

return value id14

Book.num_authors
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More Methods Special to Python

• When we print an object the __str__ is called
• We can write this method for book:

def __str__(self):
return '"{}" ISBN: {}'.format(self.title, self.isbn)

• Is common to ask whether to object have equal values
• The operator == calls the __eq__ method.

def __eq__(self, other):
return self.isbn == other.isbn

This is an example of polymorphism.
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Inheritance

• Sometimes classes share a lot of functionality
• Then it is useful to factor out the common things and use inheritance

class InstituteMember:

def __init__(self, name, id):
self.name = name
self.id = id

class Student(InstituteMember):
"""Student information."""

class Professor(InstituteMember):
"""Professor information."""

Use with great care.
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Exercises Lecture 14


