
Practical Programming
in Python

Inspired by ’Practical Programming’ by Paul Gries, Jennifer Campbell, Jason Montojo

Lecture 14
Object Oriented Programming

User Defined Types, Encapsulation, Polymorphism, Inheritance

Kurt Rinnert, Kate Shaw

Physics Without Frontiers

Copyright © 2018 Kurt Rinnert, Kate Shaw
Copying and distribution of this file, with or without modification,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is, without
any warranty.

https://pragprog.com/book/gwpy2/practical-programming
https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Abstract

“You wanted a banana but what you got was a gorilla holding the ba-
nana and the entire jungle.”

— Joe Armstrong

We have worked with objects from the very beginning of this course.
Using objects is not the same as Object Oriented programming.
Object Oriented Programming is a programming paradigm that is quite
fashionable. Practical programmers need to know at least a little bit
about it. Good programmers do not blindly follow paradigms.
For Python programmers, it is most important to understand user de-
fined types.

Practical Programming in Python — Physics Without Frontiers — ICTP 1 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Overview

• User defined types
• The Book type
• Encapsulation
• Polymorphism
• Inheritance
• A case study

We will focus on user defined types. OO design is beyond the scope of this course.

Practical Programming in Python — Physics Without Frontiers — ICTP 2 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


defining your Own Types

• Let’s say we need to keep track of books
• Every record of a book contains things like author, title, publisher price and ISBN

python_book = Book(
'Practical Programming',
['Campbell', 'Gries', 'Montojo'],
'Pragmatic Bookshelf',
'978-1-93778-545-1',
25.0)

print('{0}\nwas written by {1} authors.'.format(
python_book.title,
python_book.num_authors()))

survival_book = Book(
"New Programmer's Survival Manual",
['Carter'],
'Pragmatic Bookshelf',
'978-1-93435-681-4',
19.0)

print('{0}\nwas written by {1} authors.'.format(
survival_book.title,
survival_book.num_authors()))

• There is a problem: this code does not run

What does this code do?

Practical Programming in Python — Physics Without Frontiers — ICTP 3 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Defining Our Own Types

• You might have guessed that we created two objects of type Book

• You probably also guess the output:

Practical Programming
was written by 3 authors.

New Programmer's Survival Manual
was written by 3 authors.

Python doesn’t know about the Book type yet.

Practical Programming in Python — Physics Without Frontiers — ICTP 4 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Understanding the Problem Domain

• The code expresses what we want to do
with books

• The idea of the Book type comes from the
problem domain

• The problem domain determines the
features we need

• We decided what information we need to
keep track of

• Often we need multiple related types to
reflect the problem domain

OO Design Steps

1. Understand the problem domain: you
need to know what your users want

2. Figure out what types you need: start
with the nouns in the problem
domain

3. Write the classes for the types: you
need to tell Python what your types
are and what they can do

4. Test your code

It is important to think things through before you write code.

Practical Programming in Python — Physics Without Frontiers — ICTP 5 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Another Way to Check for Types

• We have used the function type before
• Python also provides the function isinstance:

>>> isinstance('abc', str)
True
>>> isinstance(51.3, str)
False

• Python also has a class object
• Every other class is based on object:

>>> isinstance('abc', object)
True
>>> isinstance(51.3, object)
True

We say every class is derived from class object.

Practical Programming in Python — Physics Without Frontiers — ICTP 6 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


The Book Class

• This is the simplest class we can write:

>>> class Book:
... """Information about a book."""
...

• Much like str, Book is a type:

>>> type(str)
<class 'str'>
>>> type(Book)
<class 'Book'>

The keyword class tells Python we are defining a type.

Practical Programming in Python — Physics Without Frontiers — ICTP 7 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


The Book Class

• Let’s use our new type:

>>> ruby_book = Book()
>>> ruby_book.title = 'Programming Ruby'
>>> ruby_book.authors = ['Thomas',
... 'Fowler',
... 'Hunt']

• The first assignment creates a Book object
• The second assignment creates title

variable inside the Book object
• The third assignment creates another

variable inside the Book object

’Thomas’
id4: str

’Fowler’
id5: str

’Hunt’
id6: str

0 1 2
id4 id5 id6

id7: list

’Programming Ruby’
id3: str

title id3

authors id7

Book

id2: Book

ruby_book id2

Book
id1: class

Book id1

The variables inside the Book object are called instance variables.

Practical Programming in Python — Physics Without Frontiers — ICTP 8 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


The Book Class

• We can access the instance variables like
this:

>>> ruby_book.title
'Programming Ruby'
>>> ruby_book.authors
['Thomas', 'Fowler', 'Hunt']

’Thomas’
id4: str

’Fowler’
id5: str

’Hunt’
id6: str

0 1 2
id4 id5 id6

id7: list

’Programming Ruby’
id3: str

title id3

authors id7

Book

id2: Book

ruby_book id2

Book
id1: class

Book id1

This is similar to what we learned about modules.

Practical Programming in Python — Physics Without Frontiers — ICTP 9 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Adding a Method to the Book Class

• We have used methods before:

>>> str.capitalize('browning')
'Browning'
>>> 'browning'.capitalize()
'Browning'

• We would like to be able to do something like this:

>>> Book.num_authors(ruby_book)
3
>>> ruby_book.num_authors()
3

Methods define the behaviour of classes.

Practical Programming in Python — Physics Without Frontiers — ICTP 10 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Adding a Method to the Book Class

• We can add a method to the Book class as follows:

class Book:
"""Information about a book."""

def num_authors(self):
"""Return the number of authors"""
return len(self.authors)

• Assuming we have a module book.py, we can call the method like this:

import book
>>> ruby_book = book.Book()
>>> ruby_book.title = 'Programming Ruby'
>>> ruby_book.authors = ['Thomas', 'Fowler', 'Hunt']
>>> book.Book.num_authors(ruby_book)
3
>>> ruby_book.num_authors()
3

All methods expect a class instance as first argument. The name self is a convention.
Practical Programming in Python — Physics Without Frontiers — ICTP 11 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


The book Module

• Let’s assume the class is defined in book.y

• When we import book the definition gets executed

>>> import book

Frames Objects

Book id3book

id4: module

__init__ id1

num_authors id2

Book

id3: class

__init__(self, . . . )
id1: method

num_authors(self, . . . )
id2: method

book id4

shell

The class definition is just a complicated statement.

Practical Programming in Python — Physics Without Frontiers — ICTP 12 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Object Initialization: Constructors

• Previously we have added variables to an object instance
• This is not what we normally do
• Instead we add the variables in the constructor method
• Constructor methods have a special name: __init__

"""Information about a book."""

def __init__(self, title, authors, publisher, isbn, price):
self.title = title
self.authors = authors
self.publisher = publisher
self.isbn = isbn
self.price = price

You can do anything in a constructor that you can do in other methods.

Practical Programming in Python — Physics Without Frontiers — ICTP 13 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Object Creation

• Python executes the constructor when an object is created:

>>> python_book = Book(
'Practical Programming',
['Campbell', 'Gries', 'Montojo'],
'Pragmatic Bookshelf',
'978-1-93778-545-1',
25.0)

>>> python_book.title
'Practical Programming'
>>> python_book.authors
['Campbell', 'Gries', 'Montojo']
>>> python_book.publisher
'Pragmatic Bookshelf'
>>> python_book.ISBN
'978-1-93778-545-1'
>>> python_book.price
25.0

You almost always want to define __init__ for your classes.

Practical Programming in Python — Physics Without Frontiers — ICTP 14 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Memory Model After Creating Book Object

Frames Objects

’Campbell’
id7: str

’Gries’
id8: str

’Montojo’
id9: str

0 1 2
id7 id8 id9

id10: list

authors id10

title id6

publisher id11

isbn id12

price id13

Book

’Practical Programming’
id6: str

’Pragmatic Bookshelf’
id11: str

’978-1-93778-545-1’
id12: str

25.0
id13: float

id5: Book

Book id3book

id4: module

__init__ id1

num_authors id2

Book

id3: class

__init__(self, . . . )
id1: method

num_authors(self, . . . )
id2: method

book id4

python_book id5

shell

Practical Programming in Python — Physics Without Frontiers — ICTP 15 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Tracing a Method Call

>>> python-book.num_authors()

Frames Objects

’Campbell’
id7: str

’Gries’
id8: str

’Montojo’
id9: str

0 1 2
id7 id8 id9

id10: list

authors id10

title id6

publisher id11

isbn id12

price id13

Book

’Practical Programming’
id6: str

’Pragmatic Bookshelf’
id11: str

’978-1-93778-545-1’
id12: str

25.0
id13: float

id5: Book

Book id3book

id4: module

__init__ id1

num_authors id2

Book

id3: class

__init__(self, . . . )
id1: method

num_authors(self, . . . )
id2: method

book id4

python_book id5

shell

self id5

Book.num_authors

Practical Programming in Python — Physics Without Frontiers — ICTP 16 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Tracing a Method Call

3

Frames Objects

’Campbell’
id7: str

’Gries’
id8: str

’Montojo’
id9: str

0 1 2
id7 id8 id9

id10: list

authors id10

title id6

publisher id11

isbn id12

price id13

Book

’Practical Programming’
id6: str

’Pragmatic Bookshelf’
id11: str

’978-1-93778-545-1’
id12: str

25.0
id13: float

id5: Book

Book id3book

id4: module

__init__ id1

num_authors id2

Book

id3: class

__init__(self, . . . )
id1: method

num_authors(self, . . . )
id2: method

3
id14: int

book id4

python_book id5

shell

self id5

return value id14

Book.num_authors

Practical Programming in Python — Physics Without Frontiers — ICTP 17 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


More Methods Special to Python

• When we print an object the __str__ is called
• We can write this method for book:

def __str__(self):
return '"{}" ISBN: {}'.format(self.title, self.isbn)

• Is common to ask whether to object have equal values
• The operator == calls the __eq__ method.

def __eq__(self, other):
return self.isbn == other.isbn

This is an example of polymorphism.

Practical Programming in Python — Physics Without Frontiers — ICTP 18 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Inheritance

• Sometimes classes share a lot of functionality
• Then it is useful to factor out the common things and use inheritance

class InstituteMember:

def __init__(self, name, id):
self.name = name
self.id = id

class Student(InstituteMember):
"""Student information."""

class Professor(InstituteMember):
"""Professor information."""

Use with great care.

Practical Programming in Python — Physics Without Frontiers — ICTP 19 / 20

https://www.ictp.it/physics-without-frontiers.aspx
https://www.ictp.it/


Exercises Lecture 14


