Impact of D^* polarization measurement on solutions to R_{D} - R_{D*} anomalies

Suman Kumbhakar

IIT Bombay, India

May 29, 2019

Based on arXiv:1903.10486

A K Alok, D Kumar, S Kumbhakar, S UmaSankar Updated Analysis of: JHEP 1809 (2018) 152 & Phys.Lett. B784 (2018) 16-20

Interpreting the LHC Run 2 Data and Beyond ICTP Trieste

 \cap α

K ロ ▶ K 御 ▶ K 경 ▶ K 경

- Anomalies in $b \to c\tau\bar{\nu}$
- **•** Global fit results
	- **Ⅰ** Pre-Moriond'19 and Pre-D^{*} polarization measurement
	- ² Post-Moriond'19 and Post-D [∗] polarization measurement
- Observables to distinguish new physics amplitudes
- **•** Summary

 Ω

K ロ ▶ K 御 ▶ K 경 ▶ K 경

 $R_D - R_{D^*}$ Puzzle (Pre-Moriond'19)

$$
R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \bar{\nu})}{\mathcal{B}(B \to D^{(*)} \, I \, \bar{\nu})}, \quad (I = e, \, \mu)
$$

 \implies Discrepancy was at the level of $\sim 4\sigma$. \implies Indication of Letpon Flavor Universaity (LFU) violation

 299

 $R_D - R_{D*}$ World average 2019¹

Post-Moriond'19

¹https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/ht[ml/](#page-2-0)[RD](#page-4-0)[s](#page-2-0)[Dss](#page-3-0)[t](#page-4-0)[ar/](#page-0-0)[RD](#page-19-0)[RD](#page-0-0)[s.h](#page-19-0)[tm](#page-0-0)[l](#page-19-0) 299 In Sept. 2017 LHCb measured [LHCb PRL 120 (2018) no.12, 121801:

$$
R_{J/\psi} = \frac{{\cal B}(B^-_c \to J/\psi \, \tau^- \, \bar{\nu})}{{\cal B}(B^-_c \to J/\psi \, \mu^- \, \bar{\nu})} = 0.71 \pm 0.17 \pm 0.18
$$

 \Longrightarrow 1.7 σ larger than the SM prediction of $R_{J/\psi}^{SM}=$ 0.29.

Also a measurement of τ polarization in $B \to D^* \tau \bar{\nu}$ decay by Belle in 2016 [Belle PRL 118, no. 21, 211801 (2017)]

$$
P_{\tau}(D^*) = \frac{\Gamma_{\lambda_{\tau}=1/2} - \Gamma_{\lambda_{\tau}=-1/2}}{\Gamma_{\lambda_{\tau}=1/2} + \Gamma_{\lambda_{\tau}=-1/2}} = -0.38 \pm 0.51^{+0.21}_{-0.16}
$$

Though it has large errors, it is consistant with SM prediction -0.497 ± 0.013 .

≮ロト ⊀母 ▶ ⊀ ヨ ▶ ⊀

The D^* longitudinal polarization fraction is measured by Belle $\left[$ arXiv:1903.03102]

$$
f_L(D^*) = \frac{\Gamma_{\lambda_{D^*}=0}}{\Gamma_{\lambda_{D^*}=0} + \Gamma_{\lambda_{D^*}=1} + \Gamma_{\lambda_{D^*}=-1}} = 0.60 \pm 0.08 \pm 0.04
$$

 \Longrightarrow 1.7 σ larger than the SM prediction of $f_L(D^*)=0.45\pm0.04.$ [Alok, Dinesh, SK, UmaSankar; PRD 95 (2017) no.11, 115038]

 \implies All measurements indicate the mechanism of $b \to c\tau\bar{\nu}$ is not identical to that of $b \to c \{e/\mu\} \bar{\nu}$. \Rightarrow New physics in $b \rightarrow c \{e/\mu\} \bar{\nu}$ transition is highly disfavoured by other measurements $R_D^{\mu/e}$ $D_D^{\mu/e}$ and $R_{D^*}^{e/\mu}$. [Alok, Dinesh, SK, UmaSankar; JHEP 1809 (2018) 152] \implies Take new physics in $b \to c\tau\bar{\nu}$ transition !!

メロメ メ都 メメ ミメ メヨメ

New Physics operators for $b \to c\tau\bar{\nu}$

The most general effective Hamiltonian for $b\to c\tau\bar\nu$ transition at $\Lambda=1$ TeV scale [Freytsis, Ligeti, Ruderman PRD92 (2015) no.5, 054018]

$$
H_{\text{eff}} = \frac{4 G_F}{\sqrt{2}} V_{cb} \left[O_{V_L} + \frac{\sqrt{2}}{4 G_F V_{cb} \Lambda^2} \sum_i C_i^{(','')}\, O_i^{(','')}\right]
$$

Suman Kumbhakar (IIT Bombay, India)

 Ω

Fitting the data

- Take all data in $b \to c\tau\bar{\nu}$ sector: (a)R_D, (b) R_{D^{∗}}, (c) R_{J/ψ}, (d) P_τ and (e)</sub> $f_L(D^*)$.
- Define χ^2 as a function of the NP WCs:

$$
\chi^{2}(C_{i}) = \sum_{m,n=R_{D},R_{D^{*}}}\left(O^{th}(C_{i})-O^{exp}\right)_{m}\left(V^{exp}+V^{SM}\right)_{mn}^{-1}\left(O^{th}(C_{i})-O^{exp}\right)_{n} + \sum_{R_{J/\psi},P_{\tau},f_{L}(D^{*})}\frac{\left(O^{th}(C_{i})-O^{exp}\right)^{2}}{\sigma_{O}^{2}}.
$$

- Use MINUIT library to minimize the χ^2 function and get the values of NP WCs. We choose one operator or two (dis-)similar operators at a time to get the strongest possible constarint.
- $\chi^2_{\sf min}$ falls into two disjoint ranges \lesssim 5 and \gtrsim 7.5, whereas the $\chi^2_{\sf SM} = 21.80$ (After Moriond'19).
- We choose the NP WCs as best fit solutions which fall in the range $\chi^2_{min} \lesssim 5.$

 Ω

メロト メ御 トメ きょ メきょ

Constraint from $B_c \rightarrow \tau \bar{\nu}$

- **Strong constraint from purely leptonic decay** $B_c \rightarrow \tau \bar{\nu}$ **, especially on the** scalar/pseudoscalar NP.
- The most general expression for the branching fraction of $B_c \rightarrow \tau \bar{\nu}$ is

$$
Br(B_c \to \tau \bar{\nu}) = \frac{|V_{cb}|^2 G_F^2 f_{B_c}^2 m_{B_c} m_{\tau}^2 \tau_{B_c}^{\exp} }{8\pi} \left(1 - \frac{m_{\tau}^2}{m_{B_c}^2}\right)^2
$$

$$
\times \left|1 + C_{V_L} - C_{V_R} + \frac{m_{B_c}^2}{m_{\tau}(m_b + m_c)}(C_{S_R} - C_{S_L})\right|^2
$$

- The SM prediction is 2.15×10^{-2} . Particularly, LEP data imposes a constraint $Br(B_c \to \tau \bar{\nu})$ < 0.1. [Akeroyd and Chen, PRD 96, no. 7, 075011 (2017)]
- Keep only those NP WCs which predict $Br(B_c \to \tau \bar{\nu})$ < 0.1 and disard all others.

 Ω

メロト メ都 トメ ヨ トメ ヨト

New Physics Solutions

Pre-Moriond'19 & D^{*} polarization: [Alok, Dinesh, Jacky, SK, UmaSankar; JHEP 1809 (2018) 152]

Post-Moriond'19 & D^{*} polarization: [Alok, Dinesh, SK, UmaSankar; arXiv:1903.10486]

Additional global fit analyses after Moriond'19: 1904.09311, 1904.10432, 1905.08498, 1905.08253 etc. (□) (n) (三)

 Ω

How to distinguish these solutions ?

 299

メロメ メ御 メメ きょうぼき

We consider four angular observables: (a) τ polarization P_{τ} , (b) D^* polarization fraction f_L , (c) forward-backward asymmetry A_{FB} and (d) longitudinal-transverse asymmetry A_{IT} [Sakaki, Tanaka, Watanabe; PRD 2013]

$$
P_{\tau} = \frac{\Gamma_{\lambda_{\tau}=1/2} - \Gamma_{\lambda_{\tau}=-1/2}}{\Gamma_{\lambda_{\tau}=1/2} + \Gamma_{/\lambda_{\tau}=-1/2}},
$$

\n
$$
f_{L} = \frac{\Gamma_{\lambda_{D^{*}}=0}}{\Gamma_{\lambda_{D^{*}}=0} + \Gamma_{\lambda_{D^{*}}=-1} + \Gamma_{\lambda_{D^{*}}=+1}},
$$

\n
$$
A_{FB} = \frac{1}{\Gamma} \left[\int_{0}^{1} - \int_{-1}^{0} \frac{d^{2} \Gamma}{dq^{2} d \cos \theta_{\tau}} d \cos \theta_{\tau},
$$

\n
$$
A_{LT} = \frac{\int_{-\pi/2}^{\pi/2} d\phi \left(\int_{0}^{1} - \int_{-1}^{0} \right) \frac{d^{3} \Gamma d \cos \theta_{D}}{dq^{2} d\phi d \cos \theta_{D}}}{\int_{-\pi/2}^{\pi/2} d\phi \left(\int_{0}^{1} + \int_{-1}^{0} \right) \frac{d^{3} \Gamma d \cos \theta_{D}}{dq^{2} d\phi d \cos \theta_{D}}}.
$$

 Ω

K ロ ト K 何 ト K ヨ ト K

Predictions to distinguish NP WCs

Pre-Moriond and Pre- D^* polarization status [Alok, Dinesh, SK, UmaSankar; PLB 784 (2018) 16-20]

- If P_T or f_L can be measured with an absolute uncertainty of 0.1, then C_T is either confirmed or ruled out at 3σ level. [Alok, Dinesh, SK, UmaSankar; PRD 95 (2017) no.11, 115038]
- If A_{FB} or A_{IT} can be measured with an absolute uncertainty of 0.07, then (O_{V_L}, O_{V_R}) is either confirmed or ruled out at 3 σ level.

 Ω

イロト イ押 トイヨ トイヨ

Distinguishing power of A_{FB}

 \implies $A_{FB}(q^2)$ for O_{V_L} solution (green curve)has a zero crossing at $q^2=5.6$ GeV 2 whereas this crossing point occurs at $q^2 = 7.5$ GeV² for O''_{S_L} solution (blue curve). \implies $\langle A_{FB} \rangle$ in the limited range 6 GeV 2 $<$ q^2 $<$ q^2_{max} gives the result $+0.1$ for O_{V_L} and $+0.01$ for $O_{S_L}^{\prime\prime}$. Hence, determining the sign of $\langle A_{FB}\rangle$, for the full q^2 range and for the limited higher q^2 range, provides a very useful tool for discrimination between O_{V_L} and O_{S_L}'' solutions.

Predictions of angular observables

Post-Moriond & Post- D^* polarization status [Alok, Dinesh, SK, UmaSankar; arXiv:1903.10486]

- Only (C''_{S_L}, C''_{S_R}) solution can be distinguished as $\langle A_{FB} \rangle$ is postive for the whole q^2 range.
- $\langle A_{FB} \rangle$ can not distinguish between C''_{S_L} and (C_{V_R}, C_{S_L}) . Only possiblity is ${\cal B}(B_c\to \tau\bar \nu)$. For C_{S_L}'' , it is $\sim 10^{-6}$ and that for (C_{V_R},C_{S_L}) is $\sim 10^{-3}$.
- (C_{V_R},C_{S_R}) solution can be distinguished only by means of $B(B_c \to \tau \bar{\nu}) \sim 10\%$

 Ω

メロト メ都 トメ ヨ トメ ヨト

Capability of A_{FB}

- (C''_{S_L}, C''_{S_R}) solution (blue curve) has a zero crossing at 5 GeV².
- No other solutions can be distinguished by the q^2 dependence of A_{FB} .

(□) (n) ()

- Pre-Moriond and Pre-D^{*} polarization: 4 NP solutions, each with different Lorentz structure.
- Post-Moriond and Post- D^* polarization: 5 NP solutions, The tensor solution is now ruled out at the level of 5σ by D^* polarization measurement.
- **•** Discrimanting 5 solutions: Although A_{FR} and $\mathcal{B}(B_c \to \tau \bar{\nu})$ are useful to discriminate, but measuring these are challenging.
- Need to find other observables to distinguish all solutions uniquely.

Thank You !!

 Ω

K ロ ト K 何 ト K ヨ ト K

Backup Slides

 299

イロト イ部ト イミト イミト

$B \to D^* \tau \bar{\nu}$

We can describe the decay by defining 3 angles θ_τ, θ_D and ϕ in the D^* rest frame which are shown in figure

- θ_D the angle between B and D where D meson comes from D^* decay.
- \bullet θ_{τ} the angle between τ and B.

 ϕ the angle between D^* decay plane and plane defined by lepton momenta. Out of these 3 angle it is possible to measure θ_D from the same data used by BaBar and Belle to determine R_{D^*} . Other 2 angles have not been measured because so far τ lepton has not been measured in any of the experiments which measure R_D/R_{D^*} .

4-Fold Distribution for $B \to D^* \tau \bar{\nu}$

The four-fold distribution for the decay can be obtained using helicity formalism i.e.

$$
\frac{d^4\Gamma}{dq^2d\cos\theta_\tau d\cos\theta_D d\phi} = N_F \times \left[\cos^2\theta_D (I_1^0 + I_2^0 \cos 2\theta_\tau + I_3^0 \cos \theta_\tau) + \sin^2\theta_D I_2^0\right]
$$

$$
(I_1^T + I_2^T \cos 2\theta_\tau + I_3^T \cos \theta_\tau + I_4^T \sin^2\theta_\tau \cos 2\phi + I_5^T I_3^0\sin^2\theta_\tau \sin 2\phi) + \sin 2\theta_D (I_1^{0T} \sin 2\theta_\tau \cos \phi + I_2^{0T} \sin 2\theta_\tau I_3^0\sin \phi + I_3^{0T} \sin \theta_\tau \sin \phi)\right]
$$

where the normalization factor $N_F = \frac{3G_F^2|p_{D^*}||V_{cb}|^2\beta_\tau}{2^{11-3}\pi^2}$ $\frac{\|PD^*\|^\gamma\,c\,b\|^\gamma\,\sigma}{2^{11}\pi^3m_B^2}Br(D^*\to D\pi)$ Here B

 $\beta_\mu = \left(1 - \frac{m_\tau^2}{c^2}\right)$ q^2 $\bigg\}^2$ and $|p_{D^*}|$ is the D^* momentum in the B-meson rest frame, $|p_{D^*}| = \lambda^{1/2} \left(m_B^2, m_{D^*}^2, q^2\right)/2m_B$ with $\lambda(a, b, c) = a^2 + b^2 + c^2 - 2(ab + bc + ca)$. The twelve angular coefficients I's depend on couplings, kinematics variables and form factors.

K ロ X K @ X K 평 X K 평 X (평