
Practical Programming
in Python

Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 11
More Collection Types

Sets, Tuples, Dictionaries, What to use when, Iteration Revisited

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Abstract

“All complexities should, if possible, be buried out of sight.”
— David J. Wheeler

So far, the only type of collection we learned about are lists.
Python provides more collections, in particular sets, tuples and dictio-
naries.
Each of these has special properties, making it suitable for particular
algorithms and data structures.

Practical Programming in Python — Physics Without Frontiers — ICTP 1 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Overview

• The set type
• The tuple type
• The dict type
• When to use what
• Iteration Revisited

It’s a Python programmer’s virtue to know when to use what.

Practical Programming in Python — Physics Without Frontiers — ICTP 2 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Storing Data Using Sets

• A set is an unordered collection of distinct items
• Unordered means the items have no particular order
• An item is in the set or not. That’s all.
• Distincst means any item appears at most once
• This is how you create a set object:

>>> vowels = {'a', 'e', 'i', 'o', 'u'}
>>> vowels
{'i', 'a', 'o', 'e', 'u'}

Notice the set displayed by the shell is unordered.

Practical Programming in Python — Physics Without Frontiers — ICTP 3 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Storing Data Using Sets

• Duplicates are removed when we create a set:

>>> vowels = {'a', 'e', 'a', 'a', 'i', 'o', 'u', 'u'}
>>> vowels
{'i', 'a', 'o', 'e', 'u'}

• It might surprise you that the following two sets are equal:

>>> {'a', 'e', 'i', 'o', 'u'} == {'a', 'e', 'a', 'a', 'i', 'o', 'u', 'u'}
True

Two sets are equal if they contain the same items.

Practical Programming in Python — Physics Without Frontiers — ICTP 4 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Storing Data Using Sets

• By now, it will not surprise you that a set is
yet another type:

>>> type(vowels)
<class 'set'>
>>> type({1, 2, 3})
<class 'set'>

• To create an empty set we have to
do this:

>>> set()
set()
>>> type(set())
<class 'set'>

It will soon become clear why we can’t use {} for an empty set.

Practical Programming in Python — Physics Without Frontiers — ICTP 5 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Set Memory Model

set([2, 3, 5])

3
id1: int

5
id2: int

2
id3: int

id1 id2 id3

id4: set

set([2, 3, 5, 5, 2, 3])

3
id1: int

5
id2: int

2
id3: int

id1 id2 id3

id4: set

Constructing a set from a list removes duplicates.

Practical Programming in Python — Physics Without Frontiers — ICTP 6 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

More on Creating Sets

• The function set takes at most one argument:

>>> set(2, 3, 4)
Traceback (most recent call last):
File ``<stdin>'', line 1, in <module>

TypeError: set expected at most 1 arguments, got 3

• A set can be created from another set:

>>> vowels = {'a', 'e', 'a', 'a', 'i', 'o', 'u', 'u'}
>>> vowels
{'i', 'a', 'o', 'e', 'u'}
>>> set({5, 3, 1})
{1, 3, 5}

• Or from a range (or any other generator):

>>> set(range(5))
{0, 1, 2, 3, 4}

Any sequence works. There are some we haven’t seen yet.
Practical Programming in Python — Physics Without Frontiers — ICTP 7 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Set Operations

• Python provides set operations known from maths like
intersection, add and remove

• The set operations are implemented as methods
• As usual, you can read all about them in the documentation

https://docs.python.org/3.6/library/stdtypes.html#set

• Or by using the help function:

>>> help(set)

Many set operations also have corresponding operators.

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 31

https://docs.python.org/3.6/library/stdtypes.html#set
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Set Operations

• Sets are mutable, that means we can change the value of set objects
• In particular, we can add or remove items:

>>> vowels = {'a', 'e', 'i', 'o', 'u'}
>>> vowels
{'i', 'a', 'o', 'e', 'u'}

>>> vowels.add('y')
>>> vowels
{'o', 'i', 'a', 'e', 'u', 'y'}

>>> vowels.remove('e')
>>> vowels
{'o', 'i', 'a', 'u', 'y'}

>>> vowels.clear()
>>> vowels
set()

Note again that sets are unordered.
Practical Programming in Python — Physics Without Frontiers — ICTP 9 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Set Methods & Operators

Method Call Operator
set1.difference(set2) set1 - set2

set1.intersection(set2) set1 & set2

set1.issubset(set2) set1 <= set2

set1.issuperset(set2) set1 >= set2

set1.union(set2) set1 | set2

set1.symmetric_difference(set2) set1 ^ set2

All of these create new objects.

Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

What Do Set Operations do for Us?

• Let’s start from this:

>>> lows = set([0, 1, 2, 3, 4])
>>> odds = set([1, 3, 5, 7, 9])

• And now let’s see what the method calls an operators do:

>>> lows.difference(odds)
{0, 2, 4}
>>> lows.intersection(odds)
{1, 3}
>>> lows.issubset(odds)
False
>>> lows.issuperset(odds)
False
>>> lows.union(odds)
{0, 1, 2, 3, 4, 5, 7, 9}
>>> lows.symmetric_difference(odds)
{0, 2, 4, 5, 7, 9}

>>> lows - odds
{0, 2, 4}
>>> lows & odds
{1, 3}
>>> lows <= odds
False
>>> lows >= odds
False
>>> lows | odds
{0, 1, 2, 3, 4, 5, 7, 9}
>>> lows ^ odds
{0, 2, 4, 5, 7, 9}

Remember the operators just call the methods.

Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Iterating Over Sets

• Using this set:

>>> lows = set([0, 1, 2, 3, 4])

• We can do the following:

>>> for low in lows:
... print(low)
...
0
1
2
3
4

Iteration with for works for all sequences.

Practical Programming in Python — Physics Without Frontiers — ICTP 12 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Storing Data Using Tuples

• Tuples are immutable ordered sequences
• They are created as follows:

>>> bases = ('A', 'C', 'G', 'T')
>>> bases
('A', 'C', 'G', 'T')
>>> numbers = tuple([1, 2, 3])
(1, 2, 3)

• Tuples can be empty:

>>> type(())
<class 'tuple'>

• One-item tuples require special syntax:

>>> type((8))
<class 'int'>
>>> type((8,))
<class 'tuple'>

You can think of tuples as frozen lists.
Practical Programming in Python — Physics Without Frontiers — ICTP 13 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Storing Data Using Tuples

• We can use indices on tuples:

>>> bases = ('A', 'C', 'G', 'T')
>>> bases[1]
'C'

• We can iterate over tuples:

>>> bases = ('A', 'C', 'G', 'T')
>>> for base in bases:
... print(base)
...
A
C
G
T

Indexing does only work for ordered sequences.

Practical Programming in Python — Physics Without Frontiers — ICTP 14 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Tuples & Mutability: The Memory Model

>>> uk = ['UK', 82.0]
>>> germany = ['Germany', 81.0]
>>> france = ['France', 83.0]

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id1 id2

id3: list

0 1
id4 id5

id6: list

0 1
id7 id8

id9: list

uk id3

germany id6

france id9

There is no tuple yet – we’ll construct it from the variables.
Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Tuples & Mutability: The Memory Model

>>> life_expectancies = (uk, germany, france)
>>> life_expectancies
(['UK', 82.0], ['Germany', 81.0], ['France', 83.0])

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id1 id2

id3: list

0 1
id4 id5

id6: list

0 1
id7 id8

id9: list

0 1 2
id3 id6 id9

id10: tuple

uk id3

germany id6

france id9

life_expactancies id10

The tuple contains references to objects, not variables.
Practical Programming in Python — Physics Without Frontiers — ICTP 16 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Tuples & Mutability: The Memory Model

>>> france = ['France', 83.5]
>>> life_expectancies
(['UK', 82.0], ['Germany', 81.0], ['France', 83.0])

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id1 id2

id3: list

0 1
id4 id5

id6: list

0 1
id7 id8

id9: list

0 1
id7 id11

id12: list

83.5
id11: float

0 1 2
id3 id6 id9

id10: tuple

uk id3

germany id6

france id9

life_expactancies id10

Note that the tuple has not changed.
Practical Programming in Python — Physics Without Frontiers — ICTP 17 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Tuples & Mutability: The Memory Model

>>> life_expectancies[0][1] = 82.5
>>> uk
['UK', 82.5]

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id1 id2

id3: list

0 1
id4 id5

id6: list

0 1
id7 id8

id9: list

0 1
id7 id11

id12: list

83.5
id11: float

82.5
id13: float

0 1 2
id3 id6 id9

id10: tuple

uk id3

germany id6

france id9

life_expactancies id10

The tuple is immutable. But the first item, a list, is mutable.
Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Unpacking

• Python provides an elegant way for unpacking sequences

>>> uk, germany, france = life_expectancies
>>> germany
['Germany', 81.0]

>>> coordinates = [1.2, 0.0, 7.32]
>>> x, y, z = coordinates
>>> z
7.32

>>> print(*coordinates)

This works for all sequences.

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

More Elegant Loops

• Tuples are useful for processing sequences in parallel
• Python provides the built-in function zip:

metals = ['Li', 'Na', 'K']
weights = [6.941, 22.98976928, 39.0983]

for items in zip(metals, weights):
print(items[0], items[1])

for metal, weight in zip(metals, weights):
print(metal, weight)

• The function enumerate provides indices and items:

for idx, metal in enumerate(metals):
print(idx, metal)

Use these features. They are more readable and robust than raw indices.
Practical Programming in Python — Physics Without Frontiers — ICTP 20 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Storing Data Using Dictionaries

• Suppose we want to count the number of
observations for each bird:

bird_counts = []

for line in observations_file:
bird = line.strip()
found = False

Find bird in the list of bird counts.
for entry in bird_counts:

if entry[0] == bird:
entry[1] = entry[1] + 1
found = True

if not found:
bird_counts.append([bird, 1])

for entry in bird_counts:
print(entry[0], entry[1])

observations.txt

canada goose
canada goose
long-tailed jaeger
canada goose
snow goose
canada goose
long-tailed jaeger
canada goose
northern fulmar

This works. What do you think is not nice about it?

Practical Programming in Python — Physics Without Frontiers — ICTP 21 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Storing Data Using Dictionaries

• It would be nice if we could label items with something else than an index
• Python provides dictionaries for exactly that purpose:

>>> months = {'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4}
>>> months
{'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4}
>>> type(months)
<class 'dict'>

• Dictionary values are accessed via keys

>>> months['Feb']
2

• As usual, we can create empty dictionaries:

>>> type({})
<class 'dict'>

Dictionaries are mutable.
Practical Programming in Python — Physics Without Frontiers — ICTP 22 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Dictionaries: The Memory Model

>>> bird_counts = {'canada goose': 3, 'northern fulmar': 1}
>>> bird_counts
{'northern fulmar': 1, 'canada goose': 3}

id2 id4
#0 #1

id1 id3

id5: dict

bird_counts id5

’northern fulmar’
id2: str

’canada goose’
id4: str

1
id1: int

3
id3: int

A dictionary has parallell lists of keys and values.

Practical Programming in Python — Physics Without Frontiers — ICTP 23 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Dictionaries: The Memory Model

>>> bird_counts = {'canada goose': 3, 'northern fulmar': 1}
>>> bird_counts['canada goose']
3

id2 id4
#0 #1

id1 id3

id5: dict

bird_counts id5

’northern fulmar’
id2: str

’canada goose’
id4: str

1
id1: int

3
id3: int

A dictionary maps keys to values using hashes.

Practical Programming in Python — Physics Without Frontiers — ICTP 24 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Dictionaries: The Memory Model

>>> bird = 'northern fulmar'
>>> bird_counts[bird]
1

id2 id4
#0 #1

id1 id3

id5: dict

bird_counts id5

’northern fulmar’
id2: str

’canada goose’
id4: str

1
id1: int

3
id3: int

’northern fulmar’
id6: str

bird id6

The key lookup is based on a hash of the key’s value, not the key object.

Practical Programming in Python — Physics Without Frontiers — ICTP 25 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Updating and Checking for Membership

• Suppose we made a mistake:

>>> months = {'Jan':1, 'Feb':2, 'Mar':3, 'Apr':5}
>>> months
{'Jan':1, 'Feb':2, 'Mar':3, 'Apr':5}
>>> months['Apr'] = 4
>>> months
{'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4}

• The in operator checks for the presence of a key:

>>> 'Jan' in months
True
>>> 'May' in months
False

• We can update and retrieve items at the same time:

>>> months.get('May', 5)
5
>>> 'May' in months
True

Practical Programming in Python — Physics Without Frontiers — ICTP 26 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Dictionary Operation Examples

• We can get a list of the keys:

>>> months.keys()
['Jan', 'Feb', 'Mar', 'Apr', 'May']

• And of the items:

>>> months.items()
[1, 2, 3, 4, 5]

• Removing all keys and items:

>>> months.clear()
>>> months
{}

Check the documentations for more.
Practical Programming in Python — Physics Without Frontiers — ICTP 27 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Looping Over Dictionaries

• Looping over a dictionary works like with any other collection:

>>> for m in months:
... print(m, months[m])
...
Jan 1
Feb 2
Mar 3
Apr 4
May 5

Remember Python is all about how things behave.

Practical Programming in Python — Physics Without Frontiers — ICTP 28 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Storing Data Using Dictionaries

• Suppose we want to count the number of
observations for each bird:

bird_counts = []

for line in observations_file:
bird = line.strip()
found = False

Find bird in the list of bird counts.
for entry in bird_counts:

if entry[0] == bird:
entry[1] = entry[1] + 1
found = True

if not found:
bird_counts.append([bird, 1])

for entry in bird_counts:
print(entry[0], entry[1])

observations.txt

canada goose
canada goose
long-tailed jaeger
canada goose
snow goose
canada goose
long-tailed jaeger
canada goose
northern fulmar

This works. What do you think is not nice about it?

Practical Programming in Python — Physics Without Frontiers — ICTP 29 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Storing Data Using Dictionaries

• Suppose we want to count the number of
observations for each bird:

bird_counts = {}

for line in observations_file:
bird = line.strip()
bird_counts[bird] = bird_counts.get(bird, 0) + 1

for bird in bird_counts:
print(bird, bird_counts[bird])

observations.txt

canada goose
canada goose
long-tailed jaeger
canada goose
snow goose
canada goose
long-tailed jaeger
canada goose
northern fulmar

This is much better!

Practical Programming in Python — Physics Without Frontiers — ICTP 30 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exercises Lecture 11

