
Practical Programming
in Python

Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 9
Repeating Code: Loops

Loops, Iteration, Nested Loops, Controlling Loops

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Abstract

“In theory, practice is simple.”
— Trygve Reenskaug

This lecture introduces a very important kind of control flow: repeti-
tion.
We don’t want to write the same expression or instruction hundreds
of times in our programs – that’s clearly a job for a machine.
Now we’ll learn how to write them once and use loops to repeat in-
structions and how to control when to stop the repetition.

Practical Programming in Python — Physics Without Frontiers — ICTP 1 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Overview

• Processing items in a list
• Processing characters in strings
• Ranges of numbers
• The concept of iteration
• Nesting loops
• Controlling loops

Without repetition – loops – programs would not be very useful.

Practical Programming in Python — Physics Without Frontiers — ICTP 2 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Items in a List

• With what what we have learned so far, we would need to access
list items one by one:

>>> velocities = [0.0, 9.81, 19.62, 29.43]
>>> print('Metric:', velocities[0], 'm/sec;', 'Imperial:', velocities[0] * 3.28, 'ft/sec')
Metric: 0.0 m/sec; Imperial: 0.0 ft/sec
>>> print('Metric:', velocities[1], 'm/sec;', 'Imperial:', velocities[1] * 3.28, 'ft/sec')
Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec
>>> print('Metric:', velocities[2], 'm/sec; ', 'Imperial:', velocities[2] * 3.28, 'ft/sec')
Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec
>>> print('Metric:', velocities[3], 'm/sec; ', 'Imperial:', velocities[3] * 3.28, 'ft/sec')
Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec

We clearly don’t want to do this for thousands of values.

Practical Programming in Python — Physics Without Frontiers — ICTP 3 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Items in a List

• Python provides the for loop that lets you process list elements:

>>> velocities = [0.0, 9.81, 19.62, 29.43]
>>> for velocity in velocities:
... print('Metric:', velocity, 'm/sec;', 'Imperial:', velocity * 3.28, 'ft/sec')
...
Metric: 0.0 m/sec; Imperial: 0.0 ft/sec
Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec
Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec
Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec

Now we can process all items with one statement.

Practical Programming in Python — Physics Without Frontiers — ICTP 4 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Items in a List

• The general form of a for loop is:

for variable in list:
block

• The loop variable is assigned to the first item in the list, and the loop block
– the body of the for loop – is executed

• The loop variable is then assigned the second item in the list and the loop body
is executed again
. . .

• Finally, the loop variable is assigned the last item of the list and the loop body
is executed one last time

Each execution of the loop body is an iteration.

Practical Programming in Python — Physics Without Frontiers — ICTP 5 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Looping Over Items in List velocities

Iteration Loop variable value Output String
1st velocities[0] 'Metric: 0.0 m/sec; Imperial: 0.0 ft/sec'

2nd velocities[1] 'Metric: 9.81 m/sec; Imperial: 32.1768 ft/sec'

3rd velocities[2] 'Metric: 19.62 m/sec; Imperial: 64.3536 ft/sec'

4th velocities[3] 'Metric: 29.43 m/sec; Imperial: 96.5304 ft/sec'

Practical Programming in Python — Physics Without Frontiers — ICTP 6 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Items in a List

• It is possible to use a previously defined variable as the loop variable:

>>> speed = 2
>>> velocities = [0.0, 9.81, 19.62, 29.43]
>>> for speed in velocities:
... print('Metric:', speed, 'm/sec')
...
Metric: 0.0 m/sec
Metric: 9.81 m/sec
Metric: 19.62 m/sec
Metric: 29.43 m/sec

• The loop variable keeps its value after the last iteration:

>>> print('Final:', speed)
Final: 29.43

Note that the last print statement is not part of the loop.

Practical Programming in Python — Physics Without Frontiers — ICTP 7 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Characters in Strings

• We can also loop over characters in a string
• The general form is:

for variable in str:
block

• For example, we can loop over a string an print the uppercase characters:

>>> theory = 'Quantum Field Theory'
>>> for ch in theory:
... if ch.isupper():
... print(ch)
...
Q
F
T

How many iterations are in this loop?

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Ranges of Numbers

• Python provides the built-in function range that generates a sequence of integers
• With a single argument, as in range(stop), the sequence starts at 0 and ends with
stop - 1

>>> range(4)
range(0, 4)

• We can loop over this sequence:

>>> for num in range(4):
... print(num)
0
1
2
3

We can loop over all kinds of sequences – iterables – in Python.

Practical Programming in Python — Physics Without Frontiers — ICTP 9 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Ranges of Numbers: Converting to Lists

• We can construct a list from a range:

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

• Here are some more examples:

>>> list(range(3))
[0, 1, 2]
>>> list(range(1))
[0]
>>> list(range(0))
[]

Note that range specifications are consistent with indexing and slicing.

Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Ranges of Numbers: Changing the Lower Bound

• We can also pass two arguments to the range function:

>>> list(range(1, 5))
[1, 2, 3, 4]
>>> list(range(1, 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5, 10))
[5, 6, 7, 8, 9]

By default, the step size is one.

Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Ranges of Numbers: Changing the Step Size

• The step size can be specified with a third argument
• Here is a list of the leap years in the first half of the 21st century:

>>> list(range(2000, 2050, 4))
[2000, 2004, 2008, 2012, 2016, 2020, 2024, 2028, 2032, 2036, 2040, 2044, 2048]

• Descending sequences can be produced with negative step sizes:

>>> list(range(2048, 1999, -4))
[2048, 2044, 2040, 2036, 2032, 2028, 2024, 2020, 2016, 2012, 2008, 2004, 2000]

What do you think this expression produces: list(range(2, 8, -2))?

Practical Programming in Python — Physics Without Frontiers — ICTP 12 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Lists Using Indices

• What if we want to change the items in a list?
• For example, we might want to double all values in a list

• The following does not work:

>>> values = [4, 10, 3, 8, -6]
>>> for num in values:
... num *= 2
...
>>> values
[4, 10, 3, 8, -6]

Why does this not work as intended?

Practical Programming in Python — Physics Without Frontiers — ICTP 13 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Lists Using Indices

• Iteration is on the left, indexing on the right
• This is the memory model when the loop starts:

>>> values = [4, 10, 3, 8, -6]
>>> for num in values:
... num *= 2
...

4
id1: int

10
id2: int

3
id3: int

8
id4: int

-6
id5: int

0 1 2 3 4
id1 id2 id3 id4 id5

id6: list

values id6

num id1

>>> values = [4, 10, 3, 8, -6]
>>> for idx in range(len(values)):
... values[idx] *= 2
...

4
id1: int

10
id2: int

3
id3: int

8
id4: int

-6
id5: int

0
id7: int

0 1 2 3 4
id1 id2 id3 id4 id5

id6: list

values id6

idx id7

Note that num is referring to a value in the list while idx is not.
Practical Programming in Python — Physics Without Frontiers — ICTP 14 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Lists Using Indices

• Iteration is on the left, indexing on the right
• This is the memory model after the first iteration:

>>> values = [4, 10, 3, 8, -6]
>>> for num in values:
... num *= 2
...

4
id1: int

10
id2: int

3
id3: int

8
id4: int

-6
id5: int

0 1 2 3 4
id1 id2 id3 id4 id5

id6: list

values id6

num id4

>>> values = [4, 10, 3, 8, -6]
>>> for idx in range(len(values)):
... values[idx] *= 2
...

4
id1: int

10
id2: int

3
id3: int

8
id4: int

-6
id5: int

0
id7: int

0 1 2 3 4
id4 id2 id3 id4 id5

id6: list

values id6

idx id7

Doubling num in the loop body does not mutate the list.
Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Lists Using Indices

• Let’s see what happens when all iterations are done:

>>> values = [4, 10, 3, 8, -6]
>>> for idx in range(len(values)):
... values[idx] *= 2
...
... print(values)
[8, 20, 6, 16, -12] 8

id4: int
20

id9: int
6

id10: int
16

id11: int
-12

id12: int

4
id1: int

0 1 2 3 4
id4 id9 id10 id11 id12

id6: list

values id6

idx id1

All elements have been doubled. The list has been mutated.

Practical Programming in Python — Physics Without Frontiers — ICTP 16 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Processing Parallel Lists Using Indices

• Sometimes data from one list corresponds to data from another
• For example, consider these two lists:

>>> metals = ['Li', 'Na', 'K']
>>> weights = [6.941, 22.98976928, 39.0983]

• We can process them in parallel using indices:

>>> for i in range(len(metals)):
... print(metals[i], weights[i])
...
Li 6.941
Na 22.98976928
K 39.0983

We will learn about more elegant ways of doing this later.

Practical Programming in Python — Physics Without Frontiers — ICTP 17 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Nesting Loops in Loops

• The loop block can contain another loop
• In the code on the right, the inner loop is

executed once for each item in outer

• The print function is called
len(outer)*len(inner) times

>>> outer = ['Li', 'Na', 'K']
>>> inner = ['F', 'Cl', 'Br']
>>> for metal in outer:
... for halogen in inner:
... print(metal + halogen)
...
...
LiF
LiCl
LiBr
NaF
NaCl
NaBr
KF
KCl
KBr

Nesting often indicates something complicated is going on.

Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Nesting Loops in Loops

• Inner and outer loops can use the same list
• For example, in the code on the right
• Each outer iteration prints a row
• Let’s have a look at the third iteration:

1 i is assigned 3, the third item in numbers
2 The row number, 3, is printed
3 This inner loop header is executed once

per outer iteration
4 The inner loop body is executed five

times. The first time it prints 3, then 6,
and so on

5 A newline is printed after the row is
completed

Avoid modifying lists in these scenarios.

def print_table(n):
"""
Print multiplication table.

Print the multiplication table
for numbers 1 through n inclusive.

Examples:

>>> print_table(5)
1 2 3 4 5

1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

"""
The numbers to include in the table.
numbers = list(range(1, n + 1))

Print header
for i in numbers:

print('\t' + str(i), end='')
print()

Print the numbered table rows
for i in numbers:

print(i, end='')
for j in numbers:

print('\t' + str(i * j), end='')
print()

1

2

3

4

5

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Looping Over Nested Lists

• We can also loop over lists in lists (nested lists):

>>> elements = [['Li', 'Na', 'K'], ['F', 'Cl', 'Br']]
>>> for inner_list in elements:
... print(inner_list)
...
['Li', 'Na', 'K']
['F', 'Cl', 'Br']

• To print one element per line we can loop over the inner list:

>>> elements = [['Li', 'Na', 'K'], ['F', 'Cl', 'Br']]
>>> for inner_list in elements:
... for item in inner_list:
... print(item)
...
Li
Na
K
F
Cl
Br

Nested data structures are very common.
Practical Programming in Python — Physics Without Frontiers — ICTP 20 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Looping Over Ragged Lists

• Nested lists don’t have to be the same length
• Nested lists with inner lists of varying length are called ragged lists
• Python makes it easy to access ragged lists without knowing their length:

>>> info = [['Isaac Newton', 1643, 1727],
... ['Charles Darwin', 1809, 1882],
... ['Alan Turing', 1912, 1954, 'alan@bletchley.uk']]
>>> For record in info:
... print(len(record), end='')
... for field in record:
... print('', field, end='')
... print()
3 Isaac Newton 1643 1727
3 Charles Darwin 1809 1882
4 Alan Turing 1912 1954 alan@bletchley.uk

Ragged data structures can be hard to handle due to missing items.

Practical Programming in Python — Physics Without Frontiers — ICTP 21 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Looping Until a Condition is Reached

• To make for loops work Python needs to know when to stop iterating without
the programmer’s help

• There are many situations where this is not possible
• For example, when user input is involved: does the user want to quit or not?
• The general form of the while statement is:

while expression:
block

• The expression is also called the loop condition
• The loop condition is checked; if it is True the block is executed
• This is repeated until the loop condition is False

We use while loops when the number of iterations depends on data items at run time.

Practical Programming in Python — Physics Without Frontiers — ICTP 22 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Looping Until a Condition is Reached

p < 2*p0 block
True

False

• Let’s calculate the time it takes a bacterial
colony to double its population

• With P being the population, r the growth
rate per minute and t the time in minutes,
we have:

P(t + 1) = P(t) + rP(t)

def p_doubled(p0, r):
t = 0
p = p0
while p < 2*p0:

p += r * p
print(round(p))
t += 1

print("P doubled in", t, "min.")
print("Final P:", round(p))

>>> p_doubled(1000, 0.21)
1210
1464
1772
2144
P doubled in 4 min.
Final P: 2144

You can think of a while loop as a repeated if statement.

Practical Programming in Python — Physics Without Frontiers — ICTP 23 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Infinite Loops

p != 2*p0 block
True

False condition changed

• Let’s change the condition to require the
population to be exactly doubled

• This does not work well, except for very
few combinations of P0 and r

• Python displays inf if the values are too
large to be represented as a float

def p_doubled(p0, r):
t = 0
p = p0
while p != 2*p0: # condition changed

p += r * p
print(round(p))
t += 1

print("P doubled in", t, "min.")
print("Final P:", round(p))

>>> p_doubled(1000, 0.21)
1210
1464
1772
2144
2594
3138
*** several thousand lines later ***
inf
inf
*** and so on forever ***

Infinite loops are a common symptom of bugs.

Practical Programming in Python — Physics Without Frontiers — ICTP 24 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Repetition Based on User Input

• We now can keep asking the user for input:

text = ""
while text != "quit":

text = input("Please enter a chemical formula (or 'quit' to exit): ")
if text == "quit":

print("exiting program...")
elif text == "H2O":

print("Water")
elif text == "NH3":

print("Ammonia")
elif text == "CH4":

print("Methane")
else:

print("Unknown compound")

• The program will exit when the user types quit:

Please enter a chemical formula (or 'quit' to exit): H2O
Water
Please enter a chemical formula (or 'quit' to exit): quit
exiting program...

Note that the loop variable is defined before the loop header.
Practical Programming in Python — Physics Without Frontiers — ICTP 25 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Controlling Loops Using Break & Continue

• As a rule, for and while loops execute the whole block on each iteration
• Sometimes it is useful to be able to break that rule
• Python provides two ways to control the loop from within the block:

• break terminates the loop immediately
• continue skips ahead to the next iteration

• Python also provides a loop else statement which is executed if and only if
there was no break in the loop:

for expression:
block

else:
block (iff no break)

while expression:
block

else:
block (iff no break)

These all have their place. But use them with great care. Keep your code readable.

Practical Programming in Python — Physics Without Frontiers — ICTP 26 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Break Statement

• We demonstrate the break statement with compound formula program
• From the user’s perspective the behaviour does not change
• The following is not an infinite loop:

while True:
text = input("Please enter a chemical formula (or 'quit' to exit): ")
if text == "quit":

print("exiting program...")
break

elif text == "H2O":
print("Water")

elif text == "NH3":
print("Ammonia")

elif text == "CH4":
print("Methane")

else:
print("Unknown compound")

In situations like this explicit loop conditions are easier to read.

Practical Programming in Python — Physics Without Frontiers — ICTP 27 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Break Statement

• Sometimes a loop’s task is finished early
• Without break, the loop has to finish

iterating
• For example, we might want to know the

index of the first digit in a string
• There is no need to continue iterating

when we have found it

In this case break should be considered.

>>> s = 'C3H7'
>>> idx = -1
>>> for i in range(len(s)):
... if idx == -1 and s[i].isdigit():
... idx = i
...
>>> idx
1

i < len(s)

idx == 1
and

s[i].isdigit()

block

True

True
False

False

Practical Programming in Python — Physics Without Frontiers — ICTP 28 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Break Statement

• We can simplify the code using break

• The if statement is much simpler now
• One can argue the code is more readable
• But what if there is no digit in the string?
• Or if the string is empty?
• That’s a problem, because we omitted the

definition
>>> idx = -1

• We could just add it back in, but there is
another way. . .

It is a good thing if programs do less.

>>> s = 'C3H7'
>>> for i in range(len(s)):
... if s[i].isdigit():
... idx = i
... break
...
>>> idx
1

i < len(s) s[i].isdigit()

break

True

True
False

False

Practical Programming in Python — Physics Without Frontiers — ICTP 29 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Loop Else Statement

• Python provides the loop else statement
• It is executed when the loop finished

iterating without interruption
• In particular, if there was no break

• It can be very useful to check for
unexpected circumstances

• The readability can be debated

Some despise this syntax. We think it’s OK.

>>> s = 'ABCDE'
>>> for i in range(len(s)):
... if s[i].isdigit():
... idx = i
... break
... else:
... print('Warning: no digit found.')
... idx = -1

i < len(s) s[i].isdigit()

breakelse

True

TrueFalse

False

Practical Programming in Python — Physics Without Frontiers — ICTP 30 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Continue Statement

• We can also “bend the rules” with the
continue statement

• For example, we might want to sum up
all digits in a string

• We don’t want to process letters
• One way of doing this is to skip letters

with the continue statement

This works. But is it a good idea?

>>> s = 'C3H7'
>>> total = 0
>>> count = 0
>>> for i in range(len(s)):
... if s[i].isalpha():
... continue
... total += int(s[i])
... count += 1
...
>>> print(total, count)
10 2

i < len(s)

s[i].isalpha()

rest of loop

continue
True

True

False

False

Practical Programming in Python — Physics Without Frontiers — ICTP 31 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Continue Statement

• We don’t want to process letters
• That is, “if it is a digit, process it.”
• If you say “if”, write if

• It is much more readable here

Only use continue to avoid deep nesting

>>> s = 'C3H7'
>>> total = 0
>>> count = 0
>>> for i in range(len(s)):
... if s[i].isdigit():
... total += int(s[i])
... count += 1
...
>>> print(total, count)
10 2

i < len(s)

s[i].isdigit()

if-block

False

True

True

False

Practical Programming in Python — Physics Without Frontiers — ICTP 32 / 33

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exercises Lecture 9

