
Practical Programming
in Python

Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 5
Making Choices

The Boolean Type, Boolean Operators, Relational Operators, Choosing which Statements to Execute

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Abstract

“The best thing about a boolean is even if you are wrong, you are only
off by a bit.”

— Anonymous

This lecture introduces another fundamental concept:
making choices. We do this whenever we want our pro-
gram to behave differently depending on the data it’s
working with.
We’ll introduce statements for making choices called con-
trol flow statements.
These statements involve a Python type that is used to
represent truth and falsehood.

Practical Programming in Python — Physics Without Frontiers — ICTP 1 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Overview

• The Boolean type
• Boolean operators
• Relational Operators
• Control flow statements

Reacting differently to varying inputs makes programs much more useful.

Practical Programming in Python — Physics Without Frontiers — ICTP 2 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

The Boolean Type

• Python has a type called bool

• bool is a type just like int or float
• Unlike the numeric types, bool has only

two values: True and False

• True and False are values just like
0, -11.3 and 'Grace Hopper'

George Boole – A Little History

In the 1840’s the mathematician George
Boole expressed classical logic in purely
mathematical form, using only two values:
true and false.
A century later the inventor of information
theory, Claude Shannon, used this system
to optimize the design of electromechani-
cal phone switchboards. This work led to the
use of Boolean logic to design computer cir-
cuits.
In honor of Boole’s work, most modern pro-
gramming languages have a type named af-
ter him to track what is true and what is false.

We use the type bool to describe logical states.

Practical Programming in Python — Physics Without Frontiers — ICTP 3 / 24

https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/Claude_Shannon
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Boolean Operators

• There are only three Boolean operators in Python
• In order of precedence they are: not, and, or
• Here is how they work:

>>> not True
False
>>> not False
True

>>> True and True
True
>>> True and False
False
>>> False and True
False
>>> False and False
False

>>> True or True # or is inclusive!
True
>>> True or False
True
>>> False or True
True
>>> False or False
False

Beware: unlike in English, or is inclusive.

Practical Programming in Python — Physics Without Frontiers — ICTP 4 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Boolean Expressions & Variables

>>> cold = True
>>> windy = False
>>> winter_in_chicago = cold and windy

• We can build Boolean expressions from
Boolean values and operators

• Expressions yield values that can be assigned
to variables

• Boolean variables refer to objects of type bool

Frames Objects

shell

cold id1

windy id2

winter_in_chicago id2

True
id1: bool

False
id2: bool

The only special thing about bool is that there are only two possible values.

Practical Programming in Python — Physics Without Frontiers — ICTP 5 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Boolean Operators & Expressions – A Truth Table

cold windy cold and windy cold or windy (not cold) and windy not(cold and windy)
True True True True False False

True False False True False True

False True False True True True

False False False False False True

Practical Programming in Python — Physics Without Frontiers — ICTP 6 / 24

https://en.wikipedia.org/wiki/Truth_table
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Relational Operators

• Usually Boolean values are produced by
expressions

• Most of the time using relational operators
• Comparisons are common relational

operators

>>> 7 < 9
True
>>> 17 > 64
False
>>> 11 == 11
True
>>> 11 != 11
False
>>> 34 <= 34
True

Symbol Operation
> greater than
< less than
>= greater than or equal to
<= less than or equal to
== equal to
!= not equal to

Note Python uses == for equality, = is reserved for assignments.

Practical Programming in Python — Physics Without Frontiers — ICTP 7 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Comparing Different Types

>>> b = 12 < 34.5
>>> b
True

• We can compare objects of types int and float

• Python first converts the int object to float

• Then Python compares the two float values
• This is equivalent to:

>>> b = float(12) < 34.5

Frames Objects

shell

b id1

True
id1: bool

12
id2: int

34.5
id3: float

12.0
id4: float

The float conversion can cause problems due to rounding errors.

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Relational Operators in Practice

• It does not make sense to compare
numbers we know in advance

• Usually we compare variables
• We give a simple function as an example
• Note that it follows the recipe defined in

lecture 3
• The docstring describes what the function

does and gives examples for testing
• The term “iff” means “if and only if”

(this is mathematican’s jargon)

def is_strictly_positive(x):
"""
Return True iff x is strictly positive.

Examples:

>>> is_strictly_positive(3)
True
>>> is_strictly_positive(-1.2)
False
>>> is_strictly_positive(0)
False

"""
return x > 0

We will learn ways to make comparisons even more useful soon.

Practical Programming in Python — Physics Without Frontiers — ICTP 9 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Combining Comparisons

• So far we have seen three types of operators
• In order of precedence these are:

• Arithemtic operators (+, - and so on)
• Relational operators (>, == and so on)
• Boolean operators (not, and, or)

• The precedences are designed to make combinations easy to write and read:

>>> x = 3
>>> y = 6
>>> z = y
>>> x < y and y < z + 1
True

• This is fine, but consider using parentheses even in simple cases:

>>> (x < y) and (y < (z + 1))

Make your code readable. Avoid misunderstandings. Use parentheses.
Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Applying Boolean Operators to Numbers and Strings

• Numbers and strings can be used with Boolean operators
• Python treats 0 and 0.0 as False and all other numbers as True:

>>> not 0
True
>>> not 1
False
>>> not -43.2
False

• The empty string is treated as False and all other strings are treated as True:

>>> not ''
True
>>> not 'bad'
False

Don’t be obscure. Treating an int with value 0 or an empty string as False is fine.

Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Short-Circuit Evaluation

• Python evaluates Boolean expressions from left to right
• Python stops the evaluation as soon as the result is determined
• For example:

>>> (2 < 3) or (1 // 0)
True

• What would happen without the short-circuit here?

Short-circuit saves time. Python programmers (you) have to know what’s going on.

Practical Programming in Python — Physics Without Frontiers — ICTP 12 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Comparing Strings

• We can compare strings just like we can compare numbers
• Behind the scenes, characters in strings a represented by integer numbers
• The details can be messy
• But this is the mechanism that allows to compare strings
• Things are arranged such that string comparisons reflect alphabetical order:

>>> 'A' < 'a'
True
>>> 'A' < 'z'
False
>>> 'abc' < 'abd'
True
>>> 'abc' < 'abcd'
True

Strings are ordered alphabetically.

Practical Programming in Python — Physics Without Frontiers — ICTP 13 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

String Contents

• Comparisons are not the only relational operators
• Python also provides the operator in
• We can use it to check whether a string is contained in another string:

>>> 'Jan' in '01 Jan 1838'
True

• The in operator is case sensitive:

>>> 'A' in 'abc'
False
>>> 'a' in 'abc'
True

• The empty string is always contained:

>>> '' in 'abc'
True
>>> '' in ''
True

The in operator also works for other types. We will learn about them later.

Practical Programming in Python — Physics Without Frontiers — ICTP 14 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Object Identity

>>> s1 = 'Ada Lovelace'
>>> s2 = 'Ada Lovelace'
>>> s1 == s2
True
>>> s1 is s2
False

• Python provides the is operator to test
whether two objects are identical

• Objects can have equal values while not being
identical

• Identical objects always have equal values

Frames Objects

shell

s1 id1

s2 id2

’Ada Lovelace’
id1: str

’Ada Lovelace’
id2: str

It is important to understand the difference between identity and equivalence.

Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Choosing Which Statements to Execute

• Python provides the if statement
• The if statement lets you choose which code is executed
• Its general form is:

if condition:
block

• The condition is an expression, often (but not necessarily) Boolean:

if color != 'orange':
print('The color is not orange.')

if x < y:
pass # the pass statement is a statement that does nothing. It is surprisingly useful.

Like a function block, an if-block must be indented correctly.

Practical Programming in Python — Physics Without Frontiers — ICTP 16 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Choosing Which Statements to Execute

• For example, we can print a message only when the
user enters a pH level that is acidic:

>>> ph = float(input('Enter a pH level: '))
>>> if ph < 7.0:
... print(ph, 'is acidic')
...
6.0 is acidic

Category Example

pH Level Solution Category
0 – 4 strong acid
5 – 6 weak acid
7 neutral
8 – 9 weak base
10 – 14 strong base

Try what happens if you don’t indent the block!

Practical Programming in Python — Physics Without Frontiers — ICTP 17 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Control Flow: The if Statement

• The if statement executes a code block if the
condition evaluates to True

• The picture on the right is called a flow chart

def acidity_if():
ph = float(input("Enter a pH level: "))
if ph < 7.0:

print(ph, "is acidic.")

if ph > 7.0:
print(ph, "is basic.")

>>> acidity_if()

Enter a pH level: 8.5
8.5 is basic.

ph < 7.0

if-block #1

ph > 7.0

if-block #2

True

False

True

False

Each condition is always checked, even though we know only one will hold.

Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Control Flow: The elif Statement

• The if statement has to come first and behaves as
before

• The elif statement is only evaluated if all previous
conditions are False

def acidity_elif():
ph = float(input("Enter a pH level: "))
if ph < 7.0:

print(ph, "is acidic.")
elif ph > 7.0:

print(ph, "is basic.")

>>> acidity_elif()

Enter a pH level: 8.5
8.5 is basic.

ph < 7.0

if-block

ph > 7.0

elif-block

True

False

True

False

This expresses our a priori knowledge much better.

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Control Flow: Beware of elif vs. multiple if Logic

• Behaviour is different when the if

statement modifies the tested object

def acidity_if():
ph = float(input("Enter a pH level: "))
if ph < 7.0:

ph = 8.0

if ph > 7.0:
print(ph, "is basic.")

def acidity_elif():
ph = float(input("Enter a pH level: "))
if ph < 7.0:

ph = 8.0
elif ph > 7.0:

print(ph, "is basic.")

• Behaviour is different when the conditions
overlap

def acidity_if():
ph = float(input("Enter a pH level: "))
if ph < 7.0:

print(ph, "is acidic.")

if ph < 4.0:
print(ph, "is strongly acidic.")

def acidity_elif():
ph = float(input("Enter a pH level: "))
if ph < 7.0:

print(ph, "is acidic.")
elif ph < 4.0:

print(ph, "is strongly acidic.")

We strongly recommend you avoid these scenarios whenever possible.

Practical Programming in Python — Physics Without Frontiers — ICTP 20 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Control Flow: The else Statement

• The if and elif statements behave as before
• The else statement has to come last and is only

evaluated if all previous conditions are False

def acidity_elif_else():
ph = float(input("Enter a pH level: "))
if ph < 7.0:

print(ph, "is acidic.")
elif ph > 7.0:

print(ph, "is basic.")
else:

print(ph, "is neutral.")

>>> acidity_elif_else()

Enter a pH level: 7.0
7.0 is neutral.

ph < 7.0

if-block

ph > 7.0

elif-block

else-block

True

False

True

False

Think of else as covering the default case.

Practical Programming in Python — Physics Without Frontiers — ICTP 21 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Control Flow: Multiple elif Statements

• There has to exactly one if statement
• There can be multiple elif statements

at the same level
• There can only be one else statement

def compounds():
c = input("Enter the compound: ")
if c == "H2O":

print("Water")
elif c == "NH3":

print("Ammonia")
elif c == "CH4":

print("Methane")
else:

print("Unknown compound")

c == "H2O"

if-block

c == "NH3"

elif-block #1

.

else-block

True

False

True

False

It is good practice to use multiple elif statements for distinct cases.

Practical Programming in Python — Physics Without Frontiers — ICTP 22 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Control Flow: Nested if Statements

• An if-block can contain any statement
• In particluar another if statement

def acidity_elif_else():
val= input("Enter a pH level: ")
if len(val) > 0:

ph = float(val)
if ph < 7.0:

print(ph, "is acidic.")
elif ph > 7.0:

print(ph, "is basic.")
else:

print(ph, "is neutral.")
else:

print('No pH value given!')

ph < 7.0len(val) > 0

else-block #1

if-block

ph > 7.0

elif-block

else-block #2

True

False

True

False

False

True

Nesting control statements is common. We will see more examples later.

Practical Programming in Python — Physics Without Frontiers — ICTP 23 / 24

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/

Exercises Lecture 5

