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Indirect detection of NP

• Assumption : NP scale >> energy probed in experiments 

Exp. range NP scale

E

Model independent searches for new physics

Resonances

Assumption : exchange of only
one particle

g g1
p2�m2

Example : Z boson

Effects : a peak in the invariant
mass distribution

Effective field theory

Assumption : New d.o.f are
heavy� Expansion in E2

�2 at low
energy

�g2

m2

Example : Fermi theory

Effects : m2/�2 normalisation
E2/�2 shape
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p2 ≪ m2

Ex : Fermi theory

One assumption : p2 ≪ m2

−
GF

Sqrt[2]
JμJμ, Jμ = Jl

μ + Jh
μ, Jl

μ = νlγμ(1 − γ5)l
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Expansion of the Lagrangian 

• if V is very heavy 

• and the EOM is

LNP = −
1
4

VμνVμν + M2VμVμ + ∑
i

giVμJμ
i + h . c .

−
1
4

VμνVμν ∼ 0

Vμ = −
1

M2 ∑
i

giJ
μ
i + h . c .

LNP
EFT = −

(∑i giJ
μ
i ) (∑i giJμi)

†

M2
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EFT 

ar
X

iv
:1

3
0

8
.6

3
2

3
v

1
  

[h
ep

-p
h

] 
 2

8
 A

u
g

 2
0

1
3

A basis of dimension-eight operators for anomalous neutral

triple gauge boson interactions

Celine Degrande
Department of Physics, University of Illinois at Urbana-Champaign

1110 W. Green Street, Urbana, IL 61801, USA

Abstract

Four independent dimension-eight operators give rise to anomalous neutral triple
gauge boson interactions, one CP-even and three CP-odd. Only the CP-even operator
interferes with the Standard Model for the production of a pair of on-shell neutral
bosons. However, the effects are found to be tiny due mainly to the mismatch of the Z
boson polarization between the productions from the SM and the new operator.

1 Introduction

The recent discovery of the Higgs boson has increased the confidence in the validity of
the Standard Model (SM). On the other hand, the remaining issues of the SM like the
absence of a dark matter candidate claim for new physics. This dilemma can only be solved
experimentally by either directly searching for new particles or by looking for deviations
from the SM predictions. In this article, we use the well motivated effective field theory
(EFT) approach to pin down the expected first deviations from heavy new physics on the
neutral triple gauge couplings (nTGC).
Anomalous neutral gauge couplings have been actively searched for at LEP [1, 2, 3], at the
Tevatron [4, 5] and at the LHC [6, 7]. The constraints are given following the parametrization
of the anomalous vertices for the neutral gauge bosons [8, 9, 10, 11]

ieΓαβµ
ZZV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

[
fV
4 (qα3 g

µβ + qβ3g
µα)− fV

5 ϵµαβρ(q1 − q2)ρ
]
, (1)

ieΓαβµ
ZγV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

{

hV1 (q
µ
2g

αβ − qα2 g
µβ) +

hV2
M2

Z

qα3 [(q3q2)g
µβ − qµ2qβ3 ]

− hV3 ϵ
µαβρq2ρ −

hV4
M2

Z

qα3 ϵ
µβρσq3ρq2σ

}

(2)

where V is a photon or a Z boson and is off-shell while the two other bosons are on-shell.
The parametrization of those vertices has been extended for off-shell bosons in ref. [10]. So
far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
the effective Lagrangian

L = LSM +
∑

d>4

∑

i

Ci

Λd−4
Od

i (3)

1

SM fields & sym.
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EFT 

• Assumption : Eexp <<Λ	

• Model independent (i.e. parametrize a large class of 
models) : any HEAVY NP 

• SM is the leading term : EFT for precision physics
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for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
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d>4

∑

i

Ci

Λd−4
Od

i (3)

1

L = LSM +
�

i

Ci

�2
O6

i

a finite number of 
coefficients 

=>Predictive!

Parametrize any NP but an ∞ number of coefficients

SM fields & sym.
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EFT 

• Assumption : Eexp <<Λ	

• Model independent (i.e. parametrize a large class of 
models) : any HEAVY NP 

• SM is the leading term : EFT for precision physics
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�2
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i

a finite number of 
coefficients 

=>Predictive!

Parametrize any NP but an ∞ number of coefficients

SM fields & sym.

measure only Ci/Λ2
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Interference

|M(x)|2 = |MSM (x)|2 + 2< (MSM (x)M⇤
d6(x)) + |Md6(x)|2 + . . .

� /
X

x

|M(x)|2

< (MSM (x)M⇤
d6(x)) =

q
|MSM (x)|2 |Md6(x)|2 cos↵

⇤0 ⇤�2 O
�
⇤�4

�

↵ R

I

MSM (x1) = 1, MSM (x2) = 0

Md6(x1) = 0, Md6(x2) = 1
�int = 0if

Not always positive

Can be suppressed

Observable dependent



C. Degrande

EFT & scales

Unitarity bound

SM 

NP only
SM+NP

1/⇤0

Perturbativity
Unitarity

1/⇤2

We measure    , what is  ?Ci

⇤2 ⇤

⇠ ⇤

> ⇤ E
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NP only
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(model ind.) We measure    , what is  ?Ci

⇤2 ⇤

⇠ ⇤

> ⇤ E



C. Degrande

EFT & scales

Unitarity bound

SM 

NP only
SM+NP
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Unitarity

1/⇤2
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(model ind.)
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EFT & scales

Unitarity bound
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NP only
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Top operators

those limits [19]. Denoting the left-handed quark doublet and right-handed quark singlets of the
third generation as Q, t, and b,

q̄iqi, ūiui, d̄idi bilinears are allowed in the first two generations,
Q̄Q, t̄t, b̄b, t̄b, Q̄t, Q̄b bilinears are allowed in the third generation,

under the above assumptions. The coe�cients of the first-generation bilinears do not depend on
the i œ {1, 2} index which is thus implicitly summed over. Fierz transformations may be required
on four-fermion operators to bring such quark-antiquark pairs in the same Lorentz bilinear. Equiv-
alently, a U(2)q ◊U(2)u ◊U(2)d symmetry is assumed between the first two quark generations and
no restriction is imposed on the third-generation bilinears. This assumption simplifies four-fermion
operators but does not a�ect third-generation two-fermion ones. Compared to flavour diagonality,
i.e. [U(1)q+u+d]3, which would just force quarks and antiquarks to appear in same-flavour pairs,
U(2)q ◊ U(2)u ◊ U(2)d e�ectively imposes the following additional requirements:

1. the right-handed charged currents of the first generations (ūd, d̄u) are forbidden,

2. the chirality-flipping bilinears of the first generations (q̄u, q̄d) are forbidden,

3. the coe�cients of the bilinears of the first and second generations are forced to be identical.

The U(2)q ◊U(2)u ◊U(2)d flavour symmetry assumption is used by default in this note where not
otherwise specified. The following numbers of degrees of freedom are produced for the operators
of each category of field content:

four heavy quarks 11 + 2 CPV
two light and two heavy quarks 14

two heavy quarks and bosons 9 + 6 CPV
two heavy quarks and two leptons (8 + 3 CPV) ◊ 3 lepton flavours

where we counted separately CP-conserving and CP-violating (CPV) parameters. They are con-
structed explicitly in Appendix C and listed in Table 1 together with their definitions in terms of
Warsaw-basis operator coe�cients.

Finally, a more restrictive variant of this U(2)q ◊ U(2)u ◊ U(2)d scenario would retain only the
four-fermion operators and exclude the operators with two heavy quarks and bosons. This would
be justified when heavy bosons only couple to the SM fermions, so that the low-energy e�ects are
dominated by the tree-level exchanges of heavy mediators between fermionic currents.

4.2 Less restrictive U(2)q+u+d scenario

In order to allow for the light-quark bilinears listed in item 1 and item 2 above, one can limit the
flavour symmetry imposed to U(2)q+u+d only, the diagonal subgroup of U(2)q ◊ U(2)u ◊ U(2)d.
The additional 10 + 10 CPV degrees of freedom that then appear for operators containing two
light and two heavy quarks are discussed in Appendix D.

4.3 More restrictive top-philic scenario

A more restrictive top-philic scenario is not obtained by imposing a specific flavour symmetry but
rather by assuming that new physics couples dominantly to the left-handed doublet and right-
handed up-type quark singlet of the third generation as well as to bosons. All possible operators
with this field content are thus constructed. Purely bosonic operators which lead to flavour-
universal e�ects are discarded. A projection onto the Warsaw basis is subsequently performed,
notably by employing the equations of motion to trade operators with more derivatives for oper-
ators with more fields. In this process, the CKM matrix is again approximated by a unit matrix
and all Yukawa couplings but the top and bottom ones are neglected. Only a limited number of

6

those limits [19]. Denoting the left-handed quark doublet and right-handed quark singlets of the
third generation as Q, t, and b,
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=MFV with all F massless but t,b

Assume (To be checked) that all the operators without top are 
better constrained by other processes (i.e. not involving the top)
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top pair production

(Ï†i
Ωæ
D µÏ) © Ï†(iDµÏ)≠(iDµÏ†)Ï; (Ï†i

Ωæ
D I

µÏ) © Ï†· I(iDµÏ)≠(iDµÏ†)· IÏ where · I are the Pauli
matrices; T A

© ⁄A/2 where ⁄A are Gell-Mann matrices.
Four-quark operators:

O1(ijkl)
qq = (q̄i“

µqj)(q̄k“µql), (1)
O3(ijkl)

qq = (q̄i“
µ· Iqj)(q̄k“µ· Iql), (2)

O1(ijkl)
qu = (q̄i“

µqj)(ūk“µul), (3)
O8(ijkl)

qu = (q̄i“
µT Aqj)(ūk“µT Aul), (4)

O1(ijkl)
qd = (q̄i“

µqj)(d̄k“µdl), (5)

O8(ijkl)
qd = (q̄i“

µT Aqj)(d̄k“µT Adl), (6)

O(ijkl)
uu = (ūi“

µuj)(ūk“µul), (7)
O1(ijkl)

ud = (ūi“
µuj)(d̄k“µdl), (8)

O8(ijkl)
ud = (ūi“

µT Auj)(d̄k“µT Adl), (9)
‡O1(ijkl)

quqd = (q̄iuj) Á (q̄kdl), (10)
‡O8(ijkl)

quqd = (q̄iT
Auj) Á (q̄kT Adl), (11)

Two-quark operators:
‡O(ij)

uÏ = q̄iujÏ̃ (Ï†Ï), (12)

O1(ij)
Ïq = (Ï†i

Ωæ
D µÏ)(q̄i“

µqj), (13)

O3(ij)
Ïq = (Ï†i

Ωæ
D I

µÏ)(q̄i“
µ· Iqj), (14)

O(ij)
Ïu = (Ï†i

Ωæ
D µÏ)(ūi“

µuj), (15)
‡O(ij)

Ïud = (Ï̃†iDµÏ)(ūi“
µdj), (16)

‡O(ij)
uW = (q̄i‡

µ‹· Iuj) Ï̃W I
µ‹ , (17)

‡O(ij)
dW = (q̄i‡

µ‹· Idj) ÏW I
µ‹ , (18)

‡O(ij)
uB = (q̄i‡

µ‹uj) Ï̃Bµ‹ , (19)
‡O(ij)

uG = (q̄i‡
µ‹T Auj) Ï̃GA

µ‹ , (20)
Two-quark-two-lepton operators:

O1(ijkl)
lq = (l̄i“µlj)(q̄k“µql), (21)

O3(ijkl)
lq = (l̄i“µ· I lj)(q̄k“µ· Iql), (22)

O(ijkl)
lu = (l̄i“µlj)(ūk“µul), (23)

O(ijkl)
eq = (ēi“

µej)(q̄k“µql), (24)
O(ijkl)

eu = (ēi“
µej)(ūk“µul), (25)

‡O1(ijkl)
lequ = (l̄iej) Á (q̄kul), (26)

‡O3(ijkl)
lequ = (l̄i‡µ‹ej) Á (q̄k‡µ‹ul), (27)

‡O(ijkl)
ledq = (l̄iej)(d̄kql), (28)

Baryon- and lepton-number-violating operators:1
‡O(ijkl)

duq = (dc
i–uj—)(qc

k“Áll) ‘–—“ , (29)
‡O(ijkl)

qqu = (qc
i–Áqj—)(uc

k“el) ‘–—“ , (30)
1In the latest version of Ref. [1], O

1,3
qqq are merged into one single operator with SU(2)L indices mixed between

the two fermion bilinears. The two conventions are technically speaking equivalent [14].
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µqj), (13)

O3(ij)
Ïq = (Ï†i

Ωæ
D I

µÏ)(q̄i“
µ· Iqj), (14)

O(ij)
Ïu = (Ï†i

Ωæ
D µÏ)(ūi“

µuj), (15)
‡O(ij)

Ïud = (Ï̃†iDµÏ)(ūi“
µdj), (16)

‡O(ij)
uW = (q̄i‡

µ‹· Iuj) Ï̃W I
µ‹ , (17)

‡O(ij)
dW = (q̄i‡

µ‹· Idj) ÏW I
µ‹ , (18)

‡O(ij)
uB = (q̄i‡

µ‹uj) Ï̃Bµ‹ , (19)
‡O(ij)

uG = (q̄i‡
µ‹T Auj) Ï̃GA

µ‹ , (20)
Two-quark-two-lepton operators:

O1(ijkl)
lq = (l̄i“µlj)(q̄k“µql), (21)

O3(ijkl)
lq = (l̄i“µ· I lj)(q̄k“µ· Iql), (22)

O(ijkl)
lu = (l̄i“µlj)(ūk“µul), (23)

O(ijkl)
eq = (ēi“

µej)(q̄k“µql), (24)
O(ijkl)

eu = (ēi“
µej)(ūk“µul), (25)

‡O1(ijkl)
lequ = (l̄iej) Á (q̄kul), (26)

‡O3(ijkl)
lequ = (l̄i‡µ‹ej) Á (q̄k‡µ‹ul), (27)

‡O(ijkl)
ledq = (l̄iej)(d̄kql), (28)

Baryon- and lepton-number-violating operators:1
‡O(ijkl)

duq = (dc
i–uj—)(qc

k“Áll) ‘–—“ , (29)
‡O(ijkl)

qqu = (qc
i–Áqj—)(uc

k“el) ‘–—“ , (30)
1In the latest version of Ref. [1], O

1,3
qqq are merged into one single operator with SU(2)L indices mixed between

the two fermion bilinears. The two conventions are technically speaking equivalent [14].
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Four-heavy (11 + 2 CPV d.o.f.) Indicative direct limits

c1
QQ © 2C1(3333)

qq ≠ 2
3 C3(3333)

qq

c8
QQ © 8C3(3333)

qq

!c+
QQ © C1(3333)

qq + C3(3333)
qq [≠2.92, 2.80] (Ecut = 3 TeV) [44]

c1
Qt © C1(3333)

qu [≠4.97, 4.90] (Ecut = 3 TeV) [44]
c8

Qt © C8(3333)
qu [≠10.3, 9.33] (Ecut = 3 TeV) [44]

c1
Qb © C1(3333)

qd

c8
Qb © C8(3333)

qd

c1
tt © C(3333)

uu [≠2.92, 2.80] (Ecut = 3 TeV) [44]
c1

tb © C1(3333)
ud

c8
tb © C8(3333)

ud

c1[I]
QtQb © [Im]

Re {C1(3333)
quqd

}

c8[I]
QtQb © [Im]

Re {C8(3333)
quqd

}

Two-light-two-heavy (14 d.o.f.)

c3,1
Qq © C3(ii33)

qq + 1
6 (C1(i33i)

qq ≠ C3(i33i)
qq ) [≠0.66, 1.24] [45], [≠3.11, 3.10] [44]

c3,8
Qq © C1(i33i)

qq ≠ C3(i33i)
qq [≠6.06, 6.73] [44]

c1,1
Qq © C1(ii33)

qq + 1
6 C1(i33i)

qq + 1
2 C3(i33i)

qq [≠3.13, 3.15] [44]
c1,8

Qq © C1(i33i)
qq + 3C3(i33i)

qq [≠6.92, 4.93] [44]
c1

Qu © C1(33ii)
qu [≠3.31, 3.44] [44]

c8
Qu © C8(33ii)

qu [≠8.13, 4.05] [44]
c1

Qd © C1(33ii)
qd

[≠4.98, 5.02] [44]
c8

Qd © C8(33ii)
qd

[≠11.7, 9.39] [44]
c1

tq © C1(ii33)
qu [≠2.84, 2.84] [44]

c8
tq © C8(ii33)

qu [≠6.80, 3.49] [44]
c1

tu © C(ii33)
uu + 1

3 C(i33i)
uu [≠3.62, 3.57] [44]

c8
tu © 2C(i33i)

uu [≠8.05, 4.75] [44]
c1

td © C1(33ii)
ud

[≠4.95, 5.04] [44]
c8

td © C8(33ii)
ud

[≠11.8, 9.31] [44]
Two-heavy (9 + 6 CPV d.o.f.)

c[I]
tÏ © [Im]

Re {C(33)
uÏ }

c≠
Ïq © C1(33)

Ïq ≠ C3(33)
Ïq c1

Ïq [≠3.1, 3.1] [45], [≠8.3, 8.6] [46]
c3

ÏQ © C3(33)
Ïq [≠4.1, 2.0] [45], [≠8.6, 8.3] [46]

cÏt © C(33)
Ïu [≠9.7, 8.3] [45], [≠9.1, 9.1] [46]

c[I]
Ïtb © [Im]

Re {C(33)
Ïud

}

c[I]
tW © [Im]

Re {C(33)
uW } ctW [≠4.0, 3.5] [45], [≠4.1, 4.1] [46]

c[I]
tZ © [Im]

Re {≠sW C(33)
uB + cW C(33)

uW } ctB [≠6.9, 4.6] [45], [≠7.6, 7.6] [46]
c[I]

bW © [Im]
Re {C(33)

dW
}

c[I]
tG © [Im]

Re {C(33)
uG } ctG [≠1.32, 1.24] [45]

Two-heavy-two-lepton (8 + 3 CPV d.o.f. ◊3 lepton flavours)

c3(¸)
Ql © C3(¸¸33)

lq

c≠(¸)
Ql © C1(¸¸33)

lq
≠ C3(¸¸33)

lq

c(¸)
Qe © C(¸¸33)

eq

c(¸)
tl © C(¸¸33)

lu

c(¸)
te © C(¸¸33)

eu

cS[I](¸)
t © [Im]

Re {C1(¸¸33)
lequ

}

cT [I](¸)
t © [Im]

Re {C3(¸¸33)
lequ

}

cS[I](¸)
b © [Im]

Re {C(¸¸33)
ledq

}

Table 1: Indicative limits on top-quark operator coe�cients for � = 1 TeV. For details on the
fit procedure, information on the input data and set of operators over which the results are
marginalised please consult the corresponding references (see also Ref. [47]). Coe�cients marked
with a ‘!’ are not independent of the ones previously defined.
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C. Degrande

Top operators

From the Warsaw basis

(Ï†i
Ωæ
D µÏ) © Ï†(iDµÏ)≠(iDµÏ†)Ï; (Ï†i

Ωæ
D I

µÏ) © Ï†· I(iDµÏ)≠(iDµÏ†)· IÏ where · I are the Pauli
matrices; T A

© ⁄A/2 where ⁄A are Gell-Mann matrices.
Four-quark operators:

O1(ijkl)
qq = (q̄i“

µqj)(q̄k“µql), (1)
O3(ijkl)

qq = (q̄i“
µ· Iqj)(q̄k“µ· Iql), (2)

O1(ijkl)
qu = (q̄i“

µqj)(ūk“µul), (3)
O8(ijkl)

qu = (q̄i“
µT Aqj)(ūk“µT Aul), (4)

O1(ijkl)
qd = (q̄i“

µqj)(d̄k“µdl), (5)

O8(ijkl)
qd = (q̄i“

µT Aqj)(d̄k“µT Adl), (6)

O(ijkl)
uu = (ūi“

µuj)(ūk“µul), (7)
O1(ijkl)

ud = (ūi“
µuj)(d̄k“µdl), (8)

O8(ijkl)
ud = (ūi“

µT Auj)(d̄k“µT Adl), (9)
‡O1(ijkl)

quqd = (q̄iuj) Á (q̄kdl), (10)
‡O8(ijkl)

quqd = (q̄iT
Auj) Á (q̄kT Adl), (11)

Two-quark operators:
‡O(ij)

uÏ = q̄iujÏ̃ (Ï†Ï), (12)

O1(ij)
Ïq = (Ï†i

Ωæ
D µÏ)(q̄i“

µqj), (13)

O3(ij)
Ïq = (Ï†i

Ωæ
D I

µÏ)(q̄i“
µ· Iqj), (14)

O(ij)
Ïu = (Ï†i

Ωæ
D µÏ)(ūi“

µuj), (15)
‡O(ij)

Ïud = (Ï̃†iDµÏ)(ūi“
µdj), (16)

‡O(ij)
uW = (q̄i‡

µ‹· Iuj) Ï̃W I
µ‹ , (17)

‡O(ij)
dW = (q̄i‡

µ‹· Idj) ÏW I
µ‹ , (18)

‡O(ij)
uB = (q̄i‡

µ‹uj) Ï̃Bµ‹ , (19)
‡O(ij)

uG = (q̄i‡
µ‹T Auj) Ï̃GA

µ‹ , (20)
Two-quark-two-lepton operators:

O1(ijkl)
lq = (l̄i“µlj)(q̄k“µql), (21)

O3(ijkl)
lq = (l̄i“µ· I lj)(q̄k“µ· Iql), (22)

O(ijkl)
lu = (l̄i“µlj)(ūk“µul), (23)

O(ijkl)
eq = (ēi“

µej)(q̄k“µql), (24)
O(ijkl)

eu = (ēi“
µej)(ūk“µul), (25)

‡O1(ijkl)
lequ = (l̄iej) Á (q̄kul), (26)

‡O3(ijkl)
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‡O(ijkl)

duq = (dc
i–uj—)(qc

k“Áll) ‘–—“ , (29)
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qqu = (qc
i–Áqj—)(uc

k“el) ‘–—“ , (30)
1In the latest version of Ref. [1], O

1,3
qqq are merged into one single operator with SU(2)L indices mixed between

the two fermion bilinears. The two conventions are technically speaking equivalent [14].
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µuj)(d̄k“µdl), (8)

O8(ijkl)
ud = (ūi“
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O(ijkl)
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O(ijkl)

eu = (ēi“
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‡O1(ijkl)
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‡O3(ijkl)
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‡O(ijkl)
ledq = (l̄iej)(d̄kql), (28)

Baryon- and lepton-number-violating operators:1
‡O(ijkl)

duq = (dc
i–uj—)(qc

k“Áll) ‘–—“ , (29)
‡O(ijkl)

qqu = (qc
i–Áqj—)(uc

k“el) ‘–—“ , (30)
1In the latest version of Ref. [1], O

1,3
qqq are merged into one single operator with SU(2)L indices mixed between

the two fermion bilinears. The two conventions are technically speaking equivalent [14].
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Four-heavy (11 + 2 CPV d.o.f.) Indicative direct limits
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3 C3(3333)

qq
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qq

!c+
QQ © C1(3333)

qq + C3(3333)
qq [≠2.92, 2.80] (Ecut = 3 TeV) [44]

c1
Qt © C1(3333)

qu [≠4.97, 4.90] (Ecut = 3 TeV) [44]
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qq ≠ C3(i33i)
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Two-heavy (9 + 6 CPV d.o.f.)
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Table 1: Indicative limits on top-quark operator coe�cients for � = 1 TeV. For details on the
fit procedure, information on the input data and set of operators over which the results are
marginalised please consult the corresponding references (see also Ref. [47]). Coe�cients marked
with a ‘!’ are not independent of the ones previously defined.

12

Four-heavy (11 + 2 CPV d.o.f.) Indicative direct limits

c1
QQ © 2C1(3333)

qq ≠ 2
3 C3(3333)

qq

c8
QQ © 8C3(3333)

qq

!c+
QQ © C1(3333)

qq + C3(3333)
qq [≠2.92, 2.80] (Ecut = 3 TeV) [44]

c1
Qt © C1(3333)

qu [≠4.97, 4.90] (Ecut = 3 TeV) [44]
c8

Qt © C8(3333)
qu [≠10.3, 9.33] (Ecut = 3 TeV) [44]

c1
Qb © C1(3333)

qd

c8
Qb © C8(3333)

qd

c1
tt © C(3333)

uu [≠2.92, 2.80] (Ecut = 3 TeV) [44]
c1

tb © C1(3333)
ud

c8
tb © C8(3333)

ud

c1[I]
QtQb © [Im]

Re {C1(3333)
quqd

}

c8[I]
QtQb © [Im]

Re {C8(3333)
quqd

}

Two-light-two-heavy (14 d.o.f.)

c3,1
Qq © C3(ii33)

qq + 1
6 (C1(i33i)

qq ≠ C3(i33i)
qq ) [≠0.66, 1.24] [45], [≠3.11, 3.10] [44]

c3,8
Qq © C1(i33i)

qq ≠ C3(i33i)
qq [≠6.06, 6.73] [44]

c1,1
Qq © C1(ii33)

qq + 1
6 C1(i33i)

qq + 1
2 C3(i33i)

qq [≠3.13, 3.15] [44]
c1,8

Qq © C1(i33i)
qq + 3C3(i33i)

qq [≠6.92, 4.93] [44]
c1

Qu © C1(33ii)
qu [≠3.31, 3.44] [44]

c8
Qu © C8(33ii)

qu [≠8.13, 4.05] [44]
c1

Qd © C1(33ii)
qd

[≠4.98, 5.02] [44]
c8

Qd © C8(33ii)
qd

[≠11.7, 9.39] [44]
c1

tq © C1(ii33)
qu [≠2.84, 2.84] [44]

c8
tq © C8(ii33)

qu [≠6.80, 3.49] [44]
c1

tu © C(ii33)
uu + 1

3 C(i33i)
uu [≠3.62, 3.57] [44]

c8
tu © 2C(i33i)

uu [≠8.05, 4.75] [44]
c1

td © C1(33ii)
ud

[≠4.95, 5.04] [44]
c8

td © C8(33ii)
ud

[≠11.8, 9.31] [44]
Two-heavy (9 + 6 CPV d.o.f.)

c[I]
tÏ © [Im]

Re {C(33)
uÏ }

c≠
Ïq © C1(33)

Ïq ≠ C3(33)
Ïq c1

Ïq [≠3.1, 3.1] [45], [≠8.3, 8.6] [46]
c3

ÏQ © C3(33)
Ïq [≠4.1, 2.0] [45], [≠8.6, 8.3] [46]

cÏt © C(33)
Ïu [≠9.7, 8.3] [45], [≠9.1, 9.1] [46]

c[I]
Ïtb © [Im]

Re {C(33)
Ïud

}

c[I]
tW © [Im]

Re {C(33)
uW } ctW [≠4.0, 3.5] [45], [≠4.1, 4.1] [46]

c[I]
tZ © [Im]

Re {≠sW C(33)
uB + cW C(33)

uW } ctB [≠6.9, 4.6] [45], [≠7.6, 7.6] [46]
c[I]

bW © [Im]
Re {C(33)

dW
}

c[I]
tG © [Im]

Re {C(33)
uG } ctG [≠1.32, 1.24] [45]

Two-heavy-two-lepton (8 + 3 CPV d.o.f. ◊3 lepton flavours)

c3(¸)
Ql © C3(¸¸33)

lq

c≠(¸)
Ql © C1(¸¸33)

lq
≠ C3(¸¸33)

lq

c(¸)
Qe © C(¸¸33)

eq

c(¸)
tl © C(¸¸33)

lu

c(¸)
te © C(¸¸33)

eu

cS[I](¸)
t © [Im]

Re {C1(¸¸33)
lequ

}

cT [I](¸)
t © [Im]

Re {C3(¸¸33)
lequ

}

cS[I](¸)
b © [Im]

Re {C(¸¸33)
ledq

}

Table 1: Indicative limits on top-quark operator coe�cients for � = 1 TeV. For details on the
fit procedure, information on the input data and set of operators over which the results are
marginalised please consult the corresponding references (see also Ref. [47]). Coe�cients marked
with a ‘!’ are not independent of the ones previously defined.

12

)

0 if mb=0

Top 
leptonic 
decay



C. Degrande

(SM-like) Top decay

C. Zhang, S Willenbrock, PRD83, 034008

J.A. Aguilar-Saavedra, NPB843, 683
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+ one four-fermion operator for the hadronic decay
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Width, W helicities and …
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Single top

The top quark is  
• one of the least known particle 
• more sensitive to many dim-6 operators due to its mass

Γ↑

Γ
=

1 + Ai cos θ
2

Γ↓

Γ
=

1 − Ai cos θ
2

Al = Ad = 1, Au = Aν = − 0.31

l
b

ν

t

θ
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Single top

are also expected to yield similar results up to rescaling factors, because they do not

interfere with the SM amplitude.

We do not consider here the 80 additional four-fermion operators obtained by replacing

u ! c and/or d ! s, b in the former set. Either their e↵ect is smaller than the ones

considered, because of parton distribution functions (PDFs), if the second generation

or b quarks are in the initial state, or the e↵ect in the cross section and polarisation is

similar, if they are in the final state. By the same reckoning, the e↵ect of flavour-changing

neutral four-fermion operators (involving three charge-2/3 light quarks plus a top quark)

is expected to be quite similar. Therefore, we restrict our study to the six operators in

(3), which generate the e↵ective Lagrangian

Le↵ =
1

⇤2

⇥
Cqq (t̄L�

µ
bL)(d̄L�µuL) + Cdu(t̄R�

µ
bR)(d̄R�µuR) + Cqu(t̄RbL)(d̄LuR)

+Cqd(t̄LbR)(d̄RuL)� CqudR(t̄RbL)(d̄RuL)� CqudL(t̄LbR)(d̄LuR)
⇤
+ h.c. (6)

In order to ease the notation, we have dropped flavour superindices in the e↵ective oper-

ator coe�cients and introduced a chirality label to distinguish the coe�cients of the two

Oqud operators, CqudR = C
(1,3311) ⇤
qud , CqudL = C

(1,1133)
qud . A factor of 4 has been absorbed in

the definition of Cqq.

This Lagrangian is implemented in Feynrules [21] in order to perform our calcula-

tions with MadGraph5 aMC@NLO [22]. We use a centre-of-mass energy of 13 TeV.

Our results include ug ! tb̄d, d̄g ! tb̄ū and also ud̄ ! tb̄g, which is s-channel pro-

duction with the radiation of an extra gluon, and the charge conjugate processes for top

anti-quark production. The latter process has a collinear enhancement for low transverse

momentum (pT ) of the spectator jet, in this case the gluon; Since experimental measure-

ments require the presence of the spectator jet we set a lower cut pT � 20 GeV. We use

the CTEQ6L1 PDFs [23] and the default factorisation and renormalisation scales in the

generator. Processes with initial s, c quarks are included as well but without four-fermion

operator contributions, which as seen in Eq. (6) only involve u, d, t and b fields.

We only study the e↵ect of one e↵ective operator at a time, because their interference

vanishes in most cases, or is suppressed by the b quark mass otherwise. Therefore, the

simultaneous inclusion of two or more operators does not lead to qualitatively new e↵ects.

The operator coe�cients are always taken real. (Cqq is always real due to the Hermiticity

of the e↵ective operator.) We have not found significant variations in the transverse

polarisation Px nor, for complex operator coe�cients, in the normal polarisation Py.

The dependence of the total cross section and longitudinal polarisation on the e↵ective

4
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Figure 2: Dependence of the cross section and polarisation on e↵ective operator coe�-

cients, normalised to their SM values.
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Figure 3: E↵ect of four-fermion contributions in the single top cross section (normalised to

the SM value) and polarisation, for top quarks (left) and anti-quarks (right). The black

dots and ellipses represent the SM predictions and expected uncertainties. The points

corresponding to operator coe�cients C/⇤2 = 1 TeV�2 are indicated.

momentum, the SM contributions are reduced by an order of magnitude, A0 = 4.0 pb,

B0 = 2.7 pb for top quarks, and A0 = 1.8, B0 = 1.2 for anti-quarks. The interference with

four-fermion operators is similarly suppressed, while the quadratic four fermion contribu-
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Abstract

We discuss the e↵ect of heavy new physics, parameterised in terms of four-

fermion operators, in the polarisation of single top (anti-)quarks in the t-channel

process at the LHC. It is found that for operators involving a right-handed top

quark field the relative e↵ect on the longitudinal polarisation is twice larger than the

relative e↵ect on the total cross section. This enhanced dependence on possible four-

fermion contributions makes the polarisation measurements specially interesting, in

particular at high momenta.

Single top quark production is the sub-dominant source of top quarks in high-energy

collisions at the Large Hadron Collider (LHC). The three production modes, t-channel,

s-channel and tW associated production, are sensitive to various manifestations of new

physics beyond the Standard Model (SM), such as new particles exchanged in the s or t

channels [1–4], a modified tbW interaction [5–8], top flavour-changing neutral currents [9–

15] or e↵ective four-fermion interactions [8, 16]. Most of the phenomenological studies

adressing the e↵ect of new physics in single top production have concentrated on the total

cross section, whereas the top quark polarisation, which can be measured with similar or

better precision, deserves a more detailed investigation.

In the t-channel process, single top quarks are produced with a large longitudinal

polarisation Pz ' 0.9 in the direction ẑ of the spectator jet in the top quark rest frame [17],

and a slightly smaller polarisation Pz ' 0.8 for anti-quarks. (In the t-channel process

qg ! q
0
tb̄ the spectator jet j is the light quark q

0.) The top quark polarisation can also

be measured along two additional orthogonal axes, the so-called “transverse” (x̂, within

the production plane) and “normal” (ŷ, orthogonal to it). The definitions of the three

axes are [18]

ẑ =
~pj

|~pj|
, ŷ =

~pj ⇥ ~pq

|~pj ⇥ ~pq|
, x̂ = ŷ ⇥ ẑ , (1)
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Interference

|M(x)|2 = |MSM (x)|2 + 2< (MSM (x)M⇤
d6(x)) + |Md6(x)|2 + . . .

⇤0 ⇤�2 O
�
⇤�4

�

≈ / = 0 ≈ / = 0 ≈ / = 0

Ex :  FCNC such as tt

Process Syntax Cross section (pb) �µ̂ �PDF Ref.
Triple bosons

p
s = 13 TeV

?c.1 pp!HHH p p > h h h [QCD] 3.968± 0.010 · 10�5 +31.8%
�22.6%

+1.4%
�1.4% [59]

†c.2 gg!HHZ g g > h h z [QCD] 5.260± 0.009 · 10�5 +31.2%
�22.2%

+1.3%
�1.3% [ – ]

†c.3 gg!HZZ g g > h z z [QCD] 1.144± 0.004 · 10�4 +31.1%
�22.2%

+1.2%
�1.3% [ – ]

†c.4 gg!HZ� g g > h z a [QCD] 6.190± 0.020 · 10�6 +29.3%
�21.2%

+1.0%
�1.2% [ – ]

†c.5 pp!H�� p p > h a a [QCD] 6.058± 0.004 · 10�6 +30.3%
�21.8%

+1.1%
�1.3% [ – ]

?c.6 gg!HW
+
W

� g g > h w+ w- [QCD] 2.670± 0.007 · 10�4 +31.0%
�22.2%

+1.2%
�1.3% [60]

†c.7 gg!ZZZ g g > z z z [QCD] 6.964± 0.009 · 10�5 +30.9%
�22.1%

+1.2%
�1.3% [ – ]

†c.8 gg!ZZ� g g > z z a [QCD] 3.454± 0.010 · 10�6 +28.7%
�20.9%

+0.9%
�1.1% [ – ]

?c.9 gg!Z�� g g > z a a [QCD] 3.079± 0.005 · 10�4 +28.0%
�20.9%

+0.7%
�1.0% [61]

†c.10 gg!ZW
+
W

� g g > z w+ w- [QCD] 8.595± 0.020 · 10�3 +26.9%
�19.5%

+0.6%
�0.6% [ – ]

†c.12 gg! �W
+
W

� g g > a w+ w- [QCD] 1.822± 0.005 · 10�2 +28.7%
�20.9%

+0.9%
�1.1% [ – ]

Table 6. Inclusive cross-sections for loop-induced triple electroweak boson production. A star
(?) prefixes processes not readily available in the tools MCFM, VBFNLO or HPAIR. A dagger
(†) prefixes processes whose inclusive cross-section is reported here for the first time. See text for
details.

Process Syntax Cross section (pb) �µ̂ �PDF Ref.
Selected 2 ! 4

p
s = 13 TeV

†d.1 pp ! Hjjj p p > h j j j QED=1 [QCD] 2.519± 0.005 +75.1%
�39.8%

+0.6%
�0.6% [62]

?d.2 pp ! HHjj p p > h h j j QED=1 [QCD] 1.085± 0.002 · 10�2 +62.1%
�35.8%

+1.2%
�1.3% [63]

†d.3 pp ! HHHj p p > h h h j [QCD] 4.981± 0.008 · 10�5 +46.3%
�29.6%

+1.4%
�1.4% [ – ]

†d.3 pp ! HHHH p p > h h h h [QCD] 1.080± 0.003 · 10�7 +33.3%
�23.4%

+1.7%
�1.7% [ – ]

d.4 gg ! e
+
e
�
µ
+
µ
� g g > e+ e- mu+ mu- [QCD] 2.022± 0.003 · 10�3 +26.4%

�19.4%
+0.7%
�1.1% [64]

†d.5 pp ! HZ�j g g > h z a g [QCD] 4.950± 0.008 · 10�6 +45.8%
�29.3%

+1.2%
�1.3% [ – ]

Non-hadronic processes
p
s = 500 GeV, no PDF

?e.1 e
+
e
�
! ggg e+ e- > g g g [QED] 2.526± 0.004 · 10�6 +31.2%

�22.0% [65]
†e.2 e

+
e
�
! HH e+ e- > h h [QED] 1.567± 0.003 · 10�5 [ – ]

†e.3 e
+
e
�
! HHgg e+ e- > h h g g [QED] 6.629± 0.010 · 10�11 +19.2%

�14.8% [ – ]
?e.4 �� ! HH a a > h h [QED] 3.198± 0.005 · 10�4 [66]

Miscellaneous
p
s = 13 TeV

†f.1 pp ! tt p p > t t [QED] 4.045± 0.007 · 10�15 +0.2%
�0.8%

+0.9%
�1.0% [ – ]

Table 7. Inclusive cross-sections for various 2 ! 4 processes as well as processes with non-hadronic
initial states. A star (?) prefixes processes not readily available in the tools MCFM, VBFNLO or
HPAIR. A dagger (†) prefixes processes whose inclusive cross-section is reported here for the first
time. See text for details.
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very distinctive signatures at hadron colliders can be exploited to look for
new particles associated to its production or decay. This is of course natu-
ral if the masses of such new hypothetical states are in the range accessible
at the present collider energies, i.e., at the Tevatron and LHC. However,
it is important to consider also the possibility that these states are slightly
heavier and cannot be produced on shell. In this case new degrees of free-
dom enter only at the virtual level to modify the production and/or decay
properties of the top quark. One well known candidate for such effects is
the forward-backward asymmetry (AFB) measurement at the Tevatron [3],
possibly the first hint for new physics in the top sector. This is exactly
where a model-independent approach based on effective operator description
is mostly useful [4, 5, 6, 7, 8, 9, 10].

Recently, all the operators that could describe new physics effects in top
pair production both at the Tevatron and the LHC have been classified [11,
5, 6, 7], including those affecting AFB. At the LHC, the low probability to
have a quark-antiquark initial state prevents large contributions from the
four-fermion operators. In this work we start from the known observation
that this issue is avoided for same sign top pair production and we perform
a complete analysis, including the possible relation with resonant states.

After introducing a complete basis of effective operators, we compute the
total cross-section, the invariant mass distribution mtt and the spin correla-
tions in a model independent way. All possible t- and s-channel exchanges of
heavy particles are expressed in terms of those dimension-six operators. The
former may link same and opposite sign top pair productions. However, as
we will show, it is disfavored when the cross-section [12], the AFB [3] and the
invariant mass distribution [13] measurements are considered simultaneously.

2. The operators

Any operator contributing to same sign top pair production can be ex-
pressed as a linear combination of

ORR = [t̄Rγ
µuR] [t̄RγµuR]

O(1)
LL =

[

Q̄Lγ
µqL

] [

Q̄LγµqL
]

O(3)
LL =

[

Q̄Lγ
µσaqL

] [

Q̄Lγµσ
aqL

]

O(1)
LR =

[

Q̄Lγ
µqL

]

[t̄Rγµ uR]

O(8)
LR =

[

Q̄Lγ
µTAqL

] [

t̄Rγµ TAuR

]

(1)

2

up to 0.5 pb
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2

a proof of principle that fully automatic computation of
cross sections at NLO in QCD is possible in the context
of the full dimension-six Lagrangian of the SM. Higher
order computations in effective field theories, which are
renormalizable only order by order in 1/Λ, Λ being the
scale of new physics, present novel technical challenges.
In general, UV divergences generated by one operator
at a certain order of 1/Λ have to be absorbed also by
other effective operators. As a result, the full set of
relevant operators together with their operator mixing
effects need to be considered simultaneously, and appro-
priate UV counterterms have to be implemented in the
calculation. Our method and its implementation are fully
general and can cover arbitrary NLO calculations in the
complete dimension-six Lagrangian of the SM.

II. FRAMEWORK

The FCN couplings of the top quark can be
parametrized using either fully gauge-symmetric
dimension-six operators [19, 20] or dimension-four and
dimension-five operators in the electroweak broken
phase [6, 21]. The latter approach has some intrinsic
limitations [22], and we will use the dimension-six op-
erators throughout the paper. The effective Lagrangian
can be written as

LEFT = LSM +
∑

i

Ci

Λ2
Oi +H.c. (1)

In this work we consider qtB couplings at the dimension-
six level. The relevant operators must involve one top
quark and one light quark. They are

O(3,i+3)
ϕq = i

(

ϕ†←→D I
µϕ

)

(q̄iγ
µτIQ)

O(1,i+3)
ϕq = i

(

ϕ†←→D µϕ
)

(q̄iγ
µQ)

O(i+3)
ϕu = i

(

ϕ†←→D µϕ
)

(ūiγ
µt)

O(i3)
uB = gY (q̄iσ

µνt)ϕ̃Bµν , O(i3)
uW = gW (q̄iσ

µντIt)ϕ̃W I
µν

O(i3)
uG = gs(q̄iσ

µνTAt)ϕ̃GA
µν , O(i3)

uϕ = (ϕ†ϕ)(q̄it)ϕ̃ ,

where the operator notation is consistent with Ref. [23],
with additional flavor indices. On the right hand side,
the subscript i = 1, 2 represents the generation of the
light quark fields. ui and qi are single and doublet quark
fields of the first two generations, respectively, while t
and Q are of the third generation. ϕ is the Higgs dou-
blet. A diagonal CKM matrix is assumed. The group
generators are normalized such that Tr

(

TATB
)

= δAB/2

and Tr
(

τIτJ
)

= 2δIJ , and ϕ†←→D µϕ ≡ ϕ†Dµϕ−Dµϕ†ϕ,

ϕ†←→D I
µϕ ≡ ϕ†τIDµϕ − Dµϕ†τIϕ. For operators with

(i3) superscript, a similar set of operators with (3i) fla-
vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
uB , O(i3,3i)

uW and O(i3,3i)
uG operators

correspond to weak- and color-dipole couplings. In par-

ticular, O(i3,3i)
uG could induce the production pp → th,

and it was not included in [11]. The last operator gives
rise to flavor-changing Yukawa couplings. This operator

is actually implemented as O(i3)
uϕ = (ϕ†ϕ− v2/2)(q̄it)ϕ̃ to

avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and
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superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and

4

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uB = 1.0 546 +14.4% -11.8% 764 +6.9% -6.4%

C
(13)
uG = 0.04 1.00 +12.0% -10.2% 2.34 +15.2% -11.5%

C
(13)
uG , veto 0.739 +11.50% -9.8% 1.19 +7.7% -6.5%

C
(23)
uB = 1.9 152 +10.6% -9.6% 258 +6.8% -6.0%

C
(23)
uG = 0.09 0.590 +12.1% -11.1% 1.95 +16.4% -12.3%

C
(23)
uG , veto 0.457 +12.2% -11.2% 1.04 +10.3% -8.9%

TABLE I. Total cross sections for pp → tγ. Contributions
from operators with (31), (32) superscripts are not displayed,
but they are the same as their (13), (23) counterparts. Con-

tributions from O
(i3),(3i)
uW are equal to those from O

(i3),(3i)
uB .

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(1+3)
ϕu = 1.0 905 +12.9% -10.9% 1163 +6.2% -5.6%

C
(13)
uW = 0.9 1737 +11.5% -9.8% 2270 +6.6% -6.2%

C
(13)
uG = 0.04 30.1 +17.5% -13.8% 36.0 +3.8% -5.2%

C
(31)
uG = 0.04 29.4 +17.7% -13.9% 34.9 +3.4% -5.1%

C
(2+3)
ϕu = 1.0 73.2 +10.4% -9.3% 107 +6.5% -5.9%

C
(23)
uW = 1.1 172 +7.5% -7.2% 255 +6.1% -5.2%

C
(23)
uG = 0.09 6.92 +11.3% -9.9% 10.6 +5.8% -5.4%

C
(32)
uG = 0.09 6.58 +11.5% -10.1% 10.0 +5.7% -5.3%

TABLE II. Total cross sections for pp → tZ. Contributions
from operators O(31),(32)

uW are the same as those from O
(13),(23)
uW .

Contributions from O
(i3),(3i)
uB are equal to those from O

(i3),(3i)
uW

times tan4 θW . Contributions from O
(j,i+3)
ϕq are the same as

those from O
(i+3)
ϕu .

To illustrate the importance of keeping all operators
possibly contributing to a given final state, we illustrate

in Fig. 3 the interference effect between O(23)
uW and O(23)

uG ,
in pp → tZ production. As a matter of fact, the inter-
ference between these two operators is large and gives
rise to a significant change in the rate as well as in the
distributions.
Finally, Fig. 4 shows an example where kinematic vari-

ables can be used to distinguish the contributions be-
tween different operators. The Higgs boson rapidity dis-
tribution in pp→ th for tuh coupling induced production

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uϕ = 3.5 2603 +13.0% -11.0% 3858 +7.4% -6.7%

C
(13)
uG = 0.04 40.1 +16.5% -13.2% 50.7 +4.0% -5.2%

C
(23)
uϕ = 3.5 171 +9.7% -8.7% 310 +7.3% -6.3%

C
(23)
uG = 0.09 9.53 +11.0% -9.7% 16.6 +5.5% -5.1%

TABLE III. Total cross sections for pp → th. Contributions
from operators O

(3i)
uϕ and O

(3i)
uG are equal to those from O

(i3)
uϕ

and O
(i3)
uG , respectively.
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FIG. 2. The pT distribution of top quark in pp → tγ (top)
and in pp → th (bottom).

is more forward than that induced by the tug coupling.
The reason is that an incoming up quark, which is in
general more energetic than a gluon, can emit a forward
Higgs boson and turn into an off-shell top quark via a uth
vertex, while the same mechanism is not possible for the
utg mediated production. The same observable may also
be used to discriminate between uth and cth couplings,
as proposed in Ref. [39], because c and g have similar
PDFs.

VI. SUMMARY

Precision top-quark physics will be one of the priorities
at the next run of the LHC. The detection of new inter-
actions and in particular of FCN ones, will be among the
most promising searches for new physics. A consistent
framework to perform such searches is provided by the
dimension-six SM, i.e., the SM Lagrangian augmented
by all operators of dimension-six compatible with the
gauge symmetries of the SM. Bounding the coefficients
of such operators first (and possibly determining them
in case of deviations) requires accurate predictions for

Top FCNC

4

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uB = 1.0 546 +14.4% -11.8% 764 +6.9% -6.4%

C
(13)
uG = 0.04 1.00 +12.0% -10.2% 2.34 +15.2% -11.5%

C
(13)
uG , veto 0.739 +11.50% -9.8% 1.19 +7.7% -6.5%

C
(23)
uB = 1.9 152 +10.6% -9.6% 258 +6.8% -6.0%

C
(23)
uG = 0.09 0.590 +12.1% -11.1% 1.95 +16.4% -12.3%

C
(23)
uG , veto 0.457 +12.2% -11.2% 1.04 +10.3% -8.9%

TABLE I. Total cross sections for pp → tγ. Contributions
from operators with (31), (32) superscripts are not displayed,
but they are the same as their (13), (23) counterparts. Con-

tributions from O
(i3),(3i)
uW are equal to those from O

(i3),(3i)
uB .

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(1+3)
ϕu = 1.0 905 +12.9% -10.9% 1163 +6.2% -5.6%

C
(13)
uW = 0.9 1737 +11.5% -9.8% 2270 +6.6% -6.2%

C
(13)
uG = 0.04 30.1 +17.5% -13.8% 36.0 +3.8% -5.2%

C
(31)
uG = 0.04 29.4 +17.7% -13.9% 34.9 +3.4% -5.1%

C
(2+3)
ϕu = 1.0 73.2 +10.4% -9.3% 107 +6.5% -5.9%

C
(23)
uW = 1.1 172 +7.5% -7.2% 255 +6.1% -5.2%

C
(23)
uG = 0.09 6.92 +11.3% -9.9% 10.6 +5.8% -5.4%

C
(32)
uG = 0.09 6.58 +11.5% -10.1% 10.0 +5.7% -5.3%

TABLE II. Total cross sections for pp → tZ. Contributions
from operators O(31),(32)

uW are the same as those from O
(13),(23)
uW .

Contributions from O
(i3),(3i)
uB are equal to those from O

(i3),(3i)
uW

times tan4 θW . Contributions from O
(j,i+3)
ϕq are the same as

those from O
(i+3)
ϕu .

To illustrate the importance of keeping all operators
possibly contributing to a given final state, we illustrate

in Fig. 3 the interference effect between O(23)
uW and O(23)

uG ,
in pp → tZ production. As a matter of fact, the inter-
ference between these two operators is large and gives
rise to a significant change in the rate as well as in the
distributions.
Finally, Fig. 4 shows an example where kinematic vari-

ables can be used to distinguish the contributions be-
tween different operators. The Higgs boson rapidity dis-
tribution in pp→ th for tuh coupling induced production

LO NLO

Coefficient σ[fb] Scale uncertainty σ[fb] Scale uncertainty

C
(13)
uϕ = 3.5 2603 +13.0% -11.0% 3858 +7.4% -6.7%

C
(13)
uG = 0.04 40.1 +16.5% -13.2% 50.7 +4.0% -5.2%

C
(23)
uϕ = 3.5 171 +9.7% -8.7% 310 +7.3% -6.3%

C
(23)
uG = 0.09 9.53 +11.0% -9.7% 16.6 +5.5% -5.1%

TABLE III. Total cross sections for pp → th. Contributions
from operators O

(3i)
uϕ and O

(3i)
uG are equal to those from O

(i3)
uϕ

and O
(i3)
uG , respectively.
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FIG. 2. The pT distribution of top quark in pp → tγ (top)
and in pp → th (bottom).

is more forward than that induced by the tug coupling.
The reason is that an incoming up quark, which is in
general more energetic than a gluon, can emit a forward
Higgs boson and turn into an off-shell top quark via a uth
vertex, while the same mechanism is not possible for the
utg mediated production. The same observable may also
be used to discriminate between uth and cth couplings,
as proposed in Ref. [39], because c and g have similar
PDFs.

VI. SUMMARY

Precision top-quark physics will be one of the priorities
at the next run of the LHC. The detection of new inter-
actions and in particular of FCN ones, will be among the
most promising searches for new physics. A consistent
framework to perform such searches is provided by the
dimension-six SM, i.e., the SM Lagrangian augmented
by all operators of dimension-six compatible with the
gauge symmetries of the SM. Bounding the coefficients
of such operators first (and possibly determining them
in case of deviations) requires accurate predictions for

3

FIG. 1. Tree-level diagrams for pp → tV and pp → th. The
black dots represent contributions from color dipole operators
O

(i3,3i)
uG , while the shaded squares represent other operators.

the rational R2 terms which are required by the OPP
technique [27]. These are computed fully automatically
by the NLOCT [28] package, which has been extended
to handle EFT’s i.e., to compute the R2 and UV diver-
gent parts of amplitudes with integrals of arbitrary high
ranks. Currently, such calculations are limited to opera-
tors with up to two fermion fields. The determination of
the UV divergent part of the counterterms is obtained by
simply changing the sign of the UV divergent part of the
corresponding amplitude. This avoids the translations of
the counterterms vertices in the operator renormalization
constants and the associated basis reduction. However, it
is only valid when the dimension-six operators are renor-
malized in the MS scheme.
We have extensively checked our implementation by

evaluating the virtual contributions of ug → t, uγ → t,
uZ → t, uh → t and ug → th (with uth coupling only)
and comparing them with corresponding known analyt-
ical expressions numerically. In each case the results
agree. In addition we have checked the gauge invari-
ance of all virtual contributions, as well as the pole can-
cellation when combining virtual and real contributions.
When possible, we have also made comparisons with the
results for total cross sections for pp → tγ, tZ, th at the
fixed order of Refs. [9–11], finding consistent results.

IV. CALCULATION

As an application of our general framework to the phe-
nomenology of the top quark FCN at the LHC, we con-
sider three processes, pp → tγ, pp → tZ and pp → th.
The LO diagrams are shown in Fig. 1. Each process re-
ceives contributions from two different interactions, one
from utg coupling and the other from utB coupling. At
NLO in QCD the utg operator will mix with other op-
erators, and as a result a NLO calculation needs to be
carried out with the full set of operators.
Our numerical results are obtained by employing the

following input parameters

mZ = 91.1876 GeV, α = 1/127.9,

GF = 1.166370× 10−5 GeV−2,

mt = 172.5 GeV, mh = 125 GeV, Λ = 1 TeV. (4)

We use CTEQ6M for NLO and CTEQ6L for LO calcula-
tions respectively, with their respective values of αS [29].

The renormalization scale µr and factorization scale µf

are chosen to be mt +mB for the pp→ tB process, and
are allowed to vary independently by a factor of 0.5 to
2. In pp → tγ, we require the photon pT > 50 GeV
and its pseudorapidity |η| < 2.5. For the photon, we em-
ploy the isolation criterium of Ref. [30] with a radius of
0.4. The events are then showered with PYTHIA6 [31] or
HERWIG6 [32]. Finally, we have checked that the dou-
bly resonant diagrams with the antitop decaying through
FCN interactions have a small impact, yet they have been
removed from the real contributions, see Ref. [33].
Currently the best limits on top FCN couplings are

from the decay searches of t → qZ [34], t → qh [35, 36],
and the production searches of qg → t [37] and qg → tγ
[38]. To make a viable choice for the operator coefficients
in our calculation, we exploit the results of Ref. [22] that
are based on a global fit on the full set of current limits

Coefficient Limit Coefficient Limit Relevant
production

C(j,i+3)
ϕq 1.05 C(i+3)

ϕu 1.05 tZ

C(13,31)
uG 0.041 C(23,32)

uG 0.093 tγ, tZ, th

C(13,31)
uW 0.92 C(23,32)

uW 1.1 tγ, tZ

C(13,31)
uB 1.0 C(23,32)

uB 1.9 tγ, tZ

C(13,31)
uϕ 3.5 C(23,32)

uϕ 3.5 th

where i = 1, 2, j = 1, 3, and the limits apply to the mod-
uli of the coefficients, assuming Λ = 1 TeV. Each limit
is obtained by marginalizing over all the other operator
coefficients. In this work, we choose real and positive val-
ues for the coefficients that do not exceed these bounds.
The total cross sections at the LHC at

√
s = 13 TeV cor-

responding to each operator are displayed in Tables I, II
and III. The scale uncertainties are also displayed. As ex-
pected the K factors are generally sizeable and the scale
uncertainties are significantly reduced at NLO. This is

the case for all operators except for O(i3,3i)
uG in tγ produc-

tion. This process has an unusually large K factor when

the flavor-changing coupling is coming from O(i3,3i)
uG . As

shown in Table I, vetoing any extra jet with pT > 50 GeV
reduces the K factor from 2.3 (3.3) to 1.6 (2.3) for utg
(ctg) coupling as well as the uncertainties for this pro-
duction mechanism. Note also that a jet veto can help
to improve the signal over the SM background ratio, for
all three processes.

V. DIFFERENTIAL CROSS SECTIONS

The pT distributions of the top quark in pp→ tγ and
pp→ th are shown in Fig. 2. Both LO and NLO signals
are displayed, together with the SM backgrounds from
pp→ tγj and thj, which are generated at NLO with the

same parameters. In all cases the O(13)
uG contributions

are very small due to the stringent limit from ug → t
production. Therefore, the pp → tX processes appear
more as confirmation than as a discovery channel for the
chromomagnetic operator.

Small when constraints from 
              are taken into 
 account
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Computations at next-to-leading order in the Standard Model offer new technical challenges in
the presence of higher dimensional operators. We introduce a framework that, starting from the
top-quark effective field theory at dimension six, allows one to make predictions for cross sections
as well as distributions in a fully automatic way. As an application, we present the first complete
results at next-to-leading order in QCD for flavor-changing neutral interactions including parton
shower effects, for tZ, th, tγ associated production at the LHC.

PACS numbers: 14.65.Ha,12.38.Bx

I. INTRODUCTION

The millions of top quarks already produced at the
LHC together with the tens of millions expected in
the coming years will provide a unique opportunity to
search for interactions beyond the Standard Model (SM).
Among them flavor-changing neutral (FCN) interactions
are of special interest. In the SM, FCN interactions can
be generated at one loop, yet they turn out to be sup-
pressed by the Glashow-Iliopoulos-Maiani mechanism [1].
The resulting FCN decay modes of the top quark have
branching ratios of order 10−12–10−15 [2–4]. Thus, any
signal for top-quark FCN processes at a measurable rate
would immediately indicate new physics in the top-quark
sector. These processes have been searched for already
at different colliders, including LEP2, HERA, Tevatron
and more recently at the LHC [5]. So far no signal has
been observed and limits have been set on the coupling
strengths.

The most important top-quark FCN processes at the
LHC include decay processes such as t → qB and pro-
duction processes such as qg → t and qg → tB, where q is
a u or c quark and B is a neutral boson, i.e., B = γ, Z, h.
In general, the decay processes are equally sensitive to
utB and ctB couplings, while the production modes are
less sensitive to ctB, but may provide a better handle on
a certain class of utB couplings [6]. In addition, com-
pared to decay modes, single-top production can provide
more information. First, it makes a wider range of kine-
matic variables accessible, helping in the discrimination
of the light quark flavors involved and the structure of the
qtB couplings. Second, it probes interactions at higher
scales where new physics effects could be enhanced. In
general, being somewhat complementary, both decay and
production processes are used for setting the most strin-
gent constraints.

Leading order (LO) predictions for the production

processes suffer from large uncertainties due to miss-
ing higher order corrections. To curb such uncertainties,
next-to-leading order (NLO) predictions in QCD for this
class of processes have started to be calculated in re-
cent years [7–11], providing a much better, yet incom-
plete, picture of their relevance. In general, corrections
are found to be large, of order 30% to 80% and to lead
to considerable reductions of the residual theoretical un-
certainties. Both aspects are important in bounding and
possibly extracting top-quark FCN couplings at the LHC.

In this paper we present the first automatic computa-
tions for top-quark FCN production processes, qg → tB
with B = γ, Z, h, at NLO in QCD, by implementing all
flavor-changing dimension-six fully gauge-invariant oper-
ators in FeynRules [12] and then passing this informa-
tion into the MadGraph5 aMC@NLO framework [13].
Compared to previous works [9–11, 14–17], the salient
features of our results can be summarized as follows. Our
study is the first where all relevant dimension-six opera-
tors for this class of processes (associated production with
a boson) are consistently taken into account. In partic-
ular the vector-current like tqZ coupling in ug → tZ,
and the tug and tugh couplings in ug → th are included
here for the first time. Second, our results are obtained
via a fully automatic chain of tools that allows one to
go directly from the Lagrangian to the hard events by
performing its renormalization at one loop, and then
passing the corresponding Feynman rules to the Mad-

Graph5 aMC@NLO to generate all the elements nec-
essary for a computation at NLO in QCD. In particular,
other processes triggered by the same set of operators
can be seamlessly computed within the same framework.
Third, event generation is also automatically available
at NLO accuracy, by matching it to the parton shower
via the MC@NLO formalism [18] so that results can be
employed in realistic experimental simulations. Finally,
another important aspect of this work is that it provides
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Computations at next-to-leading order in the Standard Model offer new technical challenges in
the presence of higher dimensional operators. We introduce a framework that, starting from the
top-quark effective field theory at dimension six, allows one to make predictions for cross sections
as well as distributions in a fully automatic way. As an application, we present the first complete
results at next-to-leading order in QCD for flavor-changing neutral interactions including parton
shower effects, for tZ, th, tγ associated production at the LHC.
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I. INTRODUCTION

The millions of top quarks already produced at the
LHC together with the tens of millions expected in
the coming years will provide a unique opportunity to
search for interactions beyond the Standard Model (SM).
Among them flavor-changing neutral (FCN) interactions
are of special interest. In the SM, FCN interactions can
be generated at one loop, yet they turn out to be sup-
pressed by the Glashow-Iliopoulos-Maiani mechanism [1].
The resulting FCN decay modes of the top quark have
branching ratios of order 10−12–10−15 [2–4]. Thus, any
signal for top-quark FCN processes at a measurable rate
would immediately indicate new physics in the top-quark
sector. These processes have been searched for already
at different colliders, including LEP2, HERA, Tevatron
and more recently at the LHC [5]. So far no signal has
been observed and limits have been set on the coupling
strengths.

The most important top-quark FCN processes at the
LHC include decay processes such as t → qB and pro-
duction processes such as qg → t and qg → tB, where q is
a u or c quark and B is a neutral boson, i.e., B = γ, Z, h.
In general, the decay processes are equally sensitive to
utB and ctB couplings, while the production modes are
less sensitive to ctB, but may provide a better handle on
a certain class of utB couplings [6]. In addition, com-
pared to decay modes, single-top production can provide
more information. First, it makes a wider range of kine-
matic variables accessible, helping in the discrimination
of the light quark flavors involved and the structure of the
qtB couplings. Second, it probes interactions at higher
scales where new physics effects could be enhanced. In
general, being somewhat complementary, both decay and
production processes are used for setting the most strin-
gent constraints.

Leading order (LO) predictions for the production

processes suffer from large uncertainties due to miss-
ing higher order corrections. To curb such uncertainties,
next-to-leading order (NLO) predictions in QCD for this
class of processes have started to be calculated in re-
cent years [7–11], providing a much better, yet incom-
plete, picture of their relevance. In general, corrections
are found to be large, of order 30% to 80% and to lead
to considerable reductions of the residual theoretical un-
certainties. Both aspects are important in bounding and
possibly extracting top-quark FCN couplings at the LHC.

In this paper we present the first automatic computa-
tions for top-quark FCN production processes, qg → tB
with B = γ, Z, h, at NLO in QCD, by implementing all
flavor-changing dimension-six fully gauge-invariant oper-
ators in FeynRules [12] and then passing this informa-
tion into the MadGraph5 aMC@NLO framework [13].
Compared to previous works [9–11, 14–17], the salient
features of our results can be summarized as follows. Our
study is the first where all relevant dimension-six opera-
tors for this class of processes (associated production with
a boson) are consistently taken into account. In partic-
ular the vector-current like tqZ coupling in ug → tZ,
and the tug and tugh couplings in ug → th are included
here for the first time. Second, our results are obtained
via a fully automatic chain of tools that allows one to
go directly from the Lagrangian to the hard events by
performing its renormalization at one loop, and then
passing the corresponding Feynman rules to the Mad-

Graph5 aMC@NLO to generate all the elements nec-
essary for a computation at NLO in QCD. In particular,
other processes triggered by the same set of operators
can be seamlessly computed within the same framework.
Third, event generation is also automatically available
at NLO accuracy, by matching it to the parton shower
via the MC@NLO formalism [18] so that results can be
employed in realistic experimental simulations. Finally,
another important aspect of this work is that it provides
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a proof of principle that fully automatic computation of
cross sections at NLO in QCD is possible in the context
of the full dimension-six Lagrangian of the SM. Higher
order computations in effective field theories, which are
renormalizable only order by order in 1/Λ, Λ being the
scale of new physics, present novel technical challenges.
In general, UV divergences generated by one operator
at a certain order of 1/Λ have to be absorbed also by
other effective operators. As a result, the full set of
relevant operators together with their operator mixing
effects need to be considered simultaneously, and appro-
priate UV counterterms have to be implemented in the
calculation. Our method and its implementation are fully
general and can cover arbitrary NLO calculations in the
complete dimension-six Lagrangian of the SM.

II. FRAMEWORK

The FCN couplings of the top quark can be
parametrized using either fully gauge-symmetric
dimension-six operators [19, 20] or dimension-four and
dimension-five operators in the electroweak broken
phase [6, 21]. The latter approach has some intrinsic
limitations [22], and we will use the dimension-six op-
erators throughout the paper. The effective Lagrangian
can be written as

LEFT = LSM +
∑

i

Ci

Λ2
Oi +H.c. (1)

In this work we consider qtB couplings at the dimension-
six level. The relevant operators must involve one top
quark and one light quark. They are

O(3,i+3)
ϕq = i

(

ϕ†←→D I
µϕ

)

(q̄iγ
µτIQ)

O(1,i+3)
ϕq = i

(

ϕ†←→D µϕ
)

(q̄iγ
µQ)

O(i+3)
ϕu = i

(

ϕ†←→D µϕ
)

(ūiγ
µt)

O(i3)
uB = gY (q̄iσ

µνt)ϕ̃Bµν , O(i3)
uW = gW (q̄iσ

µντIt)ϕ̃W I
µν

O(i3)
uG = gs(q̄iσ

µνTAt)ϕ̃GA
µν , O(i3)

uϕ = (ϕ†ϕ)(q̄it)ϕ̃ ,

where the operator notation is consistent with Ref. [23],
with additional flavor indices. On the right hand side,
the subscript i = 1, 2 represents the generation of the
light quark fields. ui and qi are single and doublet quark
fields of the first two generations, respectively, while t
and Q are of the third generation. ϕ is the Higgs dou-
blet. A diagonal CKM matrix is assumed. The group
generators are normalized such that Tr

(

TATB
)

= δAB/2

and Tr
(

τIτJ
)

= 2δIJ , and ϕ†←→D µϕ ≡ ϕ†Dµϕ−Dµϕ†ϕ,

ϕ†←→D I
µϕ ≡ ϕ†τIDµϕ − Dµϕ†τIϕ. For operators with

(i3) superscript, a similar set of operators with (3i) fla-
vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
uB , O(i3,3i)

uW and O(i3,3i)
uG operators

correspond to weak- and color-dipole couplings. In par-

ticular, O(i3,3i)
uG could induce the production pp → th,

and it was not included in [11]. The last operator gives
rise to flavor-changing Yukawa couplings. This operator

is actually implemented as O(i3)
uϕ = (ϕ†ϕ− v2/2)(q̄it)ϕ̃ to

avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and
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Data

Process Dataset
Ô

s Info Observables Ndat Ref

tt̄ ATLAS_tt_8TeV_ljets 8 TeV lepton+jets
d‡/d|yt|, d‡/dp

T

t , 5, 8,
[92]

d‡/dmtt̄, d‡/d|ytt̄| 7, 5

tt̄ CMS_tt_8TeV_ljets 8 TeV lepton+jets
d‡/dyt, d‡/dp

T

t , 10, 8,
[93]

d‡/dmtt̄, d‡/dytt̄ 7, 10

tt̄ CMS_tt2D_8TeV_dilep 8 TeV dileptons

d
2
‡/dytdp

T

t , 16,

[94]
d

2
‡/dytdmtt̄, 16,

d
2
‡/dp

T

tt̄
dmtt̄, 16,

d
2
‡/dytt̄dmtt̄ 16

tt̄ CMS_tt_13TeV_ljets 13 TeV lepton+jets
d‡/d|yt|, d‡/dp

T

t , 7, 9,
[97]

d‡/dmtt̄, d‡/d|ytt̄| 8, 6

tt̄ CMS_tt_13TeV_ljets2 13 TeV lepton+jets
d‡/d|yt|, d‡/dp

T

t , 11, 12,
[99]

d‡/dmtt̄, d‡/d|ytt̄| 10, 10

tt̄ CMS_tt_13TeV_dilep 13 TeV dileptons
d‡/dyt, d‡/dp

T

t , 8, 6,
[100]

d‡/dmtt̄, d‡/dytt̄ 6, 8

tt̄ ATLAS_WhelF_8TeV 8 TeV W helicity fract F0, FL, FR 3 [95]

tt̄ CMS_WhelF_8TeV 8 TeV W helicity fract F0, FL, FR 3 [96]

Table 3.1. The experimental measurements of inclusive top quark pair production at the LHC
considered in the present analysis to constrain the coe�cients of the SMEFT dimension-6 operators
in the top sector. For each dataset, we indicate the type of process, the dataset label, the center
of mass energy

Ô
s, the final state or the specific production mechanism, the available observables,

the number of data points Ndat, and the publication reference. Most distributions are statistically
correlated among them and one needs to be careful to avoid double counting.

with an electroweak gauge boson, and with the Higgs boson.

Inclusive top-quark pair production. At the LHC, the dominant mechanism for the
production of top quarks is through the production of tt̄ pairs. The inclusive tt̄ process is
dominated by the gluon-gluon initial state, with a small admixture of the quark-antiquark
partonic luminosity [123]. In this analysis, we will limit ourselves to parton-level distributions
constructed in terms of the kinematical variables of the top and anti-top quark, for which
NNLO QCD corrections are available in the SM [124]. See [125] for recent progress in higher
order calculations at the particle level for decayed top quarks, in terms of leptons and b-jets.
For all the inclusive tt̄ processes computed here, the SM prediction is computed up to NNLO in
the QCD coupling. Theoretical predictions are obtained at NLO with Sherpa [126], for 8 TeV
measurements, and with MCFM [127], for 13 TeV measurements, and are then supplemented
with the NNLO QCD K-factors computed in Ref. [128].

In the present analysis we include the ATLAS and CMS di�erential distributions from tt̄
production at

Ô
s = 8 TeV in the lepton+jets final state [92, 93]. These measurements are

18

Only one distribution per measurement (correlation)
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Data

Process Dataset
Ô

s Info Observables Ndat Ref

tt̄bb̄ CMS_ttbb_13TeV 13 TeV total xsec ‡tot(tt̄bb̄) 1 [101]

tt̄tt̄ CMS_tttt_13TeV 13 TeV total xsec ‡tot(tt̄tt̄) 1 [102]

tt̄Z CMS_ttZ_8_13TeV 8+13 TeV total xsec ‡tot(tt̄Z) 2 [103, 104]

tt̄Z ATLAS_ttZ_8_13TeV 8+13 TeV total xsec ‡tot(tt̄Z) 2 [105, 106]

tt̄W CMS_ttW_8_13TeV 8+13 TeV total xsec ‡tot(tt̄W ) 2 [103, 104]

tt̄W ATLAS_ttW_8_13TeV 8+13 TeV total xsec ‡tot(tt̄W ) 2 [105, 106]

tt̄H CMS_tth_13TeV 13 TeV signal strength µ
tt̄H

1 [107]

tt̄H ATLAS_tth_13TeV 13 TeV total xsec ‡tot(tt̄H) 1 [108]

Table 3.2. Same as Table 3.1 now for tt̄ in association with heavy quarks, with weak vector bosons,
and with the Higgs boson.

those used in the study of [129] to constrain the large-x gluon PDF from the tt̄ di�erential
cross-sections, and are part of the NNPDF3.1 input dataset [36]. In both cases, the distri-
butions in top quark transverse momentum and rapidity, pt

T
and yt, as well as in top-quark

pair invariant mass and rapidity, mtt̄ and ytt̄ are available, both as absolute cross-sections and
normalised to the inclusive results; only the former are used here. As discussed in [129], to
avoid double counting only one distribution per experiment can be added to the fit, as long
as correlations between di�erent distributions are not available or neglected.

Besides these two datasets, we take into account the constraints from the double-di�erential
distributions from CMS at 8 TeV, which provide a good handle on the underlying partonic
kinematics [94]. Note that this dataset is based on the dilepton final state, therefore it does
not overlap with the dataset used in [93], which instead is based on the lepton+jets channel.
We also include the CMS di�erential distributions at

Ô
s = 13 TeV in the lepton+jets [97]

and dilepton [100] final states based on an integrated luminosity of L = 2.3 fb≠1, as well
as the more recent measurements in the lepton+jet channel based on L = 35.8 fb≠1 [99].
A measurement based on the same dataset but with the dilepton final state was presented
in [130]. Double-di�erential distributions from CMS at 13 TeV [97] are excluded since they
overlap with the single-inclusive distributions from the lepton+jets datasets.

We do not include ATLAS measurements at 13 TeV since the published di�erential cross-
sections at 13 TeV in the lepton+jets [131] and dilepton [132] channels are provided at the
particle level. In this work, we restrict ourselves to parton-level observables. Note that in prin-
ciple ATLAS measurements at 13 TeV are also available for the fully hadronic final state in the
highly boosted regime [133]. These measurements are not considered here since their analysis
requires jet substructure information alongside the consistent inclusion of electroweak [134]
and threshold resummation [135] corrections.

Helicity fractions and spin correlations in tt̄ production. A further window on the
underlying dynamics of top quark pair production is provided by the measurement of ob-
servables sensitive to the spin structure of top quark production and decay. Among them,
polarisation, W helicity fractions, and spin correlations provide direct constraints on the
structure of the tWb vertex. In this work, we include the helicity fractions FL, F0, and

19
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Global top Fit

Figure 5.7. Graphical representation of the results of Tables 5.2 and 5.4, where we compare the
95% CL bounds on the 34 degrees of freedom included the present analysis, both in the marginalised
(global) and in the individual fit cases, with the bounds reported in the LHC Top WG EFT note [10].

the individual bounds are in general rather tighter than the marginalised ones, except for
some of the four-heavy-quark operators (and for OtZ) where they are instead comparable.

Another useful way to present our results is by representing the bounds on �/


|ci| that
are derived from the fit. This is interesting because, assuming UV completions where the
values of the fitted degrees of freedom ci are O(1), plotting the results this way indicates
the approximate reach in energy that is being achieved by the SMEFT global analysis. This
comparison is shown in Fig. 5.8, which is the analogous plot as Fig. 5.7 now representing the
same bounds as bounds on the ratio �/


|ci| (now only for the marginalised bounds from the

global fit). We find that for the degrees of freedom that are better constrained we achieve
sensitivity up to scales as high as � ƒ 1.5 TeV, in particular thanks to the chromomagnetic
operator OtG which is well determined from the di�erential measurements of top quark pair
production. Future measurements based on larger statistics should allow us to prove even
higher scales, in particular by means of the high-luminosity LHC datasets.

5.3 The impact of the NLO QCD and O(�≠4) corrections
The baseline fit results presented above are based on theory calculations that account both
for the NLO QCD corrections to the SMEFT contributions and for the quadratic O

!
�≠4

"

terms in Eq. (2.2), see also the discussion in Sect. 2. Here we aim to assess the robustness
and stability of our results by comparing the baseline fit results with those of fits based on
two alternative theory settings. Firstly we compare with a fit where only LO QCD e�ects
are included for the SMEFT contributions, and then with a fit that includes only the linear
O

!
�≠2

"
terms in the e�ective theory expansion (but still based on NLO QCD for the SMEFT

51
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ory cross-sections can be evaluated including BSM cor-
rections. We also assess how the bounds on the SMEFT
coe�cients are modified in this joint fit as compared
to the traditional approach where PDFs are kept fixed.
See [47, 48] for related xFitter [49] studies restricted to
H1 and ZEUS data and to one-parameter fits.
Here we will study the impact of operators of the form

Olq =
�
l̄R�

µ
lR

�
(q̄R�µqR) , q = u, d, s, c , (2)

where lR and qR stand for right-handed charged lep-
tons and quarks fields. We assume coupling universal-
ity in the lepton sector but not in the quark one, in
order to evade the strong constraints from LEP preci-
sion data [50]. These operators lead to a energy-growing
e↵ects and their contributions are weighted by the cor-
responding PDFs, two properties that provide powerful
handles for discriminating them.
The calculation of the SMEFT corrections from the

Olq operators in Eq. (2) to DIS structure functions can
be performed in analogy with the corresponding SM com-
putation. For instance, F2 will now contain terms linear
and quadratic in au, the coe�cient of Olu in Eq. (1):

�F
smeft
2 �

x

12e4

 
4aue

2Q
2

⇤2
(1 + 4KZs

4
W ) + 3a2u

Q
4

⇤4

!

⇥

⇣
u(x,Q2) + ū(x,Q2)

⌘
(3)

where KZ = Q
2
/(4c2W s

2
W (Q2 + M

2
Z)), sW = sin ✓W ,

cW = cos ✓W , and u (ū) represents the up (anti-)quark
PDF. The terms linear in au arise from the interference
with the SM amplitudes and are suppressed as Q

2
/⇤2.

Similar expressions to can be evaluated for the contribu-
tions from Old, Ols, and Olc, and for the parity-violating
structure function xF3, while �F

smeft
L = 0 at leading or-

der. In this work we will keep only the leading O
�
⇤�2

�

terms in Eq. (3), though we have verified that results
are stable upon the addition of the O

�
⇤�4

�
ones. These

SMEFT-augmented structure functions have been imple-
mented into APFEL [51, 52]. The DGLAP equations for
the scale evolution of the PDFs are una↵ected.
Since SMEFT e↵ects are suppressed as Q

2
/⇤2, only

measurements involving large momentum transfers Q
2

will be sensitive to them. The only DIS experiment that
has explored the region Q

⇠
> MW is HERA [53], whose

legacy structure function data [54] reach up to Qmax '

250 GeV. In Fig. 1 we display the percentage shift in the
e
�
p neutral current (NC) DIS cross-section,

�smeft ⌘
�
d
2
�
NC

/dxdQ
2
�. �

d
2
�
NC
SM/dxdQ

2
�
� 1 , (4)

as a function of x and Q
2, for a representative choice of

coe�cients given by au = ac = 0.28 and ad = as =
�0.10. As in the rest of the paper, we assume here
that ⇤ = 1 TeV. The corrections depend only mildly
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FIG. 1: The percentage SMEFT-induced shift, Eq. (4), for
the e�p neutral current DIS cross-section at O

�
Q2/⇤2

�
for a

representative choice of {aq} as a function of x and Q2.

on Bjorken-x and increase rapidly with Q, reaching up
to ' 20% for the upper HERA kinematic limit.

Given that for a sizable region of the SMEFT param-
eter space the shifts Eq. (4) are comparable or bigger
than the experimental uncertainties of the precise HERA
structure functions, the latter can be exploited to impose
bounds on the allowed ranges of the coe�cients {aq}.
First of all, we evaluate the values of �2

tot({aq}) for the
DIS measurements used in NNPDF3.1 [55], correspond-
ing to ndat = 3092 data points from BCDMS, SLAC,
NMC, CHORUS, NuTeV, and HERA. In this calcula-
tion, we use NNPDF3.1 NNLO DIS-only as input with
consistent theory settings such as FONLL-C [56] and fit-
ted charm [57]. This is repeated for a range of SMEFT
benchmark points (BPs) (listed in the Appendix) and
for the Nrep = 100 Monte Carlo replicas. The resulting
�
2
tot({aq}) values are then fitted to a quadratic form,

�
2
min +

X

q,q0=u,d,s,c

Hqq0

⇣
aq � a

(min)
q

⌘⇣
aq0 � a

(min)
q0

⌘
(5)

where Hqq0 are the elements of the Hessian matrix in
the quark flavour space. Note that Eq. (5) is exact if
the O(⇤�4) corrections are neglected, else it is valid only
close to a local minimum. We have performed the fits of
the SMEFT coe�cients both varying a single operator at
a time (individual fits) as well as varying the four of them
simultaneously and then marginalizing over each one.

In Table I we indicate the 90% confidence level (CL)
intervals for the four coe�cients obtained with fixed in-
put PDFs. We compare the individual bounds with the
marginalised ones from the four-dimensional fits, without
and with PDF uncertainties. In the former case, theory
calculations are obtained using the central replica. In the
latter case, we compute the bounds for the Nrep = 100
replicas and take the envelope of the 90% narrower ones.
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on Bjorken-x and increase rapidly with Q, reaching up
to ' 20% for the upper HERA kinematic limit.

Given that for a sizable region of the SMEFT param-
eter space the shifts Eq. (4) are comparable or bigger
than the experimental uncertainties of the precise HERA
structure functions, the latter can be exploited to impose
bounds on the allowed ranges of the coe�cients {aq}.
First of all, we evaluate the values of �2

tot({aq}) for the
DIS measurements used in NNPDF3.1 [55], correspond-
ing to ndat = 3092 data points from BCDMS, SLAC,
NMC, CHORUS, NuTeV, and HERA. In this calcula-
tion, we use NNPDF3.1 NNLO DIS-only as input with
consistent theory settings such as FONLL-C [56] and fit-
ted charm [57]. This is repeated for a range of SMEFT
benchmark points (BPs) (listed in the Appendix) and
for the Nrep = 100 Monte Carlo replicas. The resulting
�
2
tot({aq}) values are then fitted to a quadratic form,
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where Hqq0 are the elements of the Hessian matrix in
the quark flavour space. Note that Eq. (5) is exact if
the O(⇤�4) corrections are neglected, else it is valid only
close to a local minimum. We have performed the fits of
the SMEFT coe�cients both varying a single operator at
a time (individual fits) as well as varying the four of them
simultaneously and then marginalizing over each one.

In Table I we indicate the 90% confidence level (CL)
intervals for the four coe�cients obtained with fixed in-
put PDFs. We compare the individual bounds with the
marginalised ones from the four-dimensional fits, without
and with PDF uncertainties. In the former case, theory
calculations are obtained using the central replica. In the
latter case, we compute the bounds for the Nrep = 100
replicas and take the envelope of the 90% narrower ones.
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ory cross-sections can be evaluated including BSM cor-
rections. We also assess how the bounds on the SMEFT
coe�cients are modified in this joint fit as compared
to the traditional approach where PDFs are kept fixed.
See [47, 48] for related xFitter [49] studies restricted to
H1 and ZEUS data and to one-parameter fits.
Here we will study the impact of operators of the form

Olq =
�
l̄R�

µ
lR

�
(q̄R�µqR) , q = u, d, s, c , (2)

where lR and qR stand for right-handed charged lep-
tons and quarks fields. We assume coupling universal-
ity in the lepton sector but not in the quark one, in
order to evade the strong constraints from LEP preci-
sion data [50]. These operators lead to a energy-growing
e↵ects and their contributions are weighted by the cor-
responding PDFs, two properties that provide powerful
handles for discriminating them.
The calculation of the SMEFT corrections from the

Olq operators in Eq. (2) to DIS structure functions can
be performed in analogy with the corresponding SM com-
putation. For instance, F2 will now contain terms linear
and quadratic in au, the coe�cient of Olu in Eq. (1):
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cW = cos ✓W , and u (ū) represents the up (anti-)quark
PDF. The terms linear in au arise from the interference
with the SM amplitudes and are suppressed as Q
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Similar expressions to can be evaluated for the contribu-
tions from Old, Ols, and Olc, and for the parity-violating
structure function xF3, while �F
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the e�p neutral current DIS cross-section at O
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representative choice of {aq} as a function of x and Q2.

on Bjorken-x and increase rapidly with Q, reaching up
to ' 20% for the upper HERA kinematic limit.

Given that for a sizable region of the SMEFT param-
eter space the shifts Eq. (4) are comparable or bigger
than the experimental uncertainties of the precise HERA
structure functions, the latter can be exploited to impose
bounds on the allowed ranges of the coe�cients {aq}.
First of all, we evaluate the values of �2

tot({aq}) for the
DIS measurements used in NNPDF3.1 [55], correspond-
ing to ndat = 3092 data points from BCDMS, SLAC,
NMC, CHORUS, NuTeV, and HERA. In this calcula-
tion, we use NNPDF3.1 NNLO DIS-only as input with
consistent theory settings such as FONLL-C [56] and fit-
ted charm [57]. This is repeated for a range of SMEFT
benchmark points (BPs) (listed in the Appendix) and
for the Nrep = 100 Monte Carlo replicas. The resulting
�
2
tot({aq}) values are then fitted to a quadratic form,
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where Hqq0 are the elements of the Hessian matrix in
the quark flavour space. Note that Eq. (5) is exact if
the O(⇤�4) corrections are neglected, else it is valid only
close to a local minimum. We have performed the fits of
the SMEFT coe�cients both varying a single operator at
a time (individual fits) as well as varying the four of them
simultaneously and then marginalizing over each one.

In Table I we indicate the 90% confidence level (CL)
intervals for the four coe�cients obtained with fixed in-
put PDFs. We compare the individual bounds with the
marginalised ones from the four-dimensional fits, without
and with PDF uncertainties. In the former case, theory
calculations are obtained using the central replica. In the
latter case, we compute the bounds for the Nrep = 100
replicas and take the envelope of the 90% narrower ones.
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ory cross-sections can be evaluated including BSM cor-
rections. We also assess how the bounds on the SMEFT
coe�cients are modified in this joint fit as compared
to the traditional approach where PDFs are kept fixed.
See [47, 48] for related xFitter [49] studies restricted to
H1 and ZEUS data and to one-parameter fits.
Here we will study the impact of operators of the form

Olq =
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l̄R�

µ
lR
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(q̄R�µqR) , q = u, d, s, c , (2)

where lR and qR stand for right-handed charged lep-
tons and quarks fields. We assume coupling universal-
ity in the lepton sector but not in the quark one, in
order to evade the strong constraints from LEP preci-
sion data [50]. These operators lead to a energy-growing
e↵ects and their contributions are weighted by the cor-
responding PDFs, two properties that provide powerful
handles for discriminating them.
The calculation of the SMEFT corrections from the

Olq operators in Eq. (2) to DIS structure functions can
be performed in analogy with the corresponding SM com-
putation. For instance, F2 will now contain terms linear
and quadratic in au, the coe�cient of Olu in Eq. (1):
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cW = cos ✓W , and u (ū) represents the up (anti-)quark
PDF. The terms linear in au arise from the interference
with the SM amplitudes and are suppressed as Q
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Similar expressions to can be evaluated for the contribu-
tions from Old, Ols, and Olc, and for the parity-violating
structure function xF3, while �F

smeft
L = 0 at leading or-

der. In this work we will keep only the leading O
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⇤�2
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terms in Eq. (3), though we have verified that results
are stable upon the addition of the O
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ones. These

SMEFT-augmented structure functions have been imple-
mented into APFEL [51, 52]. The DGLAP equations for
the scale evolution of the PDFs are una↵ected.
Since SMEFT e↵ects are suppressed as Q
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/⇤2, only

measurements involving large momentum transfers Q
2

will be sensitive to them. The only DIS experiment that
has explored the region Q
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> MW is HERA [53], whose

legacy structure function data [54] reach up to Qmax '

250 GeV. In Fig. 1 we display the percentage shift in the
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coe�cients given by au = ac = 0.28 and ad = as =
�0.10. As in the rest of the paper, we assume here
that ⇤ = 1 TeV. The corrections depend only mildly
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FIG. 1: The percentage SMEFT-induced shift, Eq. (4), for
the e�p neutral current DIS cross-section at O
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for a

representative choice of {aq} as a function of x and Q2.

on Bjorken-x and increase rapidly with Q, reaching up
to ' 20% for the upper HERA kinematic limit.

Given that for a sizable region of the SMEFT param-
eter space the shifts Eq. (4) are comparable or bigger
than the experimental uncertainties of the precise HERA
structure functions, the latter can be exploited to impose
bounds on the allowed ranges of the coe�cients {aq}.
First of all, we evaluate the values of �2

tot({aq}) for the
DIS measurements used in NNPDF3.1 [55], correspond-
ing to ndat = 3092 data points from BCDMS, SLAC,
NMC, CHORUS, NuTeV, and HERA. In this calcula-
tion, we use NNPDF3.1 NNLO DIS-only as input with
consistent theory settings such as FONLL-C [56] and fit-
ted charm [57]. This is repeated for a range of SMEFT
benchmark points (BPs) (listed in the Appendix) and
for the Nrep = 100 Monte Carlo replicas. The resulting
�
2
tot({aq}) values are then fitted to a quadratic form,
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where Hqq0 are the elements of the Hessian matrix in
the quark flavour space. Note that Eq. (5) is exact if
the O(⇤�4) corrections are neglected, else it is valid only
close to a local minimum. We have performed the fits of
the SMEFT coe�cients both varying a single operator at
a time (individual fits) as well as varying the four of them
simultaneously and then marginalizing over each one.

In Table I we indicate the 90% confidence level (CL)
intervals for the four coe�cients obtained with fixed in-
put PDFs. We compare the individual bounds with the
marginalised ones from the four-dimensional fits, without
and with PDF uncertainties. In the former case, theory
calculations are obtained using the central replica. In the
latter case, we compute the bounds for the Nrep = 100
replicas and take the envelope of the 90% narrower ones.
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ory cross-sections can be evaluated including BSM cor-
rections. We also assess how the bounds on the SMEFT
coe�cients are modified in this joint fit as compared
to the traditional approach where PDFs are kept fixed.
See [47, 48] for related xFitter [49] studies restricted to
H1 and ZEUS data and to one-parameter fits.
Here we will study the impact of operators of the form

Olq =
�
l̄R�

µ
lR

�
(q̄R�µqR) , q = u, d, s, c , (2)

where lR and qR stand for right-handed charged lep-
tons and quarks fields. We assume coupling universal-
ity in the lepton sector but not in the quark one, in
order to evade the strong constraints from LEP preci-
sion data [50]. These operators lead to a energy-growing
e↵ects and their contributions are weighted by the cor-
responding PDFs, two properties that provide powerful
handles for discriminating them.
The calculation of the SMEFT corrections from the

Olq operators in Eq. (2) to DIS structure functions can
be performed in analogy with the corresponding SM com-
putation. For instance, F2 will now contain terms linear
and quadratic in au, the coe�cient of Olu in Eq. (1):
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cW = cos ✓W , and u (ū) represents the up (anti-)quark
PDF. The terms linear in au arise from the interference
with the SM amplitudes and are suppressed as Q
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Similar expressions to can be evaluated for the contribu-
tions from Old, Ols, and Olc, and for the parity-violating
structure function xF3, while �F
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the e�p neutral current DIS cross-section at O
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representative choice of {aq} as a function of x and Q2.

on Bjorken-x and increase rapidly with Q, reaching up
to ' 20% for the upper HERA kinematic limit.

Given that for a sizable region of the SMEFT param-
eter space the shifts Eq. (4) are comparable or bigger
than the experimental uncertainties of the precise HERA
structure functions, the latter can be exploited to impose
bounds on the allowed ranges of the coe�cients {aq}.
First of all, we evaluate the values of �2

tot({aq}) for the
DIS measurements used in NNPDF3.1 [55], correspond-
ing to ndat = 3092 data points from BCDMS, SLAC,
NMC, CHORUS, NuTeV, and HERA. In this calcula-
tion, we use NNPDF3.1 NNLO DIS-only as input with
consistent theory settings such as FONLL-C [56] and fit-
ted charm [57]. This is repeated for a range of SMEFT
benchmark points (BPs) (listed in the Appendix) and
for the Nrep = 100 Monte Carlo replicas. The resulting
�
2
tot({aq}) values are then fitted to a quadratic form,
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where Hqq0 are the elements of the Hessian matrix in
the quark flavour space. Note that Eq. (5) is exact if
the O(⇤�4) corrections are neglected, else it is valid only
close to a local minimum. We have performed the fits of
the SMEFT coe�cients both varying a single operator at
a time (individual fits) as well as varying the four of them
simultaneously and then marginalizing over each one.

In Table I we indicate the 90% confidence level (CL)
intervals for the four coe�cients obtained with fixed in-
put PDFs. We compare the individual bounds with the
marginalised ones from the four-dimensional fits, without
and with PDF uncertainties. In the former case, theory
calculations are obtained using the central replica. In the
latter case, we compute the bounds for the Nrep = 100
replicas and take the envelope of the 90% narrower ones.
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ory cross-sections can be evaluated including BSM cor-
rections. We also assess how the bounds on the SMEFT
coe�cients are modified in this joint fit as compared
to the traditional approach where PDFs are kept fixed.
See [47, 48] for related xFitter [49] studies restricted to
H1 and ZEUS data and to one-parameter fits.
Here we will study the impact of operators of the form

Olq =
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µ
lR
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(q̄R�µqR) , q = u, d, s, c , (2)

where lR and qR stand for right-handed charged lep-
tons and quarks fields. We assume coupling universal-
ity in the lepton sector but not in the quark one, in
order to evade the strong constraints from LEP preci-
sion data [50]. These operators lead to a energy-growing
e↵ects and their contributions are weighted by the cor-
responding PDFs, two properties that provide powerful
handles for discriminating them.
The calculation of the SMEFT corrections from the

Olq operators in Eq. (2) to DIS structure functions can
be performed in analogy with the corresponding SM com-
putation. For instance, F2 will now contain terms linear
and quadratic in au, the coe�cient of Olu in Eq. (1):
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FIG. 1: The percentage SMEFT-induced shift, Eq. (4), for
the e�p neutral current DIS cross-section at O
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Q2/⇤2

�
for a

representative choice of {aq} as a function of x and Q2.

on Bjorken-x and increase rapidly with Q, reaching up
to ' 20% for the upper HERA kinematic limit.

Given that for a sizable region of the SMEFT param-
eter space the shifts Eq. (4) are comparable or bigger
than the experimental uncertainties of the precise HERA
structure functions, the latter can be exploited to impose
bounds on the allowed ranges of the coe�cients {aq}.
First of all, we evaluate the values of �2

tot({aq}) for the
DIS measurements used in NNPDF3.1 [55], correspond-
ing to ndat = 3092 data points from BCDMS, SLAC,
NMC, CHORUS, NuTeV, and HERA. In this calcula-
tion, we use NNPDF3.1 NNLO DIS-only as input with
consistent theory settings such as FONLL-C [56] and fit-
ted charm [57]. This is repeated for a range of SMEFT
benchmark points (BPs) (listed in the Appendix) and
for the Nrep = 100 Monte Carlo replicas. The resulting
�
2
tot({aq}) values are then fitted to a quadratic form,
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where Hqq0 are the elements of the Hessian matrix in
the quark flavour space. Note that Eq. (5) is exact if
the O(⇤�4) corrections are neglected, else it is valid only
close to a local minimum. We have performed the fits of
the SMEFT coe�cients both varying a single operator at
a time (individual fits) as well as varying the four of them
simultaneously and then marginalizing over each one.

In Table I we indicate the 90% confidence level (CL)
intervals for the four coe�cients obtained with fixed in-
put PDFs. We compare the individual bounds with the
marginalised ones from the four-dimensional fits, without
and with PDF uncertainties. In the former case, theory
calculations are obtained using the central replica. In the
latter case, we compute the bounds for the Nrep = 100
replicas and take the envelope of the 90% narrower ones.
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Individual Marginalised

no PDF unc w PDF unc

au [�0.1,+0.4] [�2.3,+1.4] [�3.6,+2.7]

ad [�1.6,+0.4] [�13,+3.9] [�19,+11]

as [�2.8,+4.2] [�18,+29] [�36,+47]

ac [�2.6,+1.2] [�13,+7.0] [�21,+15]

TABLE I: The 90% CL intervals (for ⇤ = 1 TeV) for the coef-
ficients extracted with fixed PDFs, comparing individual and
marginalised bounds with and without PDF uncertainties.

One finds that the most stringent bounds are obtained
for au, followed by ad, and then ac and as. This is con-
sistent with the fact that the SMEFT corrections pro-
portional to aq are weighted by the corresponding PDFs
in Eq. (3), and that in the HERA region one has the
hierarchical structure u(x)

⇠
> d(x) � s(x), c(x). The

marginalised bounds are looser than the individual ones
by up to an order of magnitude, highlighting the rele-
vance of exploring simultaneously the widest possible re-
gion of the parameter space. PDF uncertainties turn out
to be moderate. For the individual fits, the bounds are
stable upon the inclusion of O

�
Q

4
/⇤4

�
terms.

The main limitation of the bounds reported in Table I
is that they are a↵ected by double counting, since the
same HERA data was already included in the NNPDF3.1
fit used here to evaluate the DIS structure functions with
SMEFT e↵ects. The very same problem arises for the in-
terpretation of collider measurements that are used to
constrain both the PDFs and the SMEFT parameter
space, such as jet, Drell-Yan, and top quark pair pro-
duction. To bypass this limitation, the way forward is
provided by the simultaneous extraction of the PDFs and
the SMEFT degrees of freedom {aq}, in the same way as
in joint extractions of PDFs and the strong coupling [58].

We have thus carried out variants of the NNPDF3.1
NNLO DIS-only fit now using as theory input the struc-
ture functions with SMEFT corrections. These fits have
been performed for the same BPs as in the fixed-PDF
analysis, and are based on 300 replicas to tame statis-

tical fluctuations. Defining ��
2
smeft = �

2
tot � �

2(SM)
tot , we

find that the BP with the largest improvement (deteriora-
tion) with respect to the SM has ��

2
smeft ' �10 (' 90),

see Fig. 2. In all cases, �2
tot decreases as compared to the

pre-fit (fixed-PDF) result, indicating that SMEFT e↵ects
are being partially reabsorbed into the PDFs.

From Fig. 2 one expects that in the fits with SMEFT
corrections the resulting PDFs will be distorted as com-
pared to their SM-based counterparts. Here the flexi-
ble NNPDF parametrisation is suitable to robustly assess
to which extent such e↵ects can be reabsorbed into the
PDFs. Firstly, we find that the quark valence distribu-
tions are rather similar than in the SM case, see the Ap-
pendix. The reason is that quark PDFs are dominantly
fixed by the moderate Q2 fixed-target DIS data, and thus

FIG. 2: The di↵erence in �2
tot with respect to the SM in the

fits with di↵erent BPs, compared to the fixed-PDF results.
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NNPDF3.1 DIS-only, Q = 10 GeV

(au , ad, as . ac) = (0,0,0,0) [SM]
(au , ad, as . ac) = (-0.3,-1.8,-5,5)

(au , ad, as . ac) = (0,1.2,10,0)

FIG. 3: The gluon PDF in the fits with two representative
SMEFT BPs (for ⇤ = 1 TeV), normalised to the SM result.

una↵ected by the high-Q2 HERA structure functions.
More significant di↵erences are observed for the gluon

PDF. Within a DIS-only fit, the gluon is mostly con-
strained from the scaling violations between the low- and
high-Q2 data, which are strongly modified in the pres-
ence of energy-growing SMEFT e↵ects. In Fig. 3 we
show the gluon in the fits based the (au, ad, as, ac) =
(�0.3,�1.8,�5, 5) and (0, 1.2, 10, 0) BPs, normalised to
the SM and where PDF uncertainties are only displayed
for the latter. These are two of the BPs leading to the
largest deviations from the SM at the �

2 level, with
��

2
smeft ' 65 and 41 at the pre-fit level respectively,

while also being consistent with the bounds from the
HERA data in Table I. We find that the SMEFT-induced
distortions can be comparable with the PDF uncertain-
ties and thus should be taken into account. These dis-
tortions would be even more pronounced in a global fit,
where the gluon can be extracted with higher precision.
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FIG. 4: The dependence of �2
hera/ndat on Qmax in the case of

the SM and for one representative SMEFT BP, for which we
indicate both the pre-fit and the post-fit values.

The di↵erent energy scaling of the SMEFT e↵ects as
compared to the QCD ones (polynomial in the former,
logarithmic in the latter) can be exploited to disentan-
gle BSM dynamics from QCD ones within the PDF fit.
In Fig. 4 we display �

2
hera/ndat as a function of the cut

Qmax that fixes the maximum value that enters the �
2

evaluation. Results are shown both in the SM and in
the SMEFT for au = ad = �1.3 and as = ac = 0, and
in the latter case both for the pre-fit (fixed-PDF) and
post-fit cases. While for Qmax ⇠

> 50 GeV the value of
�
2
hera/ndat is flat for the SM case, there is a rapid degra-

dation in the fit quality for the SMEFT case. This result
further highlights that BSM e↵ects cannot be completely
“fitted away”. Such distinctive trend in the high-energy
behaviour of the theory would represent a smoking gun
for BSM e↵ects, similar to how BFKL dynamics were
recently identified from small-x HERA data [59].

In Table II we indicate the individual and marginalised
90% CL intervals for the SMEFT coe�cients from this
joint extraction together with the PDFs, see Table I for
the fixed-PDF ones. We find that the bounds are rather
similar in both cases, consistent with the evidence from
Figs. 2- 4 that SMEFT corrections are only partially
reabsorbed in the PDFs. As expected, the individual
limits are somewhat broader at the post-fit level. The
marginalised bounds are a↵ected by a sizable statistical
uncertainty from the finite number of replicas. The latter
is estimated by Gaussianly fluctuating the �

2
tot values of

each BP around their central values by their bootstrap
uncertainty, and keeping only those fluctuations leading
a positive-definite Hessian. The resulting distribution of
fit minima, eigenvalues, and eigenvectors are used to es-
timate these statistical errors, finding in particular that
they are larger than the central value associated to the
smallest eigenvalue and therefore that a flat direction,
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FIG. 5: The 90% CL marginalised and individual bounds in
the (au, ad) plane from this work compared to those from [22]
(dijet and parity) and to the individual bound from dijet data.

mainly in the as � ac plane, could not be excluded.

Individual Marginalised

au [0.0,+0.5] [�0.4,+2.4]

ad [�1.1,+0.8] [�4.4,+4.5]

as [�4.5,+3.6] [�61,+39]

ac [�2.4,+0.7] [�29,+2.7]

TABLE II: Same as Table I for the simultaneous determina-
tion of the PDFs and the SMEFT coe�cients.

Other studies have quantified the constraints on four-
fermion operators such as those of Eq. (2), and a com-
pilation of the information from precision LEP data and
low-energy measurements was presented in [22]. In Fig. 5
we compare the 90% CL bounds in the (au, ad) plane
from our work (both pre-fit and post-fit level) with those
based on both dijet data from e

+
e
� collisions and parity

measurements. We also show the individual bounds from
the former since, contrary to the parity data, these are
independent on the modeling of the nucleon structure.
We find that our precise bound for au is comparable to
previous studies, while those for ad, as, and ac are less
competitive. This encouraging result emphasizes the po-
tential of high-energy collider data for the simultaneous
extraction of both PDFs and SMEFT degrees of freedom.

To summarise, in this work we have systematically
analysed the interplay between PDF and SMEFT fits, us-
ing the HERA structure functions that provide the back-
bone of all modern PDF extractions as a case study. Our
results represent the successful proof-of-concept of a pro-
gram aiming to exhaustively disentangle potential BSM
e↵ects in high-energy measurements that might other-
wise be reabsorbed into the PDFs. The next steps in this
program will be to extend our study to a global dataset,
including LHC data, and to a wider operator basis.
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• EFT provide guidance (which observable) 

• Check the validity of the single EFT assumption 

• EFT is multi-channel/observable : correlation 

• Global fit with a large number of parameters 

• Distinguish PDF and EFT
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