
Practical Programming
in Python

Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 2
Hello, Python

The Python Interpreter, The Shell, Values, Operators, Expressions, Types, The Memory Model

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Abstract

“Programming is learned by writing programs.”
— Brian Kernighan

We briefly describe how a computer runs programs, in particular
Python programs.
We will describe the simplest Python statements and show how they
can be used to do arithmetic. This is one of the most common tasks
for computers and a great place to start learning to program.
We then introduce the Python memory model and the concept of a
statement using the example of the assignment statement.
The concepts introduced here form the basis of everything that fol-
lows.

Practical Programming in Python — Physics Without Frontiers — ICTP 1 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Overview

• How a computer runs Python programs
• The Python shell
• Values, operators, expressions
• Types
• Variables and computer memory

The concepts are not complicated but very important.

Practical Programming in Python — Physics Without Frontiers — ICTP 2 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Computers & Operating Systems

• A computer is built from pieces of hardware
• A special program provides access to the hardware
• This program is an operating system, or OS
• For example, Windows, OS X, Linux
• Applications interact with the OS to access the

hardware
• Application programmers don’t need to know

hardware details as the OS handles them

Applications

Operating System

Hard Drive Keyboard Monitor

Hardware

Programmers need a basic understanding of the machines they use.

Practical Programming in Python — Physics Without Frontiers — ICTP 3 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

How Python Programs Run

• Python is a high level programming language
• The Python interpreter runs your Python programs
• The interpreter provides a run time environment
• This frees Python programmers (you!) from many

headaches
• The interpreter is just another program
• That’s right, your program runs in a program that

runs in a program. . .
• Layers of abstraction like this are common

Applications Python Interpreter

Python Program

Operating System

Hard Drive Keyboard Monitor

Hardware

The machine you need to know about is a virtual machine: the Python interpreter.

Practical Programming in Python — Physics Without Frontiers — ICTP 4 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Expressions, Values, Operators

• You know mathematical expressions like 3 + 4

• Each expression is built from values like 2, 3 and 5
and operators like + and −

• The operators combine their operands in different ways
• In the expression 4/5, the operator is “/” and the operands are 4 and 5
• Expressions can come without operators; the value 212 is an expression in itself
• Like any programming language, Python can evaluate basic mathematical expressions
• For example:

>>> 4 + 13
17

Expressions are the smallest building blocks of programs.

Practical Programming in Python — Physics Without Frontiers — ICTP 5 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Try this in the IDE Shell

You can try any expression in the IDE shell.
Practical Programming in Python — Physics Without Frontiers — ICTP 6 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Integer Division & Modulo

• Programmers often want to know the integer part of a division result
• For example, the number of days in 57 hours:

>>> 57 // 24
2

• We also often need the remainder of a division result:

>>> 57 % 24
9

• Beware of negative operands, the results might be surprising:

>>> -13 // 10
-2
>>> -13 % 10
7
>>> 13 % -10
-7

Make sure you understand these very useful operators.
Practical Programming in Python — Physics Without Frontiers — ICTP 7 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Arithmetic Operators

Symbol Operator Example Result
- Negation -5 -5

+ Addition 11+3.1 14.1

- Subtraction 5-19 -14

* Multiplication 8.5*4 34.0

/ Division 11/2 5.5

// Integer Division 11//2 5

% Remainder 8.5%3.5 1.5

** Exponentiation 2**5 32

Familiarize yourself with operators on the Python shell.

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

What is a Type?

• We have seen two types of numbers, integers and floating-point
• We have also seen operators that can be used on them

Types are defined by:

1. A set of values

2. A set of operations that can be applied to the values

• We will soon see more types and later define our own

Programming is very much about understanding types.

Practical Programming in Python — Physics Without Frontiers — ICTP 9 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Operator Precedence

• Let’s say we want to convert Fahrenheit to Celsius:

>>> 212 - 32 * 5 / 9
194.22222222222223

• But the result should be 100.0!
• This is because * and / have higher precedence than -.
• We have to use parentheses to get the correct result:

>>> (212 - 32) * 5 / 9
100.0

Make complicated expressions more readable with parentheses.

Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Operator Precedence

Precedence Operator Operation
highest ** Exponentiation

- Negation

*, /, //, % Multiplication, Division, Integer Division, Remainder
lowest +, - Addition, Subtraction

Do not show off your knowledge of operator precedence. Use parentheses.

Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Finite Numeric Precision

• Values of type float are not exact fractions:

>>> 2 / 3 + 1
1.6666666666666665
>>> 5 / 3
1.6666666666666667

• The rounding errors look small
• But they can pile up in a long calculation
• Adding small float numbers to large float numbers can have no effect at all:

>>> 10000000000 + 0.00000000001
10000000000.0

There are entire books on the topic of numerical computation.

Practical Programming in Python — Physics Without Frontiers — ICTP 12 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Variables: Remembering Values

• A variable is created by assigning it a value:

>>> degrees_celsius = 26.0

• This makes degrees_celsius refer to 26.0:

>>> degrees_celsius
26.0
>>> 9 / 5 * degrees_celsius + 32
78.80000000000001
>>> degrees_celsius / degrees_celsius
1.0

• You can assign a new value to a variable (this does not create a new variable):

>>> degrees_celsius = 0.0
>>> 9 / 5 * degrees_celsius + 32
32.0

Variables refer to objects of a certain type.
Practical Programming in Python — Physics Without Frontiers — ICTP 13 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Warning: = is not equality in Python!

• The meaning of = in Python is not the same as in mathematics.

• The assignment operator is not symmetric.

• n = 13 assigns the value 13 to the variable n.

• 13 = n results in an error.

• We read n = 13 as “n is assigned 13” rather than “n equals 13”.

Practical Programming in Python — Physics Without Frontiers — ICTP 14 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Memory Model: Graphical Notation

• A floating point value 26.0 at the memory address id1 is drawn like this:

26.0
id1: float

• Note that we show the type, in this case float

• A drawing like this represents an object
• In our memory model, a variable contains the memory address of the object to which it

refers
• We will draw arrows from variables to the objects they refer to:

26.0
id1: float

degrees_celsius id1

You have to have a mental model of what’s going on in the Python interpreter.
Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Memory Model: Terminology

26.0
id1: float

degrees_celsius id1

variable

memory address

objectreference

type

value

• The value 26.0 has the memory address id1
• The object at the memory address id1 has the type float and the value 26.0

• The variable degrees_celsius contains the memory address id1
• The variable degrees_celsius refers to the object of type float with the value 26.0

• We also say the variable is a reference to the object

Programmers should talk about things precisely.

Practical Programming in Python — Physics Without Frontiers — ICTP 16 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Assignment Statement

• General form of an assignment statement:

variable = expression

• It is executed as follows:
1. Evaluate the expression on the right of the = sign to produce a value.

This value has a memory address.
2. Store the memory address in the variable on the left of the = sign.

Create a new variable if necessary.
Otherwise just replace the memory address the variable contains.

The assignment makes the variable refer to an object.

Practical Programming in Python — Physics Without Frontiers — ICTP 17 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Assignment Example

>>> degrees_celsius = 26.0 + 5
>>> degrees_celsius
31.0

degrees_celsius = 26.0 + 5

31.0
id1: float

degrees_celcius id1

• The statement degrees_celsius = 26.0 + 5 is executed as follows:
1. Evaluate the expression on the right of the = sign: 26.0 + 5.

This produces the value 31.0, which has a memory address.
2. Make the variable on the left of the = sign, degrees_celsius,

refer to 31.0 by storing the memory address of 31.0 in degrees_celsius.

This time, the right hand side is not just a constant.

Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Try this in the IDE Debugger (Examination Mode)

Start stepping through by clicking the debug symbol.
Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Try this in the IDE Debugger (Examination Mode)

Watch what the Python interpreter does while stepping through.
Practical Programming in Python — Physics Without Frontiers — ICTP 20 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Reassigning to Variables

>>> difference = 20
>>> double = 2 * difference
>>> double
40
>>> difference = 5
>>> double
40

difference id1 20
id1: int

• First statement, difference = 20:
1. Evaluate the expression on the right of the = sign: 20.

This produces the value 20, which is put at the address id1.

2. Make the variable on the left of the = sign, difference, refer to 20
by storing id1 in difference.

So far just a simple assignment.

Practical Programming in Python — Physics Without Frontiers — ICTP 21 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Reassigning to Variables

>>> difference = 20
>>> double = 2 * difference
>>> double
40
>>> difference = 5
>>> double
40

difference id1

double id2

20
id1: int

40
id2: int

• Second statement, double = 2 * difference:
1. Evaluate the expression on the right of the = sign.

Because difference refers to the value 20, this expression yields 2 * 20.
The resulting value 40 is stored at the memory address id2.

2. Make the variable on the left of the = sign, double, refer to 40
by storing id2 in double.

To evaluate the expression we dereferenced (accessed, used) a variable.

Practical Programming in Python — Physics Without Frontiers — ICTP 22 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Reassigning to Variables

>>> difference = 20
>>> double = 2 * difference
>>> double
40
>>> difference = 5
>>> double
40

difference id3

double id2

20
id1: int

40
id2: int

5
id3: int

• Third statement, difference = 5:
1. Evaluate the expression on the right of the = sign: 5.

This produces the value 5 which is stored at the memory address id3.

2. Make the variable on the left of the = sign, difference, refer to 5
by storing id3 in difference.

The variable double did not change. No variable refers to 20 anymore.

Practical Programming in Python — Physics Without Frontiers — ICTP 23 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Try this in the IDE Shell

Note how the values change in the variable inspector.
Practical Programming in Python — Physics Without Frontiers — ICTP 24 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Augmented Assigment Operators

Symbol Example (x = 5) Result
+= x += 3 x refers to 8
-= x -= 3 x refers to 2

*= x *= 3 x refers to 15
/= x /= 2 x refers to 2.5
//= x //= 2 x refers to 2
%= x %= 2 x refers to 1

**= x **= 2 x refers to 25

This is mostly syntactic sugar. That said, it is often more readable.

Practical Programming in Python — Physics Without Frontiers — ICTP 25 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Writing Readable Code

• The following two expressions are equivalent:

num_customers = num_customers + 1
num_customers += 1

• The second is easier to read
• We use white space to make our code more readable
• Parentheses, even when not necessary, make expressions more readable

f = (x + 3.0) * 2.5
g = f * (5 / 9)

• Don’t write like this:

g = f*5/9

Code is read much more often than it is written.
Practical Programming in Python — Physics Without Frontiers — ICTP 26 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Describing Code: Comments

• Programs are often complicated and quite long
• We use comments to describe code, making it easier to understand for future readers
• In Python, a comment starts with the character #
• Everything after # on a line is ignored by Python
• But hopefully not by programmers reading your code!

Python ignores this
convert 212 degrees Celsius to Fahrenheit
100.0

• You can assume your readers will be programmers
• Don’t do this:

num_customers += 1 # increment number of customers

Writing useful comments is an art.
Practical Programming in Python — Physics Without Frontiers — ICTP 27 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

When Things Go Wrong

Things Can Go Wrong in Two Ways

1. You write something Python can’t digest (syntax error)

2. Your solution does not work (semantic error)

>>> 17 +
File "<stdin>", line 1
17 +

^
SyntaxError: invalid syntax

>>> 13 + foo
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'foo' is not defined

The reported errors are also called exceptions. We will use them to ask for forgiveness later.
Practical Programming in Python — Physics Without Frontiers — ICTP 28 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exercises Lecture 2

