
Practical Programming
in Python

Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 8
Lists

Storing collections of data, Mutability, Using Lists

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Abstract

“Should array indices start at 0 or 1? My compromise of 0.5 was re-
jected without, I thought, proper consideration.”

— S. Kelly-Bootle

We will see that it is next to impossible to write useful programs with-
out storing collections of of data.
So far we have seen numbers, Boolean values, strings, functions and a
few other types. Objects of these types, once created, can’t be mod-
ified. Lists are introduces as the first example of a mutable type in
Python.
The ability to change lists and the many operations and methods avail-
able for lists makes them very powerful.
You will use a lot of lists in your programs.

Practical Programming in Python — Physics Without Frontiers — ICTP 1 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Overview

• Why we need to store collections of data
• Lists as the first example of a container for storing collections
• Mutability: lists can be changed
• Operations on lists
• Slicing
• List methods

Lists are the most common collection type in Python.

Practical Programming in Python — Physics Without Frontiers — ICTP 2 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Example: Counting Whales

• The data is taken from the Gray Whales Count 2016

• Day 1 is February 16, 2016
• The last observation day in 2016, day 101,

was May 26
Day Whales Sighted
1 6

2 3

3 5

4 19

5 15

6 15

7 21

. . .

The full table has 101 rows!

Practical Programming in Python — Physics Without Frontiers — ICTP 3 / 31

http://www.graywhalescount.org/gwc/GWC_REPORTS.html
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

How Can We Represent this Data Set?

• Given what we have seen so far, we would have to
create seven variables for just this one week

• To track the whole observation period we would
need 101 variables

• And explicitely reference each of them by name in
our program

6
id1: int

3
id2: int

5
id3: int

19
id4: int

15
id5: int

21
id6: int

day1 id1

day2 id2

day3 id3

day4 id4

day5 id5

day6 id5

day7 id6

. . .

This is a programming nightmare.

Practical Programming in Python — Physics Without Frontiers — ICTP 4 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

List Expressions
• The general form of a list expression is:

[expression1, expression2, ..., expressionN]

• The empty list is expressed as:

[]

• The list itself is an object
• It contains items or elements
• The items contain the memory addresses of other objects
• The items are ordered an can be accessed via indices

The indices start at 0 not 1! We will motivate this choice soon.

Practical Programming in Python — Physics Without Frontiers — ICTP 5 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

List Variables

• We can use a list to keep track of the one week (or a whole year!) of whale counts
• That is, we can use a list to keep track of the seven int objects containing the counts:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales
[6, 3, 5, 19, 15, 15, 21]

• A list is an object that can be assigned to a variable:

0 1 2 3 4 5 6
id1 id2 id3 id4 id5 id5 id6

id7: list

whales id7

6
id1: int

3
id2: int

5
id3: int

19
id4: int

15
id5: int

21
id6: intlist element, item

list variable

list object

list index

We can now refer to a collection by a name.
Practical Programming in Python — Physics Without Frontiers — ICTP 6 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Using Indices: Referring to List Items

• To refer to an item we put the index in brackets after a reference to a list:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales[0]
6
>>> whales[1]
3
>>> whales[5]
15
>>> whales[6]
21

• Using a list index that is out of range results in an error:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales[999]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

Because indices start from 0 the highest valid index is N-1.
Practical Programming in Python — Physics Without Frontiers — ICTP 7 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Using Indices: Referring to List Items

• Python allows us to use negative indices as well:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales[-1]
21
>>> whales[-2]
15
>>> whales[-7]
6

• Negative indices can also be out of range:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> whales[-17]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

Negative indices are useful because we don’t need to know the length of the list.

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Variables Referring to List Items

• Each item is a reference to an object
• That means we can assign it to a variable:

>>> whales = [6, 3, 5, 19, 15, 15, 21]
>>> third = whales[2]
>>> print('Third day:', third)
Third day: 5

Frames Objects

shell

whales id7

third id3

[6, 3, 5, 19, 15, 15, 21]
id7: list

5
id3: int

The concept of aliasing becomes very important with lists.

Practical Programming in Python — Physics Without Frontiers — ICTP 9 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Empty List

• We have learned about the empty string in Lecture 4
• There is also an empty list
• The empty list (like all lists) is expressed with brackets:

>>> whales = []

• An empty list has no items
• So any attempt to index it results in an error:

>>> whales[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>> whales[-1]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

In a Boolean expressions the empty list evaluates to False.

Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Lists Are Heterogeneous

• Python lists can contain any kind of data
• In particular, items can have different types:

>>> krypton = ['Krypton', 'Kr', -157.2, -153.4]
>>> krypton[1]
'Kr'
>>> krypton[2]
-157.2

This is very useful. In practice, Python list items tend to have the same type.

Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Modifying Lists

• Suppose you made a typo when defining a list of noble gases:

>>> nobles = ['helium', 'none', 'argon', 'krypton', 'xenon', 'radon']

• This is the result in the memory model:

0 1 2 3 4 5
id1 id2 id3 id4 id5 id6

id7: list

nobles id7

’helium’
id1: str

’none’
id2: str

’argon’
id3: str

’krypton’
id4: str

’xenon’
id5: str

’radon’
id6: str

Collections can be large; it would not be practical to redefine them as a whole.

Practical Programming in Python — Physics Without Frontiers — ICTP 12 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Modifying Lists

• Python allows us to mutate the list, that is, change the list’s contents:

>>> nobles[1] = 'neon'
>>> nobles
['helium', 'neon', 'argon', 'krypton', 'xenon', 'radon']

• This is the result in the memory model:

0 1 2 3 4 5
id1 id8 id3 id4 id5 id6

id7: list

nobles id7

’helium’
id1: str

’none’
id2: str

’argon’
id3: str

’krypton’
id4: str

’xenon’
id5: str

’radon’
id6: str

’neon’
id8: str

We say lists are mutable (can be changed/modified/mutated).
Practical Programming in Python — Physics Without Frontiers — ICTP 13 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Mutable vs. Immutable

• List are mutable
• That is, an expression like L[i] can appear

on the left hand side of an assignment
• This means “look up the memory address

at index i so it can be overwritten”:

>>> nobles[1] = 'neon'

• Strings are immutable
• An expression like S[i] can not appear on

the left hand side of an expression
• Some methods appear to change strings,

but in fact they do create new strings:

>>> name = 'Darwin'
>>> capitalized = name.upper()
>>> print(capitalized, id(capitalized))
DARWIN 140471607498096
>>> print(name, id(name))
Darwin 140471607498040

Understanding mutability is very important for Python programmers.

Practical Programming in Python — Physics Without Frontiers — ICTP 14 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

List Functions

• We have already seen plenty of Python’s built-in functions
• Some, like len(), work on lists
• There are more we haven’t seen yet because they only make sense for collections

Function Description Requirements
len(L) Return the number of items in list L None
max(L) Return the maximum value in list L Items can be compared
min(L) Return the minimum value in list L Items can be compared
sum(L) Return the sum of the values in list L Items can be added
sorted(L) Return a sorted copy of list L Items can be compared

The above functions, including sorted(), do not mutate the list L.

Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

List Functions: Examples

• Different isotopes of chemical elements can be stable or radioactive
• Radioactive isotopes often have different half-lives
• For instance, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242

>>> half_lives = [887.7, 24100.0, 6563.0, 14.0, 373300.0]
>>> len(half_lives)
5
>>> max(half_lives)
373300.0
>>> min(half_lives)
14.0
>>> sum(half_lives)
404864.7
creates a new list
[14.0, 887.7, 6563.0, 24100.0, 373300.0]
>>> half_lives
[887.7, 24100.0, 6563.0, 14.0, 373300.0]

Note again that the list half_lives was not changed.

Practical Programming in Python — Physics Without Frontiers — ICTP 16 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Operations on Lists

• Built-in Python types also provide operators
when they make sense

• We have seen the usual examples for numbers
• We also have seen that + concatenates strings
• This operation makes sense for lists, too:

>>> original = ['H', 'He', 'Li']
>>> final = original + ['Be']
>>> final
['H', 'He', 'Li', 'Be']
>>> original
['H', 'He', 'Li']

0 1 2 3
id1 id2 id3 id5

id7: list

final id7

’H’
id1: str

’He’
id2: str

’Li’
id3: str

’Be’
id5: str

0 1 2
id1 id2 id3

id4: list

original id4
0
id5

id6: list

Note that this also does not mutate the original list – a new list is created.

Practical Programming in Python — Physics Without Frontiers — ICTP 17 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The List Type

• A Python list is a type
• Python complains if you try to use functions or operators that are

not defined for the involved types:

>>> ['H', 'He', 'Li'] + 'Be'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate list (not "str") to list

Python is not weakly typed.

Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

List Operators: Repetition

• Lists can be repeated with the * operator:

>>> metals = ['Fe', 'Ni']
>>> metals * 3
['Fe', 'Ni', 'Fe', 'Ni', 'Fe', 'Ni']

Please don’t call this multiplication.

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

List Operators: Deletion

• Since lists are mutable, you can delete an item from a list
• This is done with the del operator:

>>> metals = ['Fe', 'Ni']
>>> del metals[0]
>>> metals
['Ni']

Note that del takes an index, not a value.

Practical Programming in Python — Physics Without Frontiers — ICTP 20 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

List Operators: Containment

• We can use the in operator to determine containment:

>>> nobles = ['helium', 'neon', 'argon', 'krypton', 'xenon', 'radon']
>>> gas = input('Enter a gas: ')
Enter a gas: argon
>>> if gas in nobles:
... print('{} is noble.'.format(gas))
...
argon is noble.

• Unlike with strings, operator in can’t be used to check for sub-lists:

>>> [1, 2] in [0, 1, 2, 3]
False

Why do you think Python allows to check for sub-strings but not sub-lists?

Practical Programming in Python — Physics Without Frontiers — ICTP 21 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Example: C. elegans – “The Worm”

• C. elegans – “The Worm” – is a small worm,
roughly ∼1 mm in size

• It is studied a lot in biology because it possesses
many features of “higher” organisms

• You can learn more about it here

• Biologists label its appearances and behaviour
(phenotypes) with three-letter codes

• Some of these labels are less useful because
they are hard to distinguish in practice

• For example, “Dpy” and “Sma”

Label Phenotype
Emp embryonic lethality
Him high incidence of males
Unc uncoordinated
Lon long
Dpy dumpy: short and fat
Sma small
. . .

Given a full list, how can we extract the more useful labels?
Practical Programming in Python — Physics Without Frontiers — ICTP 22 / 31

http://wp.wpi.edu/qntl/resources/c-elegans/
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Slicing Lists

• Python has a convenient notation for taking a slice of a list: L[i:j]

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_phenotypes
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> useful_labels = celegans_phenotypes[0:4] # take the first four elements
>>> useful_labels
['Emb', 'Him', 'Unc', 'Lon']

’Emb’
id1: str

’Him’
id2: str

’Unc’
id3: str

’Lon’
id4: str

’Dpy’
id5: str

’Sma’
id6: str

0 1 2 3 4 5
id1 id2 id3 id4 id5 id6

id7: list

celegans_phenotypes id7

0 1 2 3
id1 id2 id3 id4

id8: list

useful_labels id8

Slicing a list creates a new list.
Practical Programming in Python — Physics Without Frontiers — ICTP 23 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Cloning Lists

• Taking a whole slice clones (copies) a list: L[:]

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_copy = celegans_phenotypes[:] # make a copy (clone) the list
>>> celegans_phenotypes[5] = 'Lvl' # this does not change (mutate) the clone!
>>> celegans_phenotypes
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']
>>> celegans_copy
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']

’Emb’
id1: str

’Him’
id2: str

’Unc’
id3: str

’Lon’
id4: str

’Dpy’
id5: str

’Sma’
id6: str

’Lvl’
id9: str

0 1 2 3 4 5
id1 id2 id3 id4 id5 id9

id7: list

celegans_phenotypes id7

0 1 2 3 4 5
id1 id2 id3 id4 id5 id6

id8: list

celegans_copy id8

Mutating the original does not change the clone.
Practical Programming in Python — Physics Without Frontiers — ICTP 24 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Aliasing: What’s in a Name?

• Aliasing is one of the reasons the notion of mutability is important
• A change to the original mutates the alias and vice versa

>>> celegans_phenotypes = ['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Sma']
>>> celegans_alias = celegans_phenotypes # create an alias (a new name for the same object)
>>> celegans_phenotypes[5] = 'Lvl' # this does change (mutate) the alias!
>>> celegans_phenotypes
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']
>>> celegans_alias
['Emb', 'Him', 'Unc', 'Lon', 'Dpy', 'Lvl']

’Emb’
id1: str

’Him’
id2: str

’Unc’
id3: str

’Lon’
id4: str

’Dpy’
id5: str

’Sma’
id6: str

’Lvl’
id9: str

0 1 2 3 4 5
id1 id2 id3 id4 id5 id9

id7: list
celegans_phenotypes id7

celegans_alias id7

An alias is a name referring to the same object as another name.
Practical Programming in Python — Physics Without Frontiers — ICTP 25 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Mutable Parameters

• Parameters are just variables
• If parameters are mutable, a function can change them:

def remove_last_item(L):
"""
Return L with the last item removed.

Precondition:

len(L) > 0

Examples:

>>> remove_last_item([1, 3, 2, 4])
[1, 3, 2]

"""
del L[-1]
return L

• Do we need to return L in this case to make the function useful?

In general it is a bad idea to change mutable parameters in a function.
Practical Programming in Python — Physics Without Frontiers — ICTP 26 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Common List Methods

Method Description
L.append(v) Append the value v to the list L
L.clear() Remove all items from list L
L.count(v) Return the number of occurrences of v in L
L.extend(l) Append the items in l to L
L.index(v) Return the index of the first occurrence of v in L
L.index(v, beg) Return the index of the first occurrence of v in L at or after the index beg
L.index(v, beg, end) Return the index of the first occurrence of v between indices beg (inclusive)

and end (exclusive)
L.insert(i, v) Insert the value v at index i, shifting subsequent items to make room
L.pop() Remove and return the last item in the non-empty list L
L.remove(v) Remove the first occurrence of v from the list L
L.reverse() Reverse the order of items in the list L
L.sort() Sort the items in L in ascending order
L.sort(reverse=True) Sort the items in L in descending order

Practical Programming in Python — Physics Without Frontiers — ICTP 27 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Where Did My List Go?

• Python programmers sometimes forget that many list methods return None

• As a result, lists sometimes seem to disappear:

>>> colors = 'red orange yellow green blue purple'.split()
>>> colors
['red', 'orange', 'yellow', 'green', 'blue', 'purple']
>>> sorted_colors = colors.sort()
>>> print(sorted_colors)
None

• The string method sort changed the list but doesn’t return the modified list:

>>> colors
['blue', 'green', 'orange', 'purple', 'red', 'yellow']

Why is it OK for methods (as opposed to functions) to do this?

Working with a List of Lists

• List items can have any type, in particular they can be lists themselves
• This is called a nested list
• For example, life expectancies in different countries

>>> life_expectancies = [['UK', 82.0], ['Germany', 81.0], ['France', 83.0]]

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id4 id5

id6: list

0 1
id1 id2

id3: list

0 1
id7 id8

id9: list

0 1 2
id3 id6 id9

id10: list

life_expectancies id10

Nesting is a common way to build data structures.
Practical Programming in Python — Physics Without Frontiers — ICTP 29 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Referring to a Sub-list

• We can assign sub-lists to variables

>>> life_expectancies = [['UK', 82.0], ['Germany', 81.0], ['France', 83.0]]
>>> uk = life_expectancies[0]
>>> uk
['UK', 82.0]
>>> uk[0]
'UK'
>>> uk[1]
82.0

’UK’
id1: str

82.0
id2: float

’Germany’
id4: str

81.0
id5: float

’France’
id7: str

83.0
id8: float

0 1
id4 id5

id6: list

0 1
id1 id2

id3: list

0 1
id7 id8

id9: list

0 1 2
id3 id6 id9

id10: list

life_expectancies id10

uk id3

alias to sub-list

Modifying the alias (reference) will change the original.
Practical Programming in Python — Physics Without Frontiers — ICTP 30 / 31

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exercises Lecture 8

