
Physics Without Frontiers

Practical Programming
in Python
Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 3: Summary & Exercises
Using & Designing Functions
What are functions?, Python Built-in Functions, Local Variables, Designing Functions

“No amount of genius can overcome obsession
with detail.”

— Traditional

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/
https://pragprog.com/book/gwpy2/practical-programming


Lecture 3: Summary

In this lecture you learned the following:

• A function definition introduces a new variable that refers to a function object. Thereturn
statement describes the value that will be produced as a result of the function when this
function is done being executed.

• A parameter is a variable that appears between the parentheses of a function header.

• A local variable is a variable that is used in a function definition to store an intermediate
result in order to make code easier to write and read.

• A function call tells Python to execute a function.

• An argument is an expression that appears between the parentheses of a function call.
The value that is produced when Python evaluates the expression is assigned to the cor-
responding parameter.

• If you made assumptions about the values of parameters or you know that your function
won’t work with particular values, write a precondition to warn other programmers.



Lecture 3: Exercises

When writing code, only use Python concepts that have been introduced
in the lectures already.

Exercise 1:

Two of Python’s built-in functions are min and max. In the Python shell, execute the following
function calls:

a. min(2, 3, 4)

b. max(2, -3, 4, 7, -5)

c. max(2, -3, min(4, 7), -5)

Exercise 2:

For the following function calls, in what order are the subexpressions evaluated?

a. min(max(3, 4), abs(-5a))

b. abs(min(4, 6, max(2, 8)))

c. round(max(5.572, 3.258), abs(-2))

Exercise 3:

Following the function design recipe, define a function that has one parameter, a number, and
returns that number tripled.

Exercise 4:

Following the function design recipe, define a function that has two parameters, both of which
are numbers, and returns the absolute value of the difference of the two. Hint: Call built-in
function abs.

Exercise 5:

Following the function design recipe, define a function that has one parameter, a distance in
kilometers, and returns the distance in miles. (There are 1.60934 kilometers per mile.)



Exercise 6:

Following the function design recipe, define a function that has three parameters, grades be-
tween 0 and 100 inclusive, and returns the average of those grades.

Exercise 7:

Following the function design recipe, define a function that has four parameters, all of them
grades between 0 and 100 inclusive, and returns the average of the best 3 of those grades.
Hint: Call the function that you defined in the previous exercise.

Exercise 8:

Complete the examples in the docstring and then write the body of the following function:

def weeks_elapsed(day1, day2):
"""
Return the number of full weeks between two days.

Day1 and day2 are days in the same year.

Examples:

>>> weeks_elapsed(3, 20)
2
>>> weeks_elapsed(20, 3)
2
>>> weeks_elapsed(8, 5)

>>> weeks_elapsed(40, 61)

"""

Exercise 9:

Consider this code:

def square(n):
"""
Return the square of n.

Examples:

>>> square(3)
9

"""



In the table below, fill in the Example column by writing square, num, square(3), and 3 next
to the appropriate description.

Description Example
Parameter
Argument
Function name
Function call

Exercise 10:

Write the body of the square function from the previous exercise.


