

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

SM and BSM Higgs physics in CMS

J. Cuevas U. Oviedo (Spain)

Interpreting the LHC Run 2 Universidad de Oviedo data and Beyond,

Santander , 20-24 May 2013 **27-31 May 2019, ICTP Trieste, Trieste (Italy)**

Introduction and Outline

- **SM Higgs Boson discovered in 2012**
- **No direct observation of new physics at the LHC after the Higgs boson discovery**
- **Precision measurements of the Higgs are increasingly important and in many aspects drive the future of HEP**
- Standard Model Higgs Boson Cross Sections and Branching Fractions at the LHC
- Mass, spin, width
- Couplings to fermions observed
- Couplings to the top quark observed
- 'Simplified Template' and differential cross section measurements
- Recent highlights
- Searches in extended models (BSM Higgs) May 27th 2019 **ICTP** Trieste 2019

July 4 2012, …..A Higgs Boson

Phys. Lett. B 716 (2012)

"This result constitutes evidence for the existence of a new massive state that decays into two photons."

"Clear evidence for the production of a neutral boson …is presented."

Goal for Runs 1-3 of the LHC and beyond: Measure its mass and other properties including couplings Is it alone?

Standard Model Cross Sections and Branching Fractions

- Significant increase in production rate due to higher center-of-mass energy from LHC Run-1 to Run-2!
- Giacinto Piacquadio ICHEP 2018

 M_H [GeV]

LHC data taking at 13 TeV:

Run-II provides a great opportunity to revisit Run-I Higgs Legacy results

- **Observation -> measurements!**
- **From SM to BSM?**

Still O(100 fb−1)being analysed before releasing full run II results.

Higgs Mass:

 m_H = 125.09 ± 0.21 (stat) ± 0.11 (scale)

 \pm 0.02 (other) \pm 0.01 (theory) GeV

 m_H is known to **a precision of 2 per mille!**

Spin and width:

[arXiv:1901.00174](http://arxiv.org/abs/1901.00174), accepted by PRD

Width: Exploit coupling ratio between

The « κ » framework:

Couplings, K

Parameters scale cross sections and partial widths relative to SM

$$
\kappa_j^2 = \sigma_j / \sigma_j^{\rm SM} \qquad \kappa_j^2 = \Gamma_j / \Gamma_j^{\rm SM}
$$

$$
\sigma_i \cdot \text{BR}^f = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_{\rm H}},
$$

Total width determined as

$$
\Gamma_{\rm H} = \frac{\kappa_H^2 \cdot \Gamma_H^{\rm SM}}{1 - \text{BR}_{\rm BSM}}
$$

Where

$$
\kappa_H^2 = \sum_j {\rm BR}^j_{\rm SM} \kappa_j^2
$$

 $-$ Relationship between signal strengths μ and coupling modifiers κ :

•
$$
\sigma_i = \kappa_i^2 * \sigma_i(SM)
$$
, $\Gamma_f = \kappa_f^2 * \Gamma_f(SM)$ ->
 $\mu^f_i = \kappa_i^2 * \kappa_f^2 / (\Gamma_H / \Gamma_H(SM))$

- Effective coupling modifiers κ_{g} , κ_{γ} for loops (describing ggF production and H- $\gamma\gamma$ decay)
- Coupling modifier ratios $\lambda_{ij} = \kappa_i / \kappa_j$
- All measurements assume the combined mass measurement exact value: $m_H = 125.09$ GeV
- Production processes: ggF, VBF, WH, ZH, ttH
- Decay channels: H->ZZ, WW, γγ, ττ, bb, μμ
- Parameter estimation via profile lh ratio test statistic Λ and estimator q=-2ln Λ assumed X^2

Higgs boson associated production (observation of the bb decay mode)

- Higgs-Strahlung (associated production)
	- 4% of Higgs production mechanism – NLO QCD corrections can be obtained from those to Drell-Yan: +30% (also NNLO QCD) – Full EW corrections known: they decrease the cross section by 5-10%
- For ZH at NNLO further diagrams from gg initial state
- Important at the LHC (+2-6% effect up to +14% at high- r

Experimental advantages:

- Vector boson (V) decay leptonically: -> Benefit from lepton triggers
- V-Boost: Further reduce background requiring high vector- p_T

VH production mode

• Combined measurements of Higgs production cross-sections in the ZZ, $\gamma\gamma$, WW, bb, ττ, and μμ decay modes

H->bb, physics case and the VH role

- Unique final state to measure coupling with down-type quarks
- H->bb has the largest BR (58%) for mH=125 GeV
- Drives the uncertainty on the total Higgs boson width – Limits the sensitivity to BSM contributions
- Only recently observed by CMS (and ATLAS)

Low mass resolution ٠

Low S/B ۰

- Improved resolution on m(bb)
- Full event information to increase S/B
- VH production plays a crucial role
- W/Z decays leptonically
- W/Z produced generally back-to-back vs Higgs
- Possible to exploit the W/Z transverse boost
	- **Provides the most sensitive channel for H->bb**

VH(H->bb) Analysis Strategy

- Control regions to validate backgrounds and constrain normalizations
- Signal extraction: binned maximum likelihood fit of final MVA/mass distribution May 27th 2019 ICTP Trieste 2019 12

Event selection (and categorization)

[Phys. Rev. Lett. 121 \(2018\) 121801](http://dx.doi.org/10.1103/PhysRevLett.121.121801)

- **Selections** (jets, leptons, b-tagging) optimized separately by channel
	- \triangleright 4 analysis categories:
		- 0-lepton: $p_T(Z) > 170$ GeV
		- 1-lepton: $p_T(W) > 150$ GeV
		- 2-lepton High-Vp_T: $p_T(Z)$ > 150 GeV
		- 2-lepton Low-Vp_T: 50 GeV < $p_T(Z)$ < 150 GeV
- **Control regions** designed to map closely each signal region
	- Inverted selections to enhance purity in targeted backgrounds:

tt, V+light flavor, and V+heavy flavor

Mass resolution and signal extraction

- Better b-jet identification vs 2016
	- Improved b-tagger (2017)
	- new pixel detector (2017)
- b-jet energy regression + FSR
- Kinematic fit in 2-lepton channel
- Signal extraction:
- Use of (DNN) to discriminate sig. from bkg. in SR + various bkg in CRs

Combination of VH(H->bb) measurements

Phys.Rev.Lett. 121 (2018) 12, 121801

ICTP Trieste 2019

- **CMS achieved a >5σ observation of the H->bb decay combining several channels, dominated by VH(bb).**
- **SM assumption on Yukawa coupling to b's is confirmed within uncertainty (20%)**
- **All 3rd generation fermion couplings are now observed.**

15

Measurement of VH(H->WW)

$1st$ observation of the H \rightarrow WW process in CMS

- \triangleright Higgs production via ggH, VBF and VH
	- Analysis based on the 2016 data (35.9 fb-1)

10.1016/j.physletb.2018.12.073

Categorization in Nr.-leptons and Nr.-jets

$WH\rightarrow$ a leptons

- WZ and Zy normalizations estimated from data with CR
- Shape analsysis \blacktriangleright
- $ZH \rightarrow 4$ leptons
	- Categorization in the flavor of leptons from the Higgs ×
	- ZZ bkg normalization taken from data with CR.
	- Cut&Count analysis \blacktriangleright

Measurement of VH(H->WW)

The VH production mode contributed to the first CMS observation of the H->WW* decay mode.

CMS combining all categories: μ_{WH} = 3.27^{+1.88} -1.70 $\mu_{\text{ZH}} = 1.0^{+1.57}$ _{-1.0}

Simultaneous fits are performed to probe the Higgs boson couplings to fermions and vector bosons

Measurement of VH(H- $\rightarrow \tau\tau$)

The H $\rightarrow \tau\tau$ decay is the second most sensitive channel to establish VH production

- > WH semi-leptonic: W(ev)H($\mu\tau_h$), W($\mu\nu$)H($\mu\tau_h$)
- WH hadronic: W(ev)H($\tau_h \tau_h$), W(μv)H($\tau_h \tau_h$) \blacktriangleleft
- With Z(ee)+H($\tau_{\rm e} \tau_{\mu}$), H($\tau_{\rm e} \tau_{\rm h}$), H($\tau_{\mu} \tau_{\rm h}$), H($\tau_{\rm h} \tau$) \blacktriangleright
- With $Z(\mu\mu)+H(\tau_{e}\tau_{\mu})$, $H(\tau_{e}\tau_{h})$, $H(\tau_{\mu}\tau_{h})$, $H(\tau_{h}\tau_{h})$ \blacktriangleright

Main Background:

- \triangleright Irreducible: WZ, ZZ estimated from MC
- tt+jets, Z+jets, estimated with fake rate method \prec

VH signal strength:

$$
\mu=2.54^{+1.35}_{-1.26}~(obs.)
$$

$$
\mu = 1.00^{+1.08}_{-0.97} \ (exp.)
$$

CMS-HIG-18-007

VH production mode represents a unique bench test to probe the coupling of the Higgs boson to leptons (VH $(\tau\tau)$)

Higgs->µµ analysis strategy and results

- **Higgs boson decay to muons most sensitive channel to investigate couplings to 2nd generation fermions.**
	- very rare process, but high di-muon mass resolution makes channel accessible
- Signal would appear as narrow resonance over smoothly falling background (primarily Drell-Yan and leptonic top decays.)
- Separate signal from background using BDT.
	- Define 15 signal regions based on BDT score and η^{μ}
- Use analytic functions to describe signal and background distributions
- 95% CL observed (background-only expected) upper limit on σx B is: **2.9 (2.2) x SM**

(Combination with data recorded at 7 and 8 TeV)

H → μμ in reach with full Run II and Run III data. \vert 19

Current focus in Higgs boson measurements : 'Simplified Template' (STXS) and differential cross sections

- Measure cross sections for the different production modes, split more finely into kinematic regions
- Results less model-dependent, more adapted for kinematically-dependent interpretations (EFT…)

CMS-PAS-HIG-19-001

• Also continue to target traditional differential cross section measurements

ttH analysis channels:

- $t\bar{t}H$ multilepton:
	- targets $H \to WW^*$, ZZ^* , $\tau^+\tau^ \circ$
	- 2 same-sign or ≥ 3 charged leptons, \circ including hadronic τ decays
- $t\bar{t}H$ with $H \to bb$ decays:

 \circ 0, 1 or 2 leptons + jets (with up to 4 b-jets)

- $t\bar{t}H$ with $H \to \gamma\gamma$ and $H \to 4\ell$ decays:
	- high purity, but lowest signal yields \circ
	- excess in inv-mass of Higgs candidate \circ

Recent results: ttH, H-> $\gamma\gamma$

CMS-PAS-HIG-18-018

• **BDT used in all classes**

Recent results: ttH, multilepton (τ_h) final states

CMS-PAS-HIG-18-019

- 7 event classes including 1 new: 2*l* + 2t^h
- Classification:
- Main systematic uncertainty from fake background yield estimate
- Observed (expected) combined (2016+2017) signal rate : 0.96+0.34−0.31 (1.00+0.30−0.27) times SM

->**observed (expected) significance : 3.2σ (4.0σ)**

Best fit μ (ttH)

Recent results: ttH, bb final states CMS-PAS-HIG-18-030

- Events are selected based on **the number of leptons in the event, and categorised according to the number of jets**.
- **Multivariate analysis** techniques are employed to further categorise the events and discriminate between signal and background.
- A combined fit of multivariate discriminant distributions in all categories is used.

Combined with 2016 data, an **observed (expected) significance** of **3.9 (3.5)** s. d. above the background-only hypothesis is obtained.

tH production

- *tH* production: tHq and tHW
	- depends on Higgs couplings to both top and gauge bosons
	- o interf, effects make it sensitive to relative sign of y_t and g_{HVV} . For $\kappa_V = 1$:

SM $(y_t = +1)$: low xsec (~ 0.1 pb) due to destructive interf.

ITC $(y_t = -1)$: xsec ×10 higher wrt SM

- CMS has performed dedicated searches for tH production in multilepton and $H \rightarrow bb$ channels using 2016 data
	- ∘ analysis methods (obj-reco, bkg model) similar to the corresponding ttH analyses

tH multilepton

HIG-18-009, HIG-17-005

- 3 channels: $\mu^{\pm} \mu^{\pm}$, $e^{\pm} \mu^{\pm}$ and 3ℓ
	- \circ 1 b-jet + 1 forward jet in final state
- Signal yield:
	- o tH SM (ITC) $\sim 1\% (10\%)$ wrt SM bkg
- \bullet final discriminant in each SR: 1D dist. based on 2 BDT outputs [tHq vs $t\bar{t}V$], and [tHq vs $t\bar{t}$], inputs:
	- forward jet activity
	- \circ jet and b-jet multiplicities
	- o leptons' kinematics
- bkg model and dominant systematics very similar to $t\bar{t}H$ multilepton

tH combination:

HIG-18-009

Likelihood scan with respect to κ_t ($\kappa_V = +1$):

- positive κ_t favored over negative value by 1.5σ

 y_t values outside of $[-0.9, -0.5]$ and $[1.0, 2.1]$ $\qquad \qquad$ excluded at 95% CL

95% CL UL on $\sigma_{tH} \times$ BR ($\kappa_V = +1$): $- t\bar{t}H$ yield fixed to SM (κ_t -dep.) - Obs (Exp) UL for $y_t = +1$: $25(12) \times$ SM

Recent results: $H\rightarrow \tau\tau$

CMS-PAS-HIG-18-032

- Probes eµ, $e\tau_h$, $\mu\tau_h$ and $\tau_h\tau_h$ final states with 2016/17 data
- Signal extracted with fit to neural network output dist'n

 $m_n = 125 GeV$

 \Box 68% CL

68% CL exp

CMS

 2.5

Preliminary

Inclusive and per-process μ and σ , σ also in STXS bins

 $\sigma_X \mathcal{B}(H \to \tau \tau)$ (pb)

STXS allows the combination of fully $\frac{1}{2}$ initiated processes, κ_F vs κ_V optimised analysis techniques with a clean and interpretable framework

• µ of quark- vs gluon-

77.4 fb⁻¹ (13 TeV)

95% CL

--- 95% CL exp.

Recent results: H->yy STXS

CMS-PAS-HIG-18-029

- 2016/17 data combined permits cross section measurements in STXS 'stage 1' with some bins merged: 7- and 13-bin variants
- All measurements in agreement with SM predictions

Recent Results: H->ZZ*->4*l* **Full Run 2**

Events / 4GeV

350

300

 250

 $200 \times$

 150

 100

CMS Preliminary $2016 + 2017 + 2018$

 2.5

CMS-PAS-HIG-19-001

Fiducial cross section \sqrt{s} = 13 TeV agrees with SM predictions:

> $\sigma_{\text{fid}} = 2.73^{+0.23}_{-0.22} \text{(stat.)}^{+0.24}_{-0.19} \text{(syst.)}$ fb $\sigma_{SM} = 2.76 \pm 0.14$ fb

As well as at the other 2 \sqrt{s}

• Cross-section measurements in many STXS bins ('Stage 1.1') and differential measurements in several variables possible, all compatible with SM predictions

Generic Parametrization [HIG-17-031 arXiv:1809.10733](http://arxiv.org/abs/1809.10733), accepted by Eur.Phys J.C

- Allow BSM loop contributions + either BSM contributions to $\Gamma_{\rm H}$ $(\kappa_v \le 1)$ or not $(BR_{BSM} = 0)$
- ATLAS+CMS Run 1: $BR_{BSM} < 0.34$ @95%CL
- CMS 2016: B_{inv} <0.22, B_{undet} <0.38

k framework constrained scenarios

- Assume no BSM loop contributions and $BR_{BSM} = 0$: Coupling modifiers to fermions vs. to vector bosons
- Assume BSM contributions from loops only (BR_{BSM}) $=$ o), other κ fixed to SM values: Effective coupling modifiers $\kappa_{\rm g}$, $\kappa_{\rm y}$ for loops describing ggF production and $H \rightarrow \gamma \gamma$ decay

[J. High Energy Phys. 08 \(2016\) 045](http://dx.doi.org/10.1007/JHEP08(2016)045) [arXiv:1809.10733](http://arxiv.org/abs/1809.10733), accepted by Eur.Phys J.C

Mass-scaled **K** vs. Mass

 $-$ Assume no BSM loop contributions and BR $_{BSM}$ =0

Rare and BSM decays

- **The discovery of a new boson consistent with the Standard Model (SM) Higgs boson has completed the SM theory**
- Nevertheless, this theory cannot address several crucial issues
- Direct evidence from observation:
	- existence of neutrino masses
	- $-$ existence of dark matter and dark energ
	- matter-antimatter asymmetry
- Conceptual problems in the SM:
	- the large number of free parameters
	- the "hierarchy problem"
	- the coupling unification

Strong indications that the SM is only a lowenergy expression of a more global theory 34

Exotic Decays of the Higgs Boson

- The SM Higgs boson has a very narrow width (~4 MeV): current limits still allow for **additional contributions from BSM decays**
- Constraints on new physics are still relatively loose (Run 1 limit $B(H \rightarrow BSM)$ < 34%)
- Possibilities to **detect BSM physics** in the scalar sector:
	- **Direct evidence** through observation of BSM decays of the Higgs boson
	- **Indirect evidence** through observation of deviations in the couplings of the H boson

Search for BSM Physics in Higgs Decays

- Search for Higgs boson decays to SM particles:
	- Very rare decays predicted by the SM
		- An excess on these channels would be an indication of BSM physics
	- **Decays not allowed in the SM**
		- Lepton flavor violating Higgs decays
- Search for Higgs boson decays to non-SM particles:
	- **Invisible** Higgs boson decays, with H produced via
	- $-$ ggF, VBF, VH or ttH (H \rightarrow invisible)
	- Higgs boson decays to light pseudoscalars/scalars
	- (H \rightarrow aa), decaying to SM particles

(Recent) results reported here CMS-HIG-18-025, CMS-EXO-19-007, CMS-HIG-17-023, CMS-HIG-18-008, CMS-HIG-18-006

Rare Decay: $H \rightarrow J/\psi J/\psi$ - YY

- Almost background-free – sensitivity scales with luminosity
- 4-muon final state: **very clean signature with narrow intermediate resonant states**
- Dedicated triggers: 2μ (m $_{J/\psi}$),
3μ (m_y)

Search for Dark Photons in ZH Decays

- Massless dark photon that couples to Higgs boson
	- γ_{D} is a dark photon, which is undetected (large p_T^{miss})
- Two opposite-sign same-flavor leptons and a photon
- Background from data-based method and simulation
- m_T (transverse mass of p_T^{miss} and photon system) and $|\eta^{\gamma}|$ used in the fit

Higgs To Invisible Searches

- In the SM, $H \rightarrow$ invisible only via H \rightarrow ZZ* \rightarrow 4v with BR of 0.1%
	- Rate for invisible decays significantly enhanced in several BSM scenarios
	- The 125 GeV boson could be a portal between a dark sector and the SM sector
	- All the main Higgs production modes can be used to probe its coupling with "invisible" particles
	- All searches characterized by large p_T^{miss} (DM particles escape
detection)
	- The Higgs boson recoils against a visible system used to distinguish between production modes

Higgs To Invisible Searches

- **VBF topology**: characteristic final states with two jets with large $\Delta \eta_{ii}$ and m_{ij}
	- Allows for suppression of SM backgrounds: most sensitive production mode
	- Main backgrounds: W+jets, Z+jets
- Background estimated from high-purity 1 or 2 lepton CRs
- Improved sensitivity by fitting the shape of the m_{ii} distribution

Observed (expected) limit @ 95% CL [36 fb-1]: ℬ**(H→inv) < 0.33 (0.25)**

Higgs → Invisible [Z→ℓℓ]

 \rightarrow inv)/ $\sigma_{\rm SM}$

В(Н

 \times

ь g 0.6

upper limit

ಕ 0.3 95%

 $0.9₁$

 0.8

 0.7

 0.5

 0.4

 0.2

0.

Signature: 2 opposite-sign, same-flavor electrons or muons + pTmiss

- Main backgrounds: Z(ℓℓ)Z(νν), Z(ℓℓ)W(ℓν)
- Require dilepton system be back-to-back wrt p $_{\sf T}$ ^{miss} 12-variable BDT

Observed (expected) limit @ 95% CL [36 fb-1]: ℬ**(H→inv) < 0.40 (0.42)**

CMS

Observed

68% expected

95% expected

Combined 7+8+13 TeV Combined 13 TeV Combined 7+8 TeV **Observed (expected) limit @ 95% CL: Run 1 + Run 2:** ℬ**(H→inv) < 0.19 (0.15)**

Combination

4.9 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 38.2 fb⁻¹ (13 TeV)

CMS-HIG-17-023

 \cdot ® \cdot Median expected VBF , VH , ggH

40

$H \rightarrow$ Invisible [ttH], and $H \rightarrow$ Exotic [LFV]

Reinterpretation of results from 0/1/2l stop CMS-HIG-17-001 searches $(0/1/2\ell + \text{jets} + \text{pTmiss} + \text{b-tag})$ No modification to signal regions and background predictions No re-optimization for ttH signals Multiple signal bins to cover large parameter

space

Major backgrounds constrained/validated in control regions

 $H \rightarrow e + \tau / \mu + \tau$

- Multiple τ-decay channels
- BDT fits to improve sensitivity

Observed (expected) limit @ 95% CL [36 fb-1]: ℬ**(H → µτ) < 0.25 (0.25) %** ℬ**(H → eτ) < 0.61 (0.37) %**

Exotic Decays in 2HDMs

-
- Two-Higgs-doublet models are simple extensions of the SM introducing two doublets of scalar fields (ϕ 1 and ϕ 2) in the SM Lagrangian
- After symmetry breaking, five physical states are left $(h, H, A$ and $H\pm$ bosons)
- Four types, according to different patterns of quark and lepton couplings

Further extension 2HDM+S: possible search for H \rightarrow aa (a pseudoscalar) Exotic decays still consistent with all the LHC measurements so far

Exotic Decays: $H \rightarrow aa \rightarrow 2\mu 2\tau/4\tau$

- **Highly boosted** α boson, non-isolated muons
- 4 GeV < m_a < 15 GeV
- Selection: SS μ pair + two 1-prong τ decays (OS wrt nearest μ)
- Main background: QCD multijet events
- **2D search** in $(m_{\mu1, trk1}, m_{\mu2, trk2})$ plane
- Reduced sensitivity as topology becomes resolved

Improves Run 1 CMS limits by up to a factor 10

Searches for charged Higgs

New results with 2016 13 TeV data including intermediate mass range. "Standard" decays very constrained now in MSSMlike models. New benchmarks: opening decays to χi ±χ0 j , Wh, WA.

$H^{\pm} \rightarrow \tau v$ and $H^{\pm} \rightarrow \tau b$ leptonic, and combination

All hadronic channel contributes most at high H± mass.

Double Higgs production

 \cdot 10 3

 $10²$

 $10[°]$

 10^{-2}

[pb]

HH has extremely small cross section in the Standard Model $10³x$ smaller than the single Higgs boson production 31.05 fb at 13 TeV (NNLO_{FTapprox})

- HH production allows to probe the selfcoupling
- The measurement of the Higgs boson selfcoupling is a fundamental test of the SM It probes the shape of the Higgs potential

20%(or better) precision on self-coupling is needed to probe BSM modifications

Anomalous Higgs boson couplings has strong effect on cross-section and m(hh) shape EFT approach parametrizes new physics modifications to $\kappa_{\lambda} = \lambda/\lambda_{SM}$ and $\kappa_t = y_t/y_{t,SM}$ and new contact interactions c2 , c2g , cg

Double Higgs production

- **H(bb)** is a key element in the exploration of HH at the LHC highest BR good b-jets identification performance: 70% efficiency at 0.3-1% q/g mistag probability
- **H(γγ)** clean final state excellent mass resolution, $~1\%$
- **H(γγ)H(bb)** Phys. Lett. B 788 (2018) 7:
	- Photon selection similar to H(γγ) measurements
	- mγγ and m($b\bar{b}$) compatible with the Higgs boson mass
	- Mx and BDT (includes angular correlations) classifier used to categorize events
- Main backgrounds are:
	- γγ+jets (prompt or jets misidentified as photon)
	- SM single Higgs
- Likelihood fits simultaneous to m(bb) and m(γγ)

Most sensitive channel to SM HH for CMS and low mass HH resonances

24 x SM observed 95% CL on SM HH cross section (19 x SM) expected

Summary

- The Higgs boson represents a unique particle in Nature
	- Its characterisation is essential to explore the scalar sector of the SM
- A broad program of Higgs boson study is ongoing with the ATLAS and CMS experiments
- The Run 2 dataset offers unprecedented possibilities of study: from observations to precision measurements
	- increasingly precise and granular measurements as more data are available
- **Run 2 Higgs Physics Milestones Already Reached: Third Generation (Charged) Completed**
- A broad and exciting program of Higgs boson physics is ahead of us, from updated properties and couplings measurements with the Run 2 dataset to the HL-LHC precision measurements

Perspectives

arXiv:1902.00134

- Most Run 2 full-statistics results are still to come (~140fb⁻¹)
- Perspectives for Run 3 (2021-2023): Hope for >150 fb⁻¹ at \sqrt{s} = 14 TeV
- HL-LHC: Starts 2026, expect 3ab⁻¹, hope for ~2-4% precision for most couplings

