Physics Without Frontiers

The Abdus Salam JITHA}
, International Centre -z
(CTP for Theoretical Physics ()

)

Practical Programming
in Python

Inspired by ‘Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 5: Summary & Exercises
Making Choices

The Boolean Type, Boolean Operators, Relational Operators, Choosing which Statements to
Execute

“The best thing about a boolean is even if you
are wrong, you are only off by a bit.”
— Anonymous

Copyright © 2018 Kurt Rinnert, Kate Shaw

Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.


https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/
https://pragprog.com/book/gwpy2/practical-programming

Lecture 5: Summary

+ Python uses Boolean values, True and False, to represent what is true and what isn't.
Programs can combine these values using three operators: not, and, and or.

+ Boolean operators can also be applied to numeric values. 0, 0.0, the empty string, and
None are treated as False; all other numeric values and strings are treated as True. It is
best to avoid applying Boolean operators to non-Boolean values.

+ Relational operators such as “equals” and “less than” relate values and produce a Boolean
result.

Relational Operators

greater than

less than

greater than or equal to
less than or equal to

equal to

not equal to
in contained in
is object identity

+ When different operators are combined in an expression, the order of precedence from
highest to lowest is arithmetic, relational, and then Boolean.

- if statements control the flow of execution. As with function definitions, the bodies of
if statements are indented, as are the bodies of elif and else clauses.



Lecture 5: Exercises

When writing code, only use Python concepts that have been introduced
in the lectures already.

Exercise 1:

What value does each expression produce? Verify your answers by typing the expressions into
Python.

a. True and not False

b. True and not false (Notice the capitalization!)
C. True or True and False

d. not True or not False

e. True and not 0

f. 52 < 52.3

g 1+ 52 <52.3

h. 4 1= 4.0

Exercise 2:

Variables a and b refer to Boolean values.
a. Write an expression that produces True iff both variables are True.
b. Write an expression that produces True iff a is False.

c. Write an expression that produces True iff at least one of the variables is True.

Exercise 3:

Variables full and empty refer to Boolean values. Write an expression that produces True iff
at most one of the variables is True.



We have learned Python’s or operator is inclusive. That is, True or True evaluates to True. An
“exclusive or” operator would evaluate this expression to False, more akin to everyday lan-
guage.

You want an automatic wildlife camera to switch on if the light level is less than 0.01 lux or
if the temperature is above freezing, but not if both conditions are true. (You should assume
that function turn_camera_on has already been defined.)

Your first attempt to write this is as follows:

if (light < 0.01) or (temperature > 0.0):
if not ((light 0.01) and (temperature 0.0)):
turn_camera_on()

A friend says that this is an exclusive or and that you could write it more simply as follows:

if (light < 0.01) (temperature > 0.0):
turn_camera_on()

Is your friend right? If so, explain why. If not, give values for 1ight and temperature that will
produce different results for the two fragments of code.

We have learned about the built-in function abs in Lecture 3. Variable x refers to a number.
Write an expression that evaluates to True if x and its absolute value are equal and evaluates
to False otherwise. Assign the resulting value to a variable named result.

Write a function named different that has two parameters, a and b. The function should
return True if a and b refer to different values and should return False otherwise.

Variables population and land_area refer to float objects.

a. Write an if statement that will print the population if it is less than 10,000,000.

b. Write an if statement that will print the population if it is between 10,000,000 and
35,000,000.

c. Write an if statement that will print "Densely populated" if the land density (humber of
people per unit of area) is greater than 100.

d. Write an if statement that will print "Densely populated" if the land density (number of
people per unit of area) is greater than 100, and ""Sparsely populated" otherwise.



Function convert_to_celsius from Lecture 3 converts from Fahrenheit to Celsius. Wikipedia,
however, discusses eight temperature scales: Kelvin, Celsius, Fahrenheit, Rankine, Delisle, New-
ton, Réaumur, and Remer.

Visit http://en.wikipedia.org/wiki/Comparison_of_temperature_scales to read about them.

a. Write a convert_temperatures(t, source, target) function to convert temperature
t from source units to target units, where source and target are each one of "Kelvin',
"Celsius", "Fahrenheit", "Rankine", "Delisle", "Newton", "Réaumur", and "Remer" units.

Hint: On the Wikipedia page there are eight tables, each with two columns and seven
rows. That translates to an awful lot of if statements - at least 8 * 7 - because each of
the eight units can be converted to the seven other units. Possibly even worse, if you
decided to add another temperature scale, you would need to add at least sixteen more
if statements: eight to convert from your new scale to each of the current ones and eight
to convert from the current ones to your new scale.

A better way is to choose one canonical scale, such as Celsius.

Your conversion function could work in two steps: convert from the source scale to Celsius
and then from Celsius to the target scale.

b. Now if you added a new temperature scale, how many if statements would you need to
add?

Assume we want to print a strong warning message if a pH value is below 3.0 and otherwise
simply report on the acidity. We try this if statement:

>>> ph = 2
>>> 1if ph < 7.0:
.. print(ph, 'is acidic.')
. elif ph < 3.0:
print(ph, 'is VERY acidic! Be careful.')

2 is acidic.

This prints the wrong message when a pH of 2 is entered. What is the problem, and how can
you fix it?


http://en.wikipedia.org/wiki/Comparison_of_temperature_scales

The following code displays a message(s) about the acidity of a solution:

ph float(input('enter the pH level: '))
if ph < 7.0:

print("It's acidic!")
elif ph < 4.0:

print("It's a strong acid!")

a. What message(s) are displayed when the user enters 6.4?
b. What message(s) are displayed when the user enters 3.6?

c. Make a small change to one line of the code so that both messages are displayed when
a value less than 4 is entered.



