
Practical Programming
in Python

Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 10
Reading & Writing Files

Reading Files, Files from the Internet, Writing Files, File Formats, Parsing Files

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Abstract

“Keep knowledge in plain text.”
— The Pragmatic Programmer

Computers store data in files of various types.
Arguably, the most powerful file type is plain text.
Programmers need to know how to read data from plain text files and
write data to them.
Python provides powerful tools for file I/O.

Practical Programming in Python — Physics Without Frontiers — ICTP 1 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Overview

• File types and formats
• Reading data from files
• Techniques for reading files
• Files from the internet
• Writing data to files
• File structures & parsing

File handling is an important skill for the practical programmer.

Practical Programming in Python — Physics Without Frontiers — ICTP 2 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

What Kinds of Files Are There?

• There are many kinds of files:
• Text files
• Music files
• Videos
• Word processor & presentation files

• Many contain complicated formatting information
and require special programs to be useful

• Plain text files only contain characters and no
formatting information

• They often have a syntax (for example, Python
programs)

Empty File Sizes

File Type Size
Microsoft Word 21 KB
OpendDocument Text 8 KB
Pages Document 29 KB
Plain Text 0 KB

Plain text files are human-readable. Everyone is free to write programs using them.

Practical Programming in Python — Physics Without Frontiers — ICTP 3 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Data File Examples

• We have prepared several example data files for you

• You can them in the folder

practical_programming/data/

• in your home directory
• on the USB drive

• They are all plain text files

The following assumes you understand the concepts explained in the Linux Tutorial.

Practical Programming in Python — Physics Without Frontiers — ICTP 4 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Opening a File

• The function open opens a file (much like you open
a book when you want to read it)

• open returns a file object
• The file object knows how get information from the

file, how much you read and what you are about to
read next

• The file cursor keeps track of the current position in
the file (much like a bookmark)

• 'file_example.txt' is the file path
• 'r' tells Python we want to read the file

f = open('file_example.txt', 'r')
contents = f.read()
print(contents)
f.close()

File Modes

Flag Operation
'r' read from existing file
'w' write new file

(clobbers existing file)
'a' append to file

(creates file if needed)

Beware: opening an existing file with 'w' will delete its contents!

Practical Programming in Python — Physics Without Frontiers — ICTP 5 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Reading the Entire File

• The statement contents = f.read() reads the
entire file into a string

• The third statement prints that string
• Newline characters in text files are treated just like

any other character
• The last statement closes the file and releases all

resources associated with it

f = open('file_example.txt', 'r')
contents = f.read()
print(contents)
f.close()

• Program output:

First line of text
Second line of text
Third line of text

With this approach we have to remember to close the file.

Practical Programming in Python — Physics Without Frontiers — ICTP 6 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The with Statement

• Python provides a with statement that automatically closes the file for us:

with open('file_example.txt', 'r') as f:
contents = f.read()

print(contents)

• The general form of the with statement is

with open(filepath, mode) as variable:
block

• The file is closed after the block is executed

We always use the with statement when opening files.

Practical Programming in Python — Physics Without Frontiers — ICTP 7 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Techniques for Reading Files

• Python provides several techniques for reading files:
• read
• readlines
• for line in file
• readline

• All techniques start reading from the current position of the file cursor
• This allows to seamlessly combine them

It is often necessary to combine the techniques to read complicated files.

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Read Technique

• When no argument is given, read reads
from the current file cursor to the end
of the file

• We have seen it before:

with open('file_example.txt', 'r') as f:
contents = f.read()

print(contents)

First line of text
Second line of text
Third line of text

• With an integer argument, read reads the
specified number of characters

• The file cursor is moved forward
accordingly

with open('file_example.txt', 'r') as f:
first_ten = f.read(10)
the_rest = f.read()

print('First ten:', first_ten)
print('The rest:', the_rest)

First ten: First line
The rest: of text
Second line of text
Third line of text

Beware of reading entire large files – memory is limited.

Practical Programming in Python — Physics Without Frontiers — ICTP 9 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Reading at the End of a File

When the file cursor is at the end of a file the functions read,
readlines and readline return the empty string.
If you need to read the contents of the file again you can close
and reopen the file.
There are also low-level ways to move the file cursor, but we
will not cover them here.

Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Readlines Technique

• We use this when we want to get a list of strings containing the lines from a file
• The function readlines works similar to read

• As with read, the file cursor is moved to the end of the file
• Here is an example:

with open('file_example.txt', 'r' as example_file:
lines = example_file.readlines()

print(lines)

['First line of text.\n', 'Second line of text.\n', 'Third line of text.\n']

Note that the newline characters were not removed. The last line might not have one.

Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Readlines Technique

• Assume planets.txt contains the
following:

Mercury
Venus
Earth
Mars

• We can print the lines in reverse order:

>>> for planet in reversed(planets):
... print(planet.strip(
...
Mars
Earth
Venus
Mercury

• We get a list of the lines like this:

>>> with open('planets.txt', 'r') as pf:
... planets = pf.readlines(
...
>>> planets
['Mercury\n', 'Venus\n', 'Earth\n', 'Mars']

• Or we can sort the lines alphabetically:

>>> for planet in sorted(planets):
... print(planet.strip(
...
Earth
Mars
Mercury
Venus

The warning for large files also applies here.

Practical Programming in Python — Physics Without Frontiers — ICTP 12 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Files Line by Line

• For example, let’s print the line lengths:

>>> with open('planets.txt', 'r') as data_file:
... for line in data_file:
... print(len(line))
...
8
6
6
4

• The same with the newlines stripped:

>>> with open('planets.txt', 'r') as data_file:
... for line in data_file:
... print(len(line.strip()))
...
7
5
5
4

This is safe, even for very large files.

Practical Programming in Python — Physics Without Frontiers — ICTP 13 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Readline Technique

• This technique reads one line at a time
• We use it when we only want to read part of a file
• This is often necessary to skip headers or comments
• For example, the file hopedale.dat (a TSDL file) describes the number of

colored fox fur pelts produced in Hopedale, Labrador, in the years 1834 – 1925
• Here are the first few lines, until the year 1842:

Coloured fox fur production, HOPEDALE, Labrador,, 1834-1925
#Source: C. Elton (1942) "Voles, Mice and Lemmings", Oxford Univ. Press
#Table 17, p.265--266

22
29
2
16
12
35
8
83

166

Note the header and the comments in the first few lines.
Practical Programming in Python — Physics Without Frontiers — ICTP 14 / 29

https://datamarket.com/data/list/?q=provider:tsdl
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Readline Technique

• We combine readline and line-by-line processing to compute the total number of pelts:

with open('hopedale.dat', 'r') as hopedale_file:
hopedale_file.readline()

data = hopedale_file.readline().strip()
while data.startswith('#'):

data = hopedale_file.readline().strip()

total_pelts = int(data)

for data in hopedale_file:
total_pelts = total_pelts + int(data.strip())

print("Total number of pelts:", total_pelts)

• This is the output:

Total number of pelts: 4382

Both techniques are safe to use with large files.
Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Files over the Internet

• The file containing the data we want could be on a computer half around the Earth
• If the file is accessible in the internet, we can still access it very much like a local file
• For example, the Hopedale data:

http://robjhyndman.com/tsdldata/ecology1/hopedale.dat

• There is an important difference: there are many types of files (images, music, text. . .)
• Python can’t assume files from the internet are plain text
• For this reason, we don’t read characters from these files but a different type: bytes

The bytes need to be decoded using the correct encoding. This quickly gets complicated.

Practical Programming in Python — Physics Without Frontiers — ICTP 16 / 29

http://robjhyndman.com/tsdldata/ecology1/hopedale.dat
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

What is a Byte?

To a computer, information is nothing but bits, which we think of as ones
and zeros.
All data – for example, characters, sounds, and pixels – are represented as
sequences of bits.
Most modern computers organize these bits into groups of eight. Each
such group of bits is called a byte.
Programming languages interpret sequences bytes for us and let us think
of them as integers, strings, functions, and documents.

Practical Programming in Python — Physics Without Frontiers — ICTP 17 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Files over the Internet

• Many encodings are documented in the Python online documentation:

http://docs.python.org/3/library/codecs.html#standard-encodings

• The Hopedale data is encoded using UTF-8
• The module urllib.urlrequest provides functions for reading files from the internet:

import urllib.request
url = 'http://robjhyndman.com/tsdldata/ecology1/hopedale.dat'
with urllib.request.urlopen(url) as webpage:
for line in webpage:

line = line.decode('utf-8')
line = line.strip()
print(line)

In doubt, use UTF-8 for text-like data. Be polite, avoid unintended DOS attacks.

Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 29

http://docs.python.org/3/library/codecs.html#standard-encodings
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Writing Files

• This programs writes the words Computer Science to a file called topics.txt:

with open('topics.txt', 'w') as output_file:
num_characters = output_file.write('Computer Science')

print(num_characters)

16

• The 'w' mode creates a new file or overwrites an existing file
• We can also append to a file using the 'a' mode:

with open('topics.txt', 'a') as output_file:
output_file.write('Software Engineering')

What will the resulting file look like?

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Writing Files

• As opposed to print, the write method does not append a newline
• When writing to files you have to specify all characters you want to write
• This includes newline characters:

with open('topics.txt', 'w') as output_file:
output_file.write('Computer Science\n')

with open('topics.txt', 'a') as output_file:
output_file.write('Software Engineering\n')

• This yields the file with the following contents:

Computer Science
Software Engineering

When we write to a file we write a stream of characters.

Practical Programming in Python — Physics Without Frontiers — ICTP 20 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Missing Values

• It is quite common that data values are missing
• For example, the hebron.dat file on the right

for line in input_file:
n = int(line.strip())

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./read_smallest.py", line 19, in smallest_value
n = int(line.strip())

ValueError: invalid literal for int(with base 10: '-')

...
93
55
262
-
102
...

This is a very common problem.

Practical Programming in Python — Physics Without Frontiers — ICTP 21 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Missing Values

• We could deal with that in this way:

for line in input_file:
line = line.strip()
if line != '-':

n = int(line)

...
93
55
262
-
102
...

Why is this not very satisfying?

Practical Programming in Python — Physics Without Frontiers — ICTP 22 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Asking for Forgiveness

• ValueError is an Exception
• Exceptions are types related to errors
• We use exceptions to ask for fogiveness:

for line in input_file:
try:

n = int(line.strip())
except ValueError:

pass # or print a warning message

...
93
55
262
-
102
...

It is better to ask for forgiveness than permission.

Practical Programming in Python — Physics Without Frontiers — ICTP 23 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Whitespace-Delimited Data

• The file linked below contains information about lynx pelts in the years 1821-1934
http://robjhyndman.com/tsdldata/ecology1/lynx.dat

• You can also find the file in practical_programming/data

• All values are integers
• Each line contains many values separated by whitespace
• We use the string method split to create a list of the values
• To get integer values we also get rid of the trailing dots

for line in lynx_file:
tokens = line.split()
for token in tokens:

value = int(token[:-1])

The split method is is your friend when reading whitespace delimited data.

Practical Programming in Python — Physics Without Frontiers — ICTP 24 / 29

http://robjhyndman.com/tsdldata/ecology1/lynx.dat
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Multi-line Records

• The file on the right describes the
arrangement of atoms in a molecule

• The first line contains the name
• Then follow the atoms and their positions,

followed by and end marker

COMPND AMMONIA
ATOM 1 N 0.257 -0.363 0.000
ATOM 2 H 0.257 0.727 0.000
ATOM 3 H 0.771 -0.727 0.890
ATOM 4 H 0.771 -0.727 -0.890
END

So far no problem. We know how to read this file.

Practical Programming in Python — Physics Without Frontiers — ICTP 25 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Multi-line Records: Reading One Molecule

def read_molecule(reader):
line = reader.readline()
if not line:

return None

key, name = line.split()

molecule = [name]
line = reader.readline()

Parse all the atoms in the molecule.
while not line.startswith('END'):

key, num, atom_type, x, y, z = line.split()
molecule.append([atom_type, x, y, z])
line = reader.readline()

return molecule

COMPND AMMONIA
ATOM 1 N 0.257 -0.363 0.000
ATOM 2 H 0.257 0.727 0.000
ATOM 3 H 0.771 -0.727 0.890
ATOM 4 H 0.771 -0.727 -0.890
END
COMPND METHANOL
ATOM 1 C -0.748 -0.015 0.024
ATOM 2 O 0.558 0.420 -0.278
ATOM 3 H -1.293 -0.202 -0.901
ATOM 4 H -1.263 0.754 0.600
ATOM 5 H -0.699 -0.934 0.609
ATOM 6 H 0.716 1.404 0.137
END

Several multi-line records are a common file syntax.

Practical Programming in Python — Physics Without Frontiers — ICTP 26 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Molecule Memory Model

’N’
id3: str

0.257
id4: float

-0.363
id5: float

0.000
id6: float

0 1 2 3
id3 id4 id5 id6

id7: list

0.257
id9: float

0.727
id10: float

0.000
id11: float

0 1 2 3
id8 id9 id10 id11

id12: list

’H’
id8: str

0.771
id14: float

-0.727
id15: float

0.890
id16: float

0 1 2 3
id8 id14 id15 id16

id17: list

0.771
id19: float

-0.727
id20: float

-0.890
id21: float

0 1 2 3
id8 id19 id20 id21

id22: list

0 1 2 3 4
id1 id7 id12 id17 id22

id2: list

molecule id2

’AMMONIA’
id1: str

The memory model reflects the file structure.

Practical Programming in Python — Physics Without Frontiers — ICTP 27 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Multi-line Records: Reading All Molecules

def read_all(reader):
result = []
reading = True

while reading:
molecule = read_molecule(reader)
if molecule:

result.append(molecule)
else:

reading = False

return result

if __name__ == '__main__':
molecule_file = open('molecules.pdb', 'r')
molecules = read_all(molecule_file)
print(molecules)

COMPND AMMONIA
ATOM 1 N 0.257 -0.363 0.000
ATOM 2 H 0.257 0.727 0.000
ATOM 3 H 0.771 -0.727 0.890
ATOM 4 H 0.771 -0.727 -0.890
END
COMPND METHANOL
ATOM 1 C -0.748 -0.015 0.024
ATOM 2 O 0.558 0.420 -0.278
ATOM 3 H -1.293 -0.202 -0.901
ATOM 4 H -1.263 0.754 0.600
ATOM 5 H -0.699 -0.934 0.609
ATOM 6 H 0.716 1.404 0.137
END

Several multi-line records are a common file syntax.

Practical Programming in Python — Physics Without Frontiers — ICTP 28 / 29

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exercises Lecture 10

