
Physics Without Frontiers

Practical Programming
in Python
Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 14: Summary & Exercises
Object Oriented Programming
User Defined Types, Encapsulation, Polymorphism, Inheritance

“You wanted a banana but what you got was a
gorilla holding the banana and the entire jungle.”

— Joe Armstrong

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/
https://pragprog.com/book/gwpy2/practical-programming


Lecture 14: Summary

In this lecture you learned the following:

• In object-oriented languages, new types are defined by creating classes. Classes support
encapsulation; in other words, they combine data and the operations on it so that other
parts of the program can ignore implementation details.

• Classes also support polymorphism. If two classes have methods that work the same
way, instances of those classes can replace one another without the rest of the program
being affected. This enables “plug-and-play” programming, in which one piece of code
can perform different operations depending on the objects it is operating on.

• Finally, new classes can be defined by inheriting features from existing ones. The new
class can override the features of its parent and/or add entirely new features.

• When a method is defined in a class, its first argument must be a variable that represents
the object the method is being called on. By convention, this argument is called self.

• Some methods have special predefined meanings in Python; to signal this, their names
begin and end with two underscores. Some of these methods are called when construct-
ing objects (__init__) or converting them to strings (__str__ and __repr__); others, like
__add__ and __sub__, are used to imitate arithmetic.



Lecture 14: Exercises

When writing code, only use Python concepts that have been introduced
in the lectures already.

Exercise 1:

In this exercise, you will implement class Country, which represents a country with a name, a
population, and an area.

a. Here is a sample interaction from the Python shell:

>>> canada = Country('Canada', 34482779, 9984670)
>>> canada.name
'Canada'
>>> canada.population
34482779
>>> canada.area
9984670

The code above cannot be executed yet because class Country does not exist. Define
Country with a constructor (method __init__) that has four parameters: a country, its
name, its population, and its area.

b. Consider this code:

>>> canada = Country('Canada',
34482779,
9984670)

>>> usa = Country('United States of America',
313914040,
9826675)

>>> canada.is_larger(usa)
True

In class Country, define a method named is_larger that takes two Country objects and
returns True if and only if the first has a larger area than the second.

c. Consider this code:

>>> canada.population_density()
3.4535722262227995



In class Country, define a method named population_density that returns the popula-
tion density of the country (people per square km).

d. Consider this code:

>>> usa = Country('United States of America',
313914040,
9826675)
>>> print(usa)
United States of America population 313914040
and is 9826675 aquare km.

In class Country, define a method named __str__ that returns a string representation of
a country in the format above.

e. After you have written __str__, this session shows that a __repr__ method would be
useful:

>>> canada = Country('Canada',
34482779,
9984670)
>>> canada
<exercise_country.Country object at 0x7f2aba30b550>
>>> print(canada)
Canada has population 34482779
and is 9984670 square km.
>>> [canada]
[<exercise_country.Country object at 0x7f2aba30b550>]
>>> print([canada])
[<exercise_country.Country object at 0x7f2aba30b550>]

Define the __repr__ method in Country to produce a string that behaves like this:

>>> canada = Country('Canada', 34482779, 9984670)
>>> canada
Country('Canada', 34482779, 9984670)
>>> [canada]
[Country('Canada', 34482779, 9984670)]

Exercise 2:

n this exercise, you will implement a Continent class, which represents a continent with a name
and a list of countries. Class Continent will use class Country from the previous exercise. If
Country is defined in another module, you’ll need to import it.



a. Here is a sample interaction from the Python shell:

>>> canada = country.Country('Canada', 34482779, 9984670)
>>> usa = country.Country('United States of America', 313914040,
... 9826675)
>>> mexico = country.Country('Mexico', 112336538, 1943950)
>>> countries = [canada, usa, mexico]
>>> north_america = Continent('North America', countries)
>>> north_america.name
'North America'
>>> for country in north_america.countries:
... print(country)
...

The code above cannot be executed yet, because class Continent does not exist. Define
Continentwith a constructor (method __init__) that has three parameters: a continent,
its name, and its list of Country objects.

b. Consider this code:

>>> north_america.total_population()
460733357

In class Continent, define a method named total_population that returns the sum of
the populations of the countries on this continent.

c. Consider this code:

>>> print(north_america)
North America
Canada has population 34482779
and is 9984670 square km.
United States of America has population 313914040
and is 9826675 square km.
Mexico has population 112336538
and is 1943950 square km.

In class Continent, define a method named __str__ that returns a string representation
of the continent in the format shown above.

Exercise 3:

Write a class called Nematode to keep track of information about C. elegans, including a variable
for the body length (in millimeters; they are about 1 mm in length), gender (either hermaphrodite
or male), and age (in days). Include methods __init__, __repr__, and __str__.


