
Practical Programming
in Python

Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 6: Program Organization
Modules, Name Spaces, Main Programs, Libraries

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Abstract

“You can’t write perfect software.”
— Andrew Hunt, The Pragmatic Programmer

Almost no program is written by one programmer alone. It is much
more common – and productive – to make use of the code that other
programmers have written before. We also frequently work in teams
on the same program. Both, using existing code and team work, re-
quire some means of program organization. The main tool for this in
Python are modules.

Practical Programming in Python — Physics Without Frontiers — ICTP 1 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Overview

• Importing modules
• Importing objects from modules
• Writing modules
• Module execution
• Main programs
• Libraries

Modules are Python’s way of organizing programs.

Practical Programming in Python — Physics Without Frontiers — ICTP 2 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Modules

• A module is a collection of expressions grouped together in a single file
• Typically the expressions define functions and variables
• The variables and functions are usually related to one another
• For example, the math module contains the variable pi and

the function sqrt (square root)

Python comes with hundreds of modules, we explore some of them in this lecture.

Practical Programming in Python — Physics Without Frontiers — ICTP 3 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Importing Modules

• To access variables and functions from a
module, we have to import it:

>>> import math

• Importing a module creates a new variable
with the same name as the module:

>>> type(math)
<class 'module'>

• You can use the built-in function help to
learn what a module contains:

>>> help(math)

Help on module math:

NAME
math

DESCRIPTION
This module is always available. It
provides access to the mathematical
functions defined by the C standard.

FUNCTIONS
acos(...)

[...]

Try help(math) in the Python shell and have a look yourself.

Practical Programming in Python — Physics Without Frontiers — ICTP 4 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

After Importing the math Module

• The statement import math creates a variable
called math

• The variable math refers to a module object
• This object contains all the names defined in

the module
• The names refer to function or variable objects

id4: module

math

acos id1

sqrt id2

pi id3

. . .

. . .

. . .

acos(x)
id1: function

sqrt(x)
id2: function

3.1415. . .
id3: float

math id4

shell

Great! Our programs can now use all kinds of mathematical functions!

Practical Programming in Python — Physics Without Frontiers — ICTP 5 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Using Functions from the math Module

• Let’s try to calculate a square root:

>>> import math
>>> sqrt(9.0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'sqrt' is not defined

• We need to access it via the math variable
using the dot operator:

>>> import math
>>> math.sqrt(9.0)
3.0

id4: module

math

acos id1

sqrt id2

pi id3

. . .

. . .

. . .

acos(x)
id1: function

sqrt(x)
id2: function

3.1415. . .
id3: float

math id4

shell

Python didn’t find the sqrt function in the first example. Why is this not surprising?

Practical Programming in Python — Physics Without Frontiers — ICTP 6 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Namespaces

• math is a variable in the current namespace
• The math module has its own namespace
• The sqrt function lives in the math module’s

namespace
• We use the dot operator . to navigate

namespaces

id4: module

math

acos id1

sqrt id2

pi id3

. . .

. . .

. . .

acos(x)
id1: function

sqrt(x)
id2: function

3.1415. . .
id3: float

math id4

shell

dot operator

Namespaces avoid name collisions.

Practical Programming in Python — Physics Without Frontiers — ICTP 7 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Using Variables from the math Module

• The math module also defines some variables:

>>> import math
>>> math.pi
3.141592653589793
>>> radius = 5.0
>>> print('area is', math.pi * radius ** 2)
area is 78.53981633974483

• Python does not have constants (a flaw?):

>>> import math
>>> math.pi = 3.0
>>> radius = 5.0
>>> print('area is', math.pi * radius ** 2)
area is 75.0

id4: module

math

acos id1

sqrt id2

pi id3

. . .

. . .

. . .

acos(x)
id1: function

sqrt(x)
id2: function

3.1415. . .
id3: float

math id4

shell

Never, we repeat, never re-define imported variables!

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Direct Imports from a Module

• We can directly import objects into the current
namespace:

>>> from math import sqrt
>>> from math import pi
>>> sqrt(9.0)
3.0
>>> radius = 5.0
>>> print('area is', pi * radius ** 2)
area is 78.53981633974483

• We can also import all objects from a module:

>>> from math import *
>>> sqrt(9.0)
3.0

shell

sqrt id1

pi id2

sqrt(x)
id1: function

3.1415. . .
id2: float

Directly importing all objects is a bad idea. Why is that?

Practical Programming in Python — Physics Without Frontiers — ICTP 9 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Direct Imports from a Module

• This does not create a variable math referring to
the module:

>>> from math import sqrt
>>> from math import pi
>>> math.pi
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'math' is not defined
>>> pi
3.141592653589793

shell

sqrt id1

pi id2

sqrt(x)
id1: function

3.1415. . .
id2: float

Direct imports act like assignments in the current scope. Use with care.

Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Import Aliases

• We can choose the name referring to an object
or module we import:

>>> from math import sqrt
>>> from math import sqrt as root
>>> sqrt(9.0)
3.0
>>> root(16.0)
4.0

• There are community conventions for some
libraries. For example:

import numpy as np
import matplotlib.pyplot as plt

shell

sqrt id1

root id1

sqrt(x)
id1: function

This is explicit and readable. Follow established conventions.

Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Defining Your Own Modules

• In lecture 3 we learned how to write
programs and save them to a .py file

• We already created a module then!
• Now we are going to extend this idea
• Create a file temperature.py containing

the function definitions on the right
• Then import and use it:

>>> import temperature
>>> c = temperature.convert_to_celsius(33.3)
>>> temperature.above_freezing(c)
True

def convert_to_celsius(fahrenheit):
"""
Convert Fahrenheit to Celsius.

Examples:

>>> convert_to_celsius(75)
23.88888888888889

"""
return (fahrenheit - 32.0) * (5.0/9.0)

def above_freezing(celsius):
"""
Return True iff celsius is above freezing.

Examples:

>>> above_freezing(6.1)
True
>>> above_freezing(-5)
False

"""
return celsius > 0

Any file with Python expressions can act as a module.

Practical Programming in Python — Physics Without Frontiers — ICTP 12 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

What Happens During Import

• Let’s try something else
• Create a file experiment.py with the following content:

print("The panda's scientific name is 'Ailuropoda melanoleuca'")

• Run the program and note the output
• Now import the file experiment.py in the Python shell:

>>> import experiment
The panda's scientific name is 'Ailuropoda melanoleuca'

Python executes modules when it imports them.

Practical Programming in Python — Physics Without Frontiers — ICTP 13 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

What Happens During Import

• What happens when we import the same module twice?
• Let’s try it!
• Clear the Python shell
• Then try the following in the shell:

>>> import experiment
The panda's scientific name is 'Ailuropoda melanoleuca'
>>> import experiment

• The module is only executed on the first import

How might this work? Why is that a good idea?

Practical Programming in Python — Physics Without Frontiers — ICTP 14 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Picking up Module Changes

• What if a module changes?
• Let’s try it!
• Keep the shell from before
• Then change the contents of experiment.py to

print("The koala's scientific name is 'Phascolarctos cinereus'")

• Importing experiment again does not make difference
• We have to force a proper import to pick up the change:

>>> import experiment
>>> import imp
>>> imp.reload(experiment)
The koala's scientific name is 'Phascolarctos cinereus'

Under which circumstances might this be useful?
Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Selecting what to Run on Import

• Sometimes we want some module code to only run when we run
the module directly (as opposed to importing it)

• Python defines a special string variable __name__ in every module to help with this
• Create a module echo.py:

print('__name__ equals', __name__)

• Now run the above program:

__name__ equals __main__

• Import the module in a clean shell:

>>> import echo
__name__ equals echo

This is commonly used to run automatic tests.
Practical Programming in Python — Physics Without Frontiers — ICTP 16 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Semiautomatic Testing

• We recommended adding examples to the docstring in our function design recipe
• Now we will unleash their true power
• Add the following to the temperature.py module:

if __name__ == "__main__":
import doctest
print('testing...')
doctest.testmod()

• Now run the program

testing...

No output is good. All tests have passed.

Practical Programming in Python — Physics Without Frontiers — ICTP 17 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

When Tests Fail

• Let’s introduce a bug

return fahrenheit - 32.0 * (5.0/9.0)

• And run the program again:

testing...
**
File "temperature.py", line 7, in __main__.convert_to_celsius
Failed example:

convert_to_celsius(75.0)
Expected:

23.88888888888889
Got:

57.22222222222222
**
1 items had failures:

1 of 1 in __main__.convert_to_celsius
Test Failed 1 failures.

Make a habit of running automatic tests.
Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 20

https://en.wikipedia.org/wiki/Software_bug
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

What Should Go Into a Module?

• A Module should define objects that have some logical connection
• What constitutes a logical connection is somewhat a matter of opinion

• Should math contain matrix operations?
• Or should they be in a linear algebra module?

• Don’t bundle things just because you are the author

If you can’t sum up the purpose of a module in
a short docstring, there is probably something
wrong.

You have to develop experience and taste. Read other people’s code!

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exercises Lecture 6

