

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

J. Cuevas U. Oviedo (Spain)

Interpreting the LHC Run 2 data and Beyond,

27-31 May 2019, ICTP Trieste, Trieste (Italy)

Introduction and Outline

- SM Higgs Boson discovered in 2012
- No direct observation of new physics at the LHC after the Higgs boson discovery
- Precision measurements of the Higgs are increasingly important and in many aspects drive the future of HEP
- Standard Model Higgs Boson Cross Sections and Branching Fractions at the LHC
- Mass, spin, width
- Couplings to fermions observed
- Couplings to the top quark observed
- 'Simplified Template' and differential cross section measurements
- Recent highlights
- Searches in extended models (BSM Higgs)

May 27th 2019

July 4 2012, A Higgs Boson

Phys. Lett. B 716 (2012)

"This result constitutes evidence for the existence of a new massive state that decays into two photons."

"Clear evidence for the production of a neutral boson ... is presented."

Goal for Runs 1-3 of the LHC and beyond: Measure its mass and other properties including couplings Is it alone?

Standard Model Cross Sections and Branching Fractions

- Significant increase in production rate due to higher center-of-mass energy from LHC Run-1 to Run-2!
- Giacinto Piacquadio ICHEP 2018

M_H [GeV]

LHC data taking at 13 TeV:

Run-II provides a great opportunity to revisit Run-I Higgs Legacy results

- Observation -> measurements!
- From SM to BSM?

Still O(100 fb⁻¹)being analysed before releasing full run II results.

Higgs Mass:

Compare to Run 1 ATLAS + CMS combined: $m_{H} = 125.09 \pm 0.21 \text{ (stat)} \pm 0.11 \text{ (scale)}$ ± 0.02 (other) ± 0.01 (theory) GeV -> Single experiments now better, still statistics-dominated

 m_{H} is known to a precision of 2 per mille!

Spin and width:

arXiv:1901.00174, accepted by PRD

Width: Exploit coupling ratio between

The «κ» framework:

Couplings, ĸ

Parameters scale cross sections and partial widths relative to SM

$$\begin{split} \kappa_j^2 &= \sigma_j / \sigma_j^{\rm SM} \quad \kappa_j^2 = \Gamma_j / \Gamma_j^{\rm SM} \\ \sigma_i \cdot {\rm BR}^f &= \frac{\sigma_i \cdot \Gamma_{\!\!f}}{\Gamma_{\!\rm H}}, \end{split}$$

Total width determined as

$$\Gamma_{\rm H} = \frac{\kappa_H^2 \cdot \Gamma_H^{\rm SM}}{1 - {\rm BR}_{\rm BSM}}$$

Where

$$\kappa_H^2 = \sum_j \mathrm{BR}^j_{\mathrm{SM}} \kappa_j^2$$

Relationship between signal strengths μ and coupling modifiers κ:

•
$$\sigma_i = \kappa_i^2 * \sigma_i(SM)$$
, $\Gamma_f = \kappa_f^2 * \Gamma_f(SM) \rightarrow \mu^f_i = \kappa_i^2 * \kappa_f^2 / (\Gamma_H / \Gamma_H(SM))$

- Effective coupling modifiers κ_g, κ_γ for loops (describing ggF production and H->γγ decay)
- Coupling modifier ratios $\lambda_{ij} = \kappa_i / \kappa_j$
- All measurements assume the combined mass measurement exact value: $m_H = 125.09$ GeV
- Production processes: ggF, VBF, WH, ZH, ttH
- Decay channels: H->ZZ,WW,γγ,ττ,bb,μμ
- Parameter estimation via profile lh ratio test statistic Λ and estimator q=-2ln Λ assumed X^2

Higgs boson associated production (observation of the bb decay mode)

Higgs-Strahlung (associated production)

- 4% of Higgs production mechanism
 NLO QCD corrections can be obtained
 from those to Drell-Yan: +30% (also NNLO QCD)
 Full EW corrections known: they decrease
 the cross section by 5-10%
- For ZH at NNLO further diagrams from gg initial state
- Important at the LHC (+2-6% effect up to +14% at high-r

Experimental advantages:

- Vector boson (V) decay leptonically: -> Benefit from lepton triggers
- V-Boost: Further reduce background requiring high vector- p_T

VH production mode

• Combined measurements of Higgs production cross-sections in the ZZ, $\gamma\gamma$, WW, bb, $\tau\tau$, and $\mu\mu$ decay modes

H->bb, physics case and the VH role

- Unique final state to measure coupling with down-type quarks
- H->bb has the largest BR (58%) for mH=125 GeV
- Drives the uncertainty on the total Higgs boson width
 Limits the sensitivity to BSM contributions
- Only recently observed by CMS (and ATLAS)

• High BR

Low mass resolution

Low S/B

Highly efficient b-jets identification

- Improved resolution on m(bb)
- Full event information to increase S/B
- VH production plays a crucial role
- W/Z decays leptonically
- W/Z produced generally back-to-back vs Higgs
- Possible to exploit the W/Z transverse boost
 - Provides the most sensitive channel for H->bb

VH(H->bb) Analysis Strategy

- Control regions to validate backgrounds and constrain normalizations
- Signal extraction: binned maximum likelihood fit of final MVA/mass distribution May 27th 2019 ICTP Trieste 2019

Event selection (and categorization)

Phys. Rev. Lett. 121 (2018) 121801

- Selections (jets, leptons, b-tagging) optimized separately by channel
 - > 4 analysis categories:
 - 0-lepton: p_T(Z) > 170 GeV
 - 1-lepton: p_T(W) > 150 GeV
 - 2-lepton High-Vp_T: p_T(Z) > 150 GeV
 - 2-lepton Low-Vp_T: 50 GeV < p_T(Z) < 150 GeV

- Control regions designed to map closely each signal region
 - Inverted selections to enhance purity in targeted backgrounds:

tt, V+light flavor, and V+heavy flavor

Mass resolution and signal extraction

- Better b-jet identification vs 2016
 - Improved b-tagger (2017)
 - new pixel detector (2017)
- b-jet energy regression + FSR
- Kinematic fit in 2-lepton channel
- Signal extraction:
- Use of (DNN) to discriminate sig. from bkg. in SR + various bkg in CRs

Combination of VH(H->bb) measurements

Significance (σ)				
Data set	Expected	Observed	Signal strength	
2017				
0-lepton	1.9	1.3	0.73 ± 0.65	
1-lepton	1.8	2.6	1.32 ± 0.55	
2-lepton	1.9	1.9	1.05 ± 0.59	
Combined	3.1	3.3	1.08 ± 0.34	
Run 2	4.2	4.4	1.06 ± 0.26	
Run 1 + Run 2	4.9	4.8	1.01 ± 0.23	

Phys.Rev.Lett. 121 (2018) 12, 121801

Significance:	Measured signal	
5.5 σ expected	strength:	
5.6σ observed	µ = 1.04 ± 0.20	

- CMS achieved a >5σ observation of the H->bb decay combining several channels, dominated by VH(bb).
- SM assumption on Yukawa coupling to b's is confirmed within uncertainty (20%)
- All 3rd generation fermion couplings are now observed.

ICTP Trieste 2019

Measurement of VH(H->WW)

<u>10.1016/j.physletb.2018.12.073</u> 1st observation of the H→WW process in CMS

- > Higgs production via ggH, VBF and VH
 - Analysis based on the 2016 data (35.9 fb⁻¹)

Categorization in Nr.-leptons and Nr.-jets

WH→3 leptons

- > WZ and Zγ normalizations estimated from data with CR
- Shape analsysis
- ZH→4 leptons
 - Categorization in the flavor of leptons from the Higgs
 - > ZZ bkg normalization taken from data with CR.
 - > Cut&Count analysis

Measurement of VH(H->WW)

The VH production mode contributed to the first CMS observation of the H->WW* decay mode.

May 27th 2019

CMS combining all categories: $\mu_{WH} = 3.27^{+1.88}_{-1.70}$ $\mu_{ZH} = 1.0^{+1.57}_{-1.0}$

Simultaneous fits are performed to probe the Higgs boson couplings to fermions and vector bosons

Measurement of VH(H-> $\tau\tau$)

35.9 fb⁻¹(13 TeV)

The H $\rightarrow \tau \tau$ decay is the second most sensitive channel to establish VH production

- > WH semi-leptonic: W(ev)H($\mu \tau_h$), W(μv)H($\mu \tau_h$)
- > WH hadronic: W(ev)H($\tau_h \tau_h$), W(μv)H($\tau_h \tau_h$)
- > With Z(ee)+H($\tau_e \tau_\mu$), H($\tau_e \tau_h$), H($\tau_\mu \tau_h$), H($\tau_h \tau$)
- > With $Z(\mu\mu)$ + $H(\tau_e\tau_\mu)$, $H(\tau_e\tau_h)$, $H(\tau_\mu\tau_h)$, $H(\tau_h\tau_h)$

Main Background:

- > Irreducible: WZ, ZZ estimated from MC
- > tt+jets, Z+jets, estimated with fake rate method

VH signal strength:

$$\mu = 2.54^{+1.35}_{-1.26} \ (obs.)$$

$$\mu = 1.00^{+1.08}_{-0.97} \ (exp.)$$

CMS-HIG-18-007

VH production mode represents a unique bench test to probe the coupling of the Higgs boson to leptons (VH $(\tau\tau)$)

Higgs->µµ analysis strategy and results

- Higgs boson decay to muons most sensitive channel to investigate couplings to 2nd generation fermions.
 - very rare process, but high di-muon mass resolution makes channel accessible
- Signal would appear as narrow resonance over smoothly falling background (primarily Drell-Yan and leptonic top decays.)
- Separate signal from background using BDT.
 - Define 15 signal regions based on BDT score and η^{μ}
- Use analytic functions to describe signal and background distributions
- 95% CL observed (background-only expected) upper limit on σxB is:
 2.9 (2.2) x SM

(Combination with data recorded at 7 and 8 TeV)

$H \rightarrow \mu\mu$ in reach with full Run II and Run III data.

Current focus in Higgs boson measurements : 'Simplified Template' (STXS) and differential cross sections

- Measure cross sections for the different production modes, split more finely into kinematic regions
- Results less model-dependent, more adapted for kinematically-dependent interpretations (EFT...)

CMS-PAS-HIG-19-001

 Also continue to target traditional differential cross section measurements

ttH analysis channels:

CM

- $t\bar{t}H$ multilepton:
 - targets $H \to WW^*$, ZZ^* , $\tau^+\tau^-$
 - 2 same-sign or \geq 3 charged leptons, including hadronic τ decays
- $t\bar{t}H$ with $H \rightarrow b\bar{b}$ decays:

0, 1 or 2 leptons + jets (with up to 4 b-jets)

- $t\bar{t}H$ with $H \rightarrow \gamma\gamma$ and $H \rightarrow 4\ell$ decays:
 - high purity, but lowest signal yields
 - excess in inv-mass of Higgs candidate

Recent results: ttH, H-> $\gamma\gamma$

41.5 fb⁻¹ (13 TeV)

All categories

Jata

— S+B

±1σ

±2 σ

150

160

S/(S+B) weighted

----- Background

CMS-PAS-HIG-18-018

BDT used in all classes

CMS Preliminary

 $\hat{\mu}_{t\bar{t}H} = 1.3$

tīH

Н→үү

20

15

10

100

110 120 130 140

Recent results: ttH, multilepton (τ_h) final states

CMS-PAS-HIG-18-019

- 7 event classes including 1 new: 2ℓ + $2\tau_h$
- Classification:
- Main systematic uncertainty from fake background yield estimate
- Observed (expected) combined (2016+2017) signa
 rate : 0.96+0.34-0.31 (1.00+0.30-0.27) times SM

->observed (expected) significance : 3.2σ (4.0σ)

	Observed limit	Expected limit	Expected limit
		$(\mu = 0)$	$(\mu = 1)$
$1\ell + 2\tau_h$	3.8	$2.4^{+1.3}_{-0.8}$	3.3
$2\ell ss$	2.0	$1.1^{+0.5}_{-0.3}$	1.9
$2\ell ss + 1 au_{ m h}$	3.1	$2.1^{+1.0}_{-0.7}$	2.8
$2\ell + 2 au_{ m h}$	5.2	$5.8^{+3.4}_{-2.0}$	6.8
3ℓ	1.7	$1.2^{+0.6}_{-0.4}$	2.1
$3\ell + 1 au_{ m h}$	3.8	$4.6^{+2.7}_{-1.6}$	5.1
4ℓ	8.1	$6.2^{+3.6}_{-2.1}$	6.4
Combined	1.6	$0.8^{+0.3}_{-0.2}$	1.7
Combined with 2016 analysis	1.6	$0.6^{+0.2}_{-0.2}$	1.5

Best fit $\mu(t\bar{t}H)$

Recent results: ttH, bb final states CMS-PAS-HIG-18-030

- Events are selected based on the number of leptons in the event, and categorised according to the number of jets.
- Multivariate analysis techniques are employed to further categorise the events and discriminate between signal and background.
- A combined fit of multivariate discriminant distributions in all categories is used.

Combined with 2016 data, an **observed (expected) significance** of **3.9 (3.5)** s. d. above the background-only hypothesis is obtained.

tH production

- tH production: tHq and tHW
 - depends on Higgs couplings to both top and gauge bosons
 - interf. effects make it sensitive to relative sign of y_t and g_{HVV} . For $\kappa_V = 1$:

SM $(y_t = +1)$: low xsec (~ 0.1 pb) due to destructive interf.

ITC $(y_t = -1)$: xsec $\times 10$ higher wrt SM

- **CMS** has performed dedicated searches for tH production in multilepton and $H \rightarrow b\bar{b}$ channels using 2016 data
 - analysis methods (obj-reco, bkg model) similar to the corresponding $t\bar{t}H$ analyses

CMS

tH multilepton

HIG-18-009, HIG-17-005

- 3 channels: $\mu^{\pm}\mu^{\pm}$, $e^{\pm}\mu^{\pm}$ and 3ℓ
 - 1 b-jet + 1 forward jet in final state
- Signal yield:
 - tH SM (ITC) ~ 1%(10%) wrt SM bkg
- final discriminant in each SR:
 1D dist. based on 2 BDT outputs
 [tHq vs ttv], and [tHq vs tt], inputs:
 - forward jet activity
 - jet and b-jet multiplicities
 - leptons' kinematics
- bkg model and dominant systematics very similar to $t\bar{t}H$ multilepton

tH combination:

HIG-18-009

Likelihood scan with respect to κ_t ($\kappa_V = +1$):

- positive κ_t favored over negative value by 1.5σ

 $-y_t$ values outside of [-0.9, -0.5] and [1.0, 2.1] excluded at 95% CL

95% CL UL on $\sigma_{tH} \times BR$ ($\kappa_V = +1$): $- t\bar{t}H$ yield fixed to SM (κ_t -dep.) - Obs (Exp) UL for $y_t = +1$: $25(12) \times SM$

Recent results: $H \rightarrow \tau \tau$

CMS-PAS-HIG-18-032

- Probes $e\mu$, $e\tau_h$, $\mu\tau_h$ and $\tau_h\tau_h$ final states with 2016/17 data
- Signal extracted with fit to neural network output dist'n

m_e = 125 GeV

68% CL

68% CL exc

Inclusive and per-process μ and σ , σ also in STXS bins

Processes (X)	μ_{X}	Expected	Observed
Inclusive	0.75 ± 0.14 (stat) ± 0.10 (syst)	3.40 ± 0.20 (theo)	2.56 ± 0.48 (stat) ± 0.34 (syst)
$gg \to H, bbH$	0.36 ± 0.26 (stat) ± 0.25 (syst)	3.07 ± 0.19 (theo)	1.11 ± 0.81 (stat) ± 0.78 (syst)
VBF+V(qq)H	1.03 ± 0.26 (stat) ±0.14 (syst)	$0.33\pm0.01~(\text{theo})$	$0.34\pm0.08~(stat)\pm0.09~(syst)$

STXS allows the combination of fully optimised analysis techniques with a clean and interpretable framework

77.4 fb⁻¹ (13 TeV)

95% CL

Expected for 125 GeV SM Higgs

--- 95% CL exp

• μ of quark- vs gluoninitiated processes, κ_F vs κ_V

μ(VBF+V(qq)H)

2.5

1.5

CMS

Preliminary

Recent results: H->yy STXS

CMS-PAS-HIG-18-029

- 2016/17 data combined permits cross section measurements in STXS 'stage 1' with some bins merged: 7- and 13-bin variants
- All measurements in agreement with SM predictions

Recent Results: H->ZZ*->4ℓ Full Run 2

≘vents / 4GeV

350

300

250

200

150

100

CMS Preliminary 2016 + 2017 + 2018

CMS-PAS-HIG-19-001

 Fiducial cross section √s= 13 TeV agrees with SM predictions:

$$\begin{split} \sigma_{fid} &= 2.73^{+0.23}_{-0.22}(\text{stat.})^{+0.24}_{-0.19}(\text{syst.}) \text{ fb} \\ \sigma_{\text{SM}} &= 2.76 \pm 0.14 \text{ fb} \end{split}$$

• As well as at the other 2 \sqrt{s}

• Cross-section measurements in many STXS bins ('Stage 1.1') and differential measurements in several variables possible, all compatible with SM predictions

Generic Parametrization

HIG-17-031 arXiv:1809.10733, accepted by Eur.Phys J.C

- Allow BSM loop contributions + either BSM contributions to $\Gamma_{\rm H}$ ($\kappa_{\rm v} \leq 1$) or not (BR_{BSM}=0)
- ATLAS+CMS Run 1: BR_{BSM} < 0.34 @95%CL
- CMS 2016: B_{inv}<0.22, B_{undet}<0.38

κ framework constrained scenarios

- Assume no BSM loop contributions and BR_{BSM} =0: Coupling modifiers to fermions vs. to vector bosons
- Assume BSM contributions from loops only (BR_{BSM} =0), other κ fixed to SM values: Effective coupling modifiers κ_g, κ_γ for loops describing ggF production and H→γγ decay

J. High Energy Phys. 08 (2016) 045

arXiv:1809.10733, accepted by Eur.Phys J.C

Mass-scaled κ vs. Mass

- Assume no BSM loop contributions and BR_{BSM} = 0

Rare and BSM decays

- The discovery of a new boson consistent with the Standard Model (SM) Higgs boson has completed the SM theory
- Nevertheless, this theory cannot address several crucial issues
- Direct evidence from observation:
 - existence of neutrino masses
 - existence of dark matter and dark ener_§
 - matter-antimatter asymmetry
- Conceptual problems in the SM:
 - the large number of free parameters
 - the "hierarchy problem"
 - the coupling unification

May 27th 2019

Strong indications that the SM is only a lowenergy expression of a more global theory

Exotic Decays of the Higgs Boson

- The SM Higgs boson has a very narrow width (~4 MeV): current limits still allow for additional contributions from BSM decays
- Constraints on new physics are still relatively loose (Run 1 limit $\mathcal{B}(H \rightarrow BSM) < 34\%$)
- Possibilities to detect BSM physics in the scalar sector:
 - Direct evidence through observation of BSM decays of the Higgs boson
 - Indirect evidence through observation of deviations in the couplings of the H boson

Search for BSM Physics in Higgs Decays

- Search for Higgs boson decays to SM particles:
 - Very rare decays predicted by the SM
 - An excess on these channels would be an indication of BSM physics
 - Decays not allowed in the SM
 - Lepton flavor violating Higgs decays
- Search for Higgs boson decays to non-SM particles:
 - Invisible Higgs boson decays, with H produced via
 - ggF, VBF, VH or ttH (H \rightarrow invisible)
 - Higgs boson decays to light pseudoscalars/scalars
 - $(H \rightarrow aa)$, decaying to SM particles

(Recent) results reported here CMS-HIG-18-025, CMS-EXO-19-007, CMS-HIG-17-023, CMS-HIG-18-008, CMS-HIG-18-006

Rare Decay: $H \rightarrow J/\psi J/\psi - YY$

- Almost background-free

 sensitivity scales with luminosity
- 4-muon final state: very clean signature with narrow intermediate resonant states
- Dedicated triggers: 2μ (m _{J/ψ}),
 3μ (m_Y)

CHANNEL	BR (SM)	
$H\to\Upsilon\Upsilon$	~2 × 10 ⁻⁹	
H →J/ψ J/ψ	$\sim 1.5 \times 10^{-10}$	

Exclusion Limits at 95%	observed	expected
${\cal B}({\rm H} ightarrow {\rm J}/\psi {\rm J}/\psi) imes 10^3$	1.8	$1.8\substack{+0.2 \\ -0.1}$
${\cal B}(H\to YY)\times 10^3$	1.4	1.4 ± 0.1

CMS

Search for Dark Photons in ZH Decays

- Massless dark photon that couples to Higgs boson
 - γ_D is a dark photon, which is undetected (large p_T^{miss})
- Two opposite-sign same-flavor leptons and a photon
- Background from data-based method and simulation
- m_T (transverse mass of p_T^{miss} and photon system) and $|\eta^{\gamma}|$ used in the fit

Higgs To Invisible Searches

- In the SM, H \rightarrow invisible only via H \rightarrow ZZ* \rightarrow 4v with BR of 0.1%
 - Rate for invisible decays significantly enhanced in several BSM scenarios
 - The 125 GeV boson could be a portal between a dark sector and the SM sector
 - All the main Higgs production modes can be used to probe its coupling with "invisible" particles
 - All searches characterized by large p_T^{miss} (DM particles escape detection)
 - The Higgs boson recoils against a visible system used to distinguish between production modes

Higgs To Invisible Searches

- **VBF topology:** characteristic final states with two jets with large $\Delta \eta_{ii}$ and m_{ii}
 - Allows for suppression of SM backgrounds: most sensitive production mode
 - Main backgrounds: W+jets, Z+jets
- Background estimated from high-purity 1 or 2 lepton CRs
- Improved sensitivity by fitting the shape of the m_{ii} distribution

Observed (expected) limit @ 95% CL [36 fb-1]: $\mathcal{B}(H \rightarrow inv) < 0.33 (0.25)$

Higgs \rightarrow Invisible [Z $\rightarrow \ell \ell$]

ightarrow inv)/ σ_{SM}

В(H

×

ь

5 0.6

upper limit 0.5

Ч 0.3 95%

0.9

0.8

0.7

0.4

0.2

Signature: 2 opposite-sign, same-flavor electrons or muons + pTmiss

Main backgrounds: $Z(\ell\ell)Z(\nu\nu)$, $Z(\ell\ell)W(\ell\nu)$

4.9 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 38.2 fb⁻¹ (13 TeV)

--O-- Median expected VBF, VH, ggH

Combination

CMS-HIG-17-023

• Require dilepton system be back-to-back wrt p_T^{miss} 12-variable BDT

Observed (expected) limit @ 95% CL [36 fb-1]: $\mathcal{B}(H \rightarrow inv) < 0.40 (0.42)$

CMS

Observed

68% expected

95% expected

ICTP Trieste 2019

$H \rightarrow Invisible [ttH], and H \rightarrow Exotic [LFV]$

Reinterpretation of results from $0/1/2\ell$ stop searches $(0/1/2\ell + jets + pTmiss + b-tag)$ No modification to signal regions and background predictions No re-optimization for ttH signals

Multiple signal bins to cover large parameter space

Major backgrounds constrained/validated in control regions

CMS-HIG-17-001

 $H \rightarrow e + \tau / \mu + \tau$

- Multiple τ-decay channels
- BDT fits to improve sensitivity

Observed (expected) limit @ 95% CL [36 fb-1]: $\mathcal{B}(H \to \mu \tau) < 0.25 (0.25) \%$ $\mathcal{B}(H \rightarrow e\tau) < 0.61 (0.37) \%$

Observed

→ee/uu

Bkg. unc.

35.9 fb⁻¹ (13 TeV)

Ζ→ττ

SM Higgs — H→μτ (B=20%)

tt.t+jets

W+jets.QCD

0.2

BDT discriminator

Exotic Decays in 2HDMs

- CMS
- Two-Higgs-doublet models are simple extensions of the SM introducing two doublets of scalar fields (ϕ 1 and ϕ 2) in the SM Lagrangian
- After symmetry breaking, five physical states are left (*h*, *H*, *A* and *H*± bosons)
- Four types, according to different patterns of quark and lepton couplings

Further extension 2HDM+S: possible search for $H \rightarrow aa$ (*a* pseudoscalar) Exotic decays still consistent with all the LHC measurements so far

Exotic Decays: $H \rightarrow aa \rightarrow 2\mu 2\tau/4\tau$

- Highly boosted a boson, non-isolated muons
- 4 GeV < m_a < 15 GeV
- Selection: SS μ pair + two 1-prong τ decays (OS wrt nearest μ)
- Main background: QCD multijet events
- 2D search in (m_{µ1, trk1}, m_{µ2, trk2}) plane
- Reduced sensitivity as topology becomes resolved

Improves Run 1 CMS limits by up to a factor 10

Searches for charged Higgs

7/8 TeV		13 TeV	
Final State	Ref	Final State	Ref
$H^{\pm} \rightarrow \tau \nu$,tb	JHEP 11 (2015) 018	$H^{\pm} \rightarrow \tau \nu$	arXiv:1903.04560 (JHEP)
$H^{\pm} \rightarrow cb$	JHEP 11 (2018) 115	$H^{\pm} \rightarrow tb lep$	CMS-PAS-HIG-18-004
$H^{\pm} \rightarrow cs$	JHEP 12 (2015) 1	$H^{\pm} \rightarrow tb$ had	CMS-PAS-HIG-18-015
		$H^{\pm} \to Wa$	CMS-PAS-HIG-18-020
H ^{±±} multileptons	EPJC 72 (2012) 2189	H ^{±±} multileptons	CMS-PAS-HIG-16-036
		VBF $H^{\pm} \rightarrow WZ$	PRL 119 (2017) 141802
		$H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$	PRL 120 (2018) 081801

New results with 2016 13 TeV data including intermediate mass range. "Standard" decays very constrained now in MSSMlike models. New benchmarks: opening decays to $\chi_i^{\pm}\chi_{j}^{o}$, Wh, WA.

$H^{\pm} \rightarrow \tau \nu$ and $H^{\pm} \rightarrow tb$ leptonic, and combination

All hadronic channel contributes most at high H[±] mass.

Double Higgs production

[dd]

10

10

10-2

HH has extremely small cross section in the Standard Model 10³x smaller than the single Higgs boson production 31.05 fb at 13 TeV (NNLO_{FTapprox})

- HH production allows to probe the selfcoupling
- The measurement of the Higgs boson selfcoupling is a fundamental test of the SM It probes the shape of the Higgs potential

20% (or better) precision on self-coupling is needed to probe BSM modifications

Anomalous Higgs boson couplings has strong effect on cross-section and m(hh) shape EFT approach parametrizes new physics modifications to $\kappa_{\lambda} = \lambda/\lambda_{SM}$ and $\kappa_{t} = y_{t}/y_{t,SM}$ and new contact interactions c2, c2g, cg

Double Higgs production

- H(bb) is a key element in the exploration of HH at the LHC highest BR good b-jets identification performance: 70% efficiency at 0.3-1% q/g mistag probability
- H(γγ) clean final state excellent mass resolution, ~1%
- **H**(γγ)**H**(**bb**́) Phys. Lett. B 788 (2018) 7:
 - Photon selection similar to H(γγ) measurements
 - mγγ and m(bb̄) compatible with the Higgs boson mass
 - Mx and BDT (includes angular correlations) classifier used to categorize events
- Main backgrounds are:
 - γγ+jets (prompt or jets misidentified as photon)
 - SM single Higgs
- Likelihood fits simultaneous to m(bb̄) and m(γγ)

24 x SM observed 95% CL on SM HH cross section (19 x SM) expected

CMS

Grav. m., = 300 GeV

Rad. m_v = 600 GeV

 $gg \rightarrow HH (x10^4)$

VBF HH (x10⁵)

high mass

Events/(30.0 GeV) 10⁺

10⁸

10²

10

35.9 fb⁻¹ (13 TeV)

+ Data

VH(γγ)

ggH(γγ)

Summary

- The Higgs boson represents a unique particle in Nature
 - Its characterisation is essential to explore the scalar sector of the SM
- A broad program of Higgs boson study is ongoing with the ATLAS and CMS experiments
- The Run 2 dataset offers unprecedented possibilities of study: from observations to precision measurements
 - increasingly precise and granular measurements as more data are available
- Run 2 Higgs Physics Milestones Already Reached: Third Generation (Charged) Completed
- A broad and exciting program of Higgs boson physics is ahead of us, from updated properties and couplings measurements with the Run 2 dataset to the HL-LHC precision measurements

Perspectives

arXiv:1902.00134

- Most Run 2 full-statistics results are still to come (~140fb⁻¹)
- Perspectives for Run 3 (2021-2023): Hope for >150fb⁻¹ at \sqrt{s} = **14 TeV**
- HL-LHC: Starts 2026, expect 3ab⁻¹, hope for ~2-4% precision for most couplings

